1
|
Butyrskaya EV, Zolotukhina EV, Herbeck-Engel P, Koch M, Silina YE. Toward the development of a specific non-enzymatic amperometric sensor for determining uric acid in fermentation samples. Mikrochim Acta 2025; 192:149. [PMID: 39934420 PMCID: PMC11814019 DOI: 10.1007/s00604-025-06979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/12/2025] [Indexed: 02/13/2025]
Abstract
The development is proposed of a specific non-enzymatic amperometric sensor based on electrodeposited copper nanoparticles (Cu-NPs) for the determination of uric acid (UA) in fermentation samples. Through optimization of the Cu-NPs-containing sensing layer, it was demonstrated that copper(II)-induced oxidation (catalytic effect) in the presence of molecular oxygen is more effective for determining UA than the adsorption of UA on Cu and Cu-oxide surfaces. More importantly, simply changing the sensing layer's surface chemistry by increasing the defect CuxOy on the surface of Cu-NPs after heating at 70 °C for only 20 min significantly improved the specificity of UA determination in both model and real fermentation samples (viz. supernatants of S. cerevisiae and E. coli). This study can be used as a guideline for the future assembly of functional electrodeposited sensing layers for the specific determination of target electroactive bioanalyte(s).
Collapse
Affiliation(s)
- E V Butyrskaya
- Department of Analytical Chemistry, Voronezh State University, Voronezh, Russia
| | - E V Zolotukhina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Moscow Region, Russia
| | - P Herbeck-Engel
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - M Koch
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
- HTW saar -University of Applied Sciences, Saarbrücken, Germany
| | - Y E Silina
- Department of Biochemistry, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
2
|
Chang YJ, Lin CH, Chien YC. Predicting the risk of chronic kidney disease based on uric acid concentration in stones using biosensors integrated with a deep learning-based ANN system. Talanta 2025; 283:127077. [PMID: 39476796 DOI: 10.1016/j.talanta.2024.127077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024]
Abstract
Elevated levels of uric acid (UA) in the body may not only lead to the formation of stones but also increase the risk of developing chronic kidney disease (CKD). This study presents a biosensor for detecting UA concentration in stones and a deep learning-based artificial neural network (ANN) system for analyzing CKD risk. The biosensor is a screen-printed electrode (SPE) chip, whose surface was modified using oxygen plasma, enabling the detection of UA concentration via cyclic voltammetry. Experimental results show a good linear relationship between UA concentration and anodic peak current within the range of 0.15-5 mM. The surface modification method for this biosensor is simple and cost-effective. The ANN system took age and creatinine values as inputs, utilizing the Chronic_Kidney_Disease dataset and supplementary data from literatures for training. After detecting the UA concentration in stones using the biosensor, the result was converted into serum uric acid concentration, allowing the estimation of creatinine level, which was then used by the ANN to assess the risk of developing CKD. This system can assist urologists in determining whether patients should seek consultation with nephrologists for early diagnosis and treatment.
Collapse
Affiliation(s)
- Yaw-Jen Chang
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City, 320314, Taiwan.
| | - Chu-Hao Lin
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City, 320314, Taiwan
| | - You-Chiuan Chien
- Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City, 320314, Taiwan; Tai-An Hospital, Taichung City, 401007, Taiwan
| |
Collapse
|
3
|
Dutta G, Chinnaiyan SK, Palaniyandi T, Sugumaran A, Narayanasamy D. Biogenic synthesized CuO nanoparticles and 5-fluorouracil loaded anticancer gel for HeLa cervical cancer cells. DISCOVER NANO 2024; 19:217. [PMID: 39729148 DOI: 10.1186/s11671-024-04166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Cervical cancer remains a significant health challenge in developing countries are high due to low HPV vaccination rates, delayed diagnosis, and restricted healthcare access. Metal nanomaterials, such as copper oxide (CuO) nanoparticles (NPs), have shown significant promise in cancer therapy due to their ability to induce apoptosis. 5-Fluorouracil (5-Fu) enhances the cytotoxic effect against cervical cancer, working synergistically with CuO NPs to maximize the therapeutic impact while potentially reducing the 5-Fu's systemic side effects. This study explores the synergistic therapeutic potential of green-synthesized CuO NPs combined with 5-Fu in a gel formulation for targeted anticancer activity against HeLa cervical cancer cells. CuO NPs were synthesized using Trichosanthes dioica dried seeds extract and incorporated into a pectin-xanthan gum-based gel. The green-synthesized CuO NPs exhibited a zeta potential of -23.7 mV, a particle size of approximately 26 nm, and spherical morphology. Characterization studies, including FTIR, viscosity, spreadability, pH, and stability assessments, confirmed the gel's suitability for vaginal delivery. In-vitro drug release showed xanthan gum extended the release up to 8 h. The MTT assay revealed PXFCu6 gel's IC50 at 11.82 ± 0.22 μg/mL, significantly more cytotoxic to HeLa cells, being 3.62 times potent than CuO NPs (IC50: 42.8 ± 0.24 μg/mL) and 1.63 times potent than 5-Fu alone (IC50: 19.3 ± 0.49 μg/mL). The antibacterial assay showed no inhibition for the plain gel, but T. dioica-mediated CuO NPs exhibited inhibition of 22.35 ± 4.9 mm. PXFCu6 gel had the more potent inhibition at 52.05 ± 1.37 mm against Escherichia coli growth. The PXFCu6 gel showed better stability at 4 °C, maintaining viscosity, pH, and drug release, unlike 25 °C where a mild degradation occurred. This research highlights the potential of the CuO NPs-5-Fu gel as a novel, effective therapeutic strategy for cervical cancer treatment.
Collapse
Affiliation(s)
- Gouranga Dutta
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Rajiv Gandhi Institute of Pharmaceutical Sciences and Research (RPISAR), Trikaripur, Kasargod, Kerala, 671310, India
| | | | - Abimanyu Sugumaran
- Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, 788011, India.
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Liu Y, Zhao W, Gao Y, Zhuo Q, Chu T, Zhou C, Huang W, Zheng Y, Li Y. Colorimetric and electrochemical dual-mode uric acid determination utilizing peroxidase-mimicking activity of CoCu bimetallic nanoclusters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1102-1110. [PMID: 38289093 DOI: 10.1039/d3ay02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We present the preparation of CoCu bimetallic nanoclusters (Co@Cu-BNCs) by a hydrothermal and one-step pyrolysis method to build a colorimetric and electrochemical dual-mode sensing platform for uric acid (UA) detection. In the presence of H2O2, Co@Cu-BNCs with peroxidase-mimicking activity may convert colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue-colored oxidized TMB (oxTMB). However, due to the inhibitory effect of uric acid (UA) on the oxidation process of TMB, the characteristic absorption peak intensity of oxTMB decreased when UA was added into a mixed solution. In this approach, a colorimetric assay platform for the detection of UA was demonstrated, with a linear range of 0.1-195 μM and a low limit of detection of 0.06 μM (S/N ratio of 3). In addition, an even wider detection range is achieved in the electrochemical method, due to the pronounced electrocatalytic activity of Co@Cu-BNCs. The surface of the glassy carbon electrode was modified with Co@Cu-BNCs to build an electrochemical sensor for detecting UA. The sensor achieves a wider linear range from 2 to 1000 μM and a limit of detection of 0.61 μM (S/N ratio of 3). Moreover, the detection of UA in a human serum sample showed satisfactory results. The results proved that the colorimetric and electrochemical dual-mode detection platform was sensitive, convenient and accurate.
Collapse
Affiliation(s)
- Yaopeng Liu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wei Zhao
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yi Gao
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Qing Zhuo
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Tingting Chu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Chengyu Zhou
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wensheng Huang
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yin Zheng
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| |
Collapse
|
5
|
Abdul Aziz SFN, Hui OS, Salleh AB, Normi YM, Yusof NA, Ashari SE, Alang Ahmad SA. Enhancing uric acid electrochemical detection with copper ion-activated mini protein mimicking uricase within ZIF-8: response surface methodology (RSM) optimization. Anal Bioanal Chem 2024; 416:227-241. [PMID: 37938411 DOI: 10.1007/s00216-023-05011-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
This study aims to investigate the influence of copper(II) ions as a cofactor on the electrochemical performance of a biocomposite consisting of a mini protein mimicking uricase (mp20) and zeolitic immidazolate framework-8 (ZIF-8) for the detection of uric acid. A central composite design (CCD) was utilized to optimize the independent investigation, including pH, deposition potential, and deposition time, while the current response resulting from the electrocatalytic oxidation of uric acid was used as the response. The statistical analysis of variance (ANOVA) showed a good correlation between the experimental and predicted data, with a residual standard error percentage (RSE%) of less than 2% for predicting optimal conditions. The synergistic effect of the nanoporous ZIF-8 host, Cu(II)-activated mp20, and reduced graphene oxide (rGO) layer resulted in a highly sensitive biosensor with a limit of detection (LOD) of 0.21 μM and a reproducibility of the response (RSD = 0.63%). The Cu(II)-activated mp20@ZIF-8/rGO/SPCE was highly selective in the presence of common interferents, and the fabricated layer exhibited remarkable stability with signal changes below 4.15% after 60 days. The biosensor's reliable performance was confirmed through real sample analyses of human serum and urine, with comparable recovery values to conventional HPLC.
Collapse
Affiliation(s)
- Siti Fatimah Nur Abdul Aziz
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800, Gelugor, Pulau Pinang, Malaysia.
| | - Ong Sin Hui
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Efliza Ashari
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Turan K, Üğe A, Zeybek B, Aydoğdu Tiğ G. Development of a facile electrochemical sensor based on GCE modified with one-step prepared PNMA-CeO 2-fMWCNTs composite for simultaneous detection of UA and 5-FU. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:40-50. [PMID: 38054482 DOI: 10.1039/d3ay02099a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this study, a poly(N-methyl aniline)-cerium oxide-functionalized MWCNTs (PNMA-CeO2-fMWCNTs) composite was synthesized in a one-step preparation technique. As a highly efficient modifier, the composite was used to modify the glassy carbon electrode surface for simultaneous detection of uric acid (UA) and 5-fluorouracil (5-FU). Morphological characterization of the GCE/PNMA-CeO2-fMWCNTs was studied using scanning electron microscopy. Structural characterization of the composite was performed using X-ray diffraction and Fourier-transformed infrared spectroscopy. Electron transfer properties of the prepared electrodes were carried out with electrochemical impedance spectroscopy and cyclic voltammetry. The linear working range for UA and 5-FU was found to be 0.25-50 μM and 0.5-750 μM, respectively. The limit of detection values for UA and 5-FU were 0.04 μM and 0.19 μM, respectively. The effects of various interfering substances on the electrochemical response of UA and 5-FU were investigated. The GCE/PNMA-CeO2-fMWCNTs sensor has excellent stability, reproducibility, anti-interference ability, and reproducibility. To demonstrate the practical application of the sensing platform, fetal bovine serum was selected and tested in the spiked samples, and satisfactory results were obtained. The prepared composite proved to be a promising platform for simple, rapid, and simultaneous analysis of UA and 5-FU.
Collapse
Affiliation(s)
- Kübra Turan
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| | - Ahmet Üğe
- Kütahya Dumlupınar University, Faculty of Science and Arts, Department of Chemistry, Kütahya, 43100, Turkey
| | - Bülent Zeybek
- Kütahya Dumlupınar University, Faculty of Science and Arts, Department of Chemistry, Kütahya, 43100, Turkey
| | - Gözde Aydoğdu Tiğ
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| |
Collapse
|
7
|
Tolubayeva DB, Gritsenko LV, Kedruk YY, Aitzhanov MB, Nemkayeva RR, Abdullin KA. Effect of Hydrogen Plasma Treatment on the Sensitivity of ZnO Based Electrochemical Non-Enzymatic Biosensor. BIOSENSORS 2023; 13:793. [PMID: 37622880 PMCID: PMC10452905 DOI: 10.3390/bios13080793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Information on vitamin C-ascorbic acid (AA)-content is important as it facilitates the provision of dietary advice and strategies for the prevention and treatment of conditions associated with AA deficiency or excess. The methods of determining AA content include chromatographic techniques, spectrophotometry, and electrochemical methods of analysis. In the present work, an electrochemical enzyme-free ascorbic acid sensor for a neutral medium has been developed. The sensor is based on zinc oxide nanowire (ZnO NW) arrays synthesized via low-temperature chemical deposition (Chemical Bath Deposition) on the surface of an ITO substrate. The sensitivity of the electrochemical enzyme-free sensor was found to be dependent on the process treatments. The AA sensitivity values measured in a neutral PBS electrolyte were found to be 73, 44, and 92 µA mM-1 cm-2 for the ZnO NW-based sensors of the pristine, air-annealed (AT), and air-annealed followed by hydrogen plasma treatment (AT+PT), respectively. The simple H-plasma treatment of ZnO nanowire arrays synthesized via low-temperature chemical deposition has been shown to be an effective process step to produce an enzyme-free sensor for biological molecules in a neutral electrolyte for applications in health care and biomedical safety.
Collapse
Affiliation(s)
- Diana B. Tolubayeva
- Faculty of Metallurgy and Mechanical Engineering, Karaganda Industrial University, Republic Ave. 30, Temirtau 101400, Kazakhstan;
| | - Lesya V. Gritsenko
- Institute of Energy and Mechanical Engineering, Satbayev University, Satpayev Str., 22, Almaty 050013, Kazakhstan;
- National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Ave., 71, Almaty 050040, Kazakhstan; (M.B.A.); (R.R.N.)
| | - Yevgeniya Y. Kedruk
- Institute of Energy and Mechanical Engineering, Satbayev University, Satpayev Str., 22, Almaty 050013, Kazakhstan;
- National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Ave., 71, Almaty 050040, Kazakhstan; (M.B.A.); (R.R.N.)
| | - Madi B. Aitzhanov
- National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Ave., 71, Almaty 050040, Kazakhstan; (M.B.A.); (R.R.N.)
| | - Renata R. Nemkayeva
- National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Ave., 71, Almaty 050040, Kazakhstan; (M.B.A.); (R.R.N.)
| | - Khabibulla A. Abdullin
- National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Ave., 71, Almaty 050040, Kazakhstan; (M.B.A.); (R.R.N.)
| |
Collapse
|
8
|
Bhutto TA, Jakhrani MA, Jamali AA, Buledi JA, Janwary RD, Hyder A, Chachar KH, Kalwar NH. Strategic fabrication of PVP caped CuO hetero-catalyst for degradation of Eosin Y: a decontamination study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Qambrani N, Buledi JA, Khand NH, Solangi AR, Ameen S, Jalbani NS, Khatoon A, Taher MA, Moghadam FH, Shojaei M, Karimi F. Facile Synthesis of NiO/ZnO nanocomposite as an effective platform for electrochemical determination of carbamazepine. CHEMOSPHERE 2022; 303:135270. [PMID: 35688198 DOI: 10.1016/j.chemosphere.2022.135270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 05/28/2023]
Abstract
The pharmaceutical science demand for sustainable and selective electrochemical sensors which exhibit ultrasensitive capabilities for the monitoring of different drugs. In an attempt to build a useful electrochemical sensor, we describe a most efficient method for the fabrication of NiO/ZnO nanocomposite through aqueous chemical growth method. The successfully synthesized NiO/ZnO nanocomposite is successfully employed to modify a glassy carbon electrode in order to build a sensitive and reliable electrochemical sensor for the detection of carbamazepine (CBZ), an anticonvulsant drug. The morphological texture, functionalities and crystalline structure of prepared nanocomposite were determined via FTIR, XRD, EDX, TEM, and SEM analysis. In order to examine the charge transfer kinetics, the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to exploit the electrochemical properties of the synthesized nanocomposite. The NiO/ZnO nanocomposite exhibited excellent electron transfer kinetics and less resistive behavior than the individual NiO and ZnO nanoparticles. The differential pulse voltammetry and cyclic voltammetry tools were used for the fluent determination of CBZ. Certain parameters were optimized to develop an effective method including optimum scan rate 60 mV/s, potential range from 0.4 to 1.4 V and BRB as supporting electrolyte with pH 3. The developed sensor showed exceptional response for CBZ under the linear dynamic range from 5 to 100 μM. The limit of detection of proposed NiO/ZnO sensor for the CBZ was calculated to be 0.08 μM. The analytical approach of prepared electrochemical sensor was investigated in different pharmaceutical formulation with acceptable percent recoveries ranging from 96.7 to 98.6%.
Collapse
Affiliation(s)
- Nadeem Qambrani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Sidra Ameen
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad 67450, Sindh, Pakistan
| | - Nida S Jalbani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Amna Khatoon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | | | - F H Moghadam
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | - Moein Shojaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
10
|
Buledi JJA, Solangi AR, Hyder A, Batool M, Mahar N, Mallah A, Karimi-Maleh H, Karaman O, Karaman C, Ghalkhani M. Fabrication of sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide nanocomposite for electrochemical monitoring of 4-aminophenol. ENVIRONMENTAL RESEARCH 2022; 212:113372. [PMID: 35561824 DOI: 10.1016/j.envres.2022.113372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 05/24/2023]
Abstract
4-aminophenol (4-AP) is one of the major environmental pollutants which is broadly exploited as drug intermediate in the pharmaceutical formulations. The extensive release of 4-AP in the environment without treatment has become a serious issue that has led several health effects on humans. This work describe the determination of 4-AP through a new chemically modified sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide (PVA/WO3/rGO) nanocomposite. The fabricated nanocomposite was characterized through XRD and HR-TEM to confirm the crystalline structure with average size of 35.9 nm and 2D texture with ultra-fine sheets. The electrochemical characterization of fabricated sensor was carried out by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to ensure the charge transfer kinetics of modified sensor that revealed high conductivity of PVA/WO3/rGO/GCE. Under optimized conditions e.g. scan rate 80 mV/s, phosphate buffer (pH 6) as supporting electrolyte and potential window from -0.2 to 0.8 V, the prepared sensor showed excellent response for 4-AP. The linear dynamic range of developed method was optimized as 0.003-70 μM. The LOD of fabricated sensor based on PVA/WO3/rGO/GCE for 4-AP was calculated as 0.51 nM. The practical application of PVA/WO3/rGO/GCE was tested in real water and pharmaceutical samples. The fabricated sensor presented here, exhibited exceptional stability and sensitivity than the reported sensors and could be effectively used for the monitoring 4-AP without interferences.
Collapse
Affiliation(s)
- J Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Madeeha Batool
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Nasrullah Mahar
- King Fahad University of Petroleum and Minerals (KFUPM), Saudi Arabia
| | - Arfana Mallah
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa.
| | - Onur Karaman
- Department of Medical Imaging Techniques, Akdeniz University, Antalya, 07070, Turkey
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey.
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, 1678815811, Tehran, Iran
| |
Collapse
|
11
|
Roy D, Biswas S, Halder S, Chanda N, Mandal S. Efficient Point-of-Care Detection of Uric Acid in the Human Blood Sample with an Enhanced Electrocatalytic Response Using Nanocomposites of Cobalt and Mixed-Valent Molybdenum Sulfide. ACS APPLIED BIO MATERIALS 2022; 5:4191-4202. [PMID: 36027582 DOI: 10.1021/acsabm.2c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work efficiently detects uric acid (UA) in a human blood sample using cobalt nanoparticle-immobilized mixed-valent molybdenum sulfide on the copper substrate in a point-of-care (PoC) device. The sensor electrode was fabricated by micromachining of Cu clad boards employing an engraver to generate a three-electrode system consisting of working electrode (WE), reference electrode (RE), and counter electrode (CE). The WE was subjected to physical vapor deposition of mixed-valent MoSx layers by a reaction between Mo(CO)6 and H2S at ∼200 °C using a simple setup following which CoNPs were electrochemically deposited. The RE and CE were covered with Ag/AgCl and Ag paste, respectively. A plasma separation membrane acted as the medium of UA/blood serum delivery to the electrodes. The material and electrochemical characterization confirmed that CoNPs over MoSx provided an enlarged electroactive surface for the direct electron transfer to achieve an enhanced electrocatalytic response. The binary combination of CoNPs and MoSx layers over the Cu electrode reduced the charge-transfer resistance by two times, enhanced the surface adsorption by more than two times, and yielded a high diffusion coefficient of 3.46 × 10-3 cm2/s. These interfacial effects facilitated the UA oxidation, leading to unprecedented mA range current density for UA sensing for the PoC device. The electrochemical detection tests in the PoC device revealed a sensitivity of 64.7 μA/μM cm-2, which is ∼50 times higher compared to the latest reported value (1.23 μA/μM cm-2), a high limit of detection of 5 nM, and shelf life of 6 months, confirming the synergistic effect-mediated high sensitivity under PoC settings. Interference tests confirmed no intervention of similar analytes. Tests on blood samples demonstrated a recovery percentage close to 100% in human serum UA, signifying the suitability of the nanocomposite-based sensor and the PoC device for clinical sensing applications.
Collapse
Affiliation(s)
- Debolina Roy
- Materials Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Road, City Center, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Shauvik Biswas
- Materials Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Road, City Center, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Saurav Halder
- Materials Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Road, City Center, Durgapur 713209, West Bengal, India
| | - Nripen Chanda
- Materials Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Road, City Center, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Soumen Mandal
- Materials Processing and Microsystems Laboratory, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Road, City Center, Durgapur 713209, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamala Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
12
|
Bakhtiyar MJ, Raza ZA, Aslam M, Bajwa SZ, Shoaib Ur Rehman M, Rafiq S. Cupric oxide nanoparticles incorporated poly(hydroxybutyrate) nanocomposite for potential biosensing application. Int J Biol Macromol 2022; 213:1018-1028. [PMID: 35691435 DOI: 10.1016/j.ijbiomac.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 01/09/2023]
Abstract
We report the synthesis of a novel electrochemical biosensor comprising of cupric oxide (CuO) nanoparticles (NPs) mediated poly(hydroxybutyrate) (PHB) composite film with polyvinyl alcohol (PVA) as a binder/template support using the solution casting method for the detection of a biomolecule i.e., ascorbic acid (AA). The specimens were characterized for surface, chemical, mechanical, optical, and electrochemical attributes. The results expressed regular mediation of CuO NPs in the PHB/PVA matrix towards nanobiocomposite formation with enhanced crystallinity, inter-molecular interactions, mechanical, and electrochemical attributes, and decreased hydrophilicity and bandgap, thus being useful in potential optoelectronic devices. The synthesized biocomposite film exhibited a tensile strength of 86.24 ± 4.10 N which might be due to reinforcement/uniform dispersion of the CuO nanofiller in the PHB-based matrix. The PHB/CuO composite, then, deposited on a glassy carbon electrode surface exhibited good electrocatalytic activity towards the AA in the aqueous media even at low analyte concentrations. Such modified electrode surfaces with metal/biopolymer complex could find possible applications in the detection of other bioactive molecules.
Collapse
Affiliation(s)
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Muhammad Aslam
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 577, Pakistan
| | | | - Samvia Rafiq
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
13
|
Buledi JA, Solangi AR, Hyder A, Khand NH, Memon SA, Mallah A, Mahar N, Dragoi EN, Show P, Behzadpour M, Karimi-Maleh H. Selective oxidation of amaranth dye in soft drinks through tin oxide decorated reduced graphene oxide nanocomposite based electrochemical sensor. Food Chem Toxicol 2022; 165:113177. [DOI: 10.1016/j.fct.2022.113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023]
|
14
|
Saravanakumar V, Rajagopal V, Kathiresan M, Suryanarayanan V, Anandan S, Ho KC. Cu-MOF derived CuO nanoparticle decorated amorphous carbon as an electrochemical platform for the sensing of caffeine in real samples. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Rattanaumpa T, Maensiri S, Ngamchuea K. Microporous carbon in the selective electro-oxidation of molecular biomarkers: uric acid, ascorbic acid, and dopamine. RSC Adv 2022; 12:18709-18721. [PMID: 35873328 PMCID: PMC9235059 DOI: 10.1039/d2ra03126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Herein, we demonstrate the superior electrocatalytic activities of microporous carbon in the oxidation of three molecular biomarkers, ascorbic acid (AA), dopamine (DA), and uric acid (UA), which are co-present in biological fluids.
Collapse
Affiliation(s)
- Tidapa Rattanaumpa
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Santi Maensiri
- School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
16
|
Bukharinova MA, Stozhko NY, Novakovskaya EA, Khamzina EI, Tarasov AV, Sokolkov SV. Developing Activated Carbon Veil Electrode for Sensing Salivary Uric Acid. BIOSENSORS 2021; 11:287. [PMID: 34436089 PMCID: PMC8394272 DOI: 10.3390/bios11080287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 05/04/2023]
Abstract
The paper describes the development of a carbon veil-based electrode (CVE) for determining uric acid (UA) in saliva. The electrode was manufactured by lamination technology, electrochemically activated and used as a highly sensitive voltammetric sensor (CVEact). Potentiostatic polarization of the electrode at 2.0 V in H2SO4 solution resulted in a higher number of oxygen and nitrogen-containing groups on the electrode surface; lower charge transfer resistance; a 1.5 times increase in the effective surface area and a decrease in the UA oxidation potential by over 0.4 V, compared with the non-activated CVE, which was confirmed by energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, chronoamperometry and linear sweep voltammetry. The developed sensor is characterized by a low detection limit of 0.05 µM and a wide linear range (0.09-700 µM). The results suggest that the sensor has perspective applications for quick determination of UA in artificial and human saliva. RSD does not exceed 3.9%, and recovery is 96-105%. UA makes a significant contribution to the antioxidant activity (AOA) of saliva (≈60%). In addition to its high analytical characteristics, the important advantages of the proposed CVEact are the simple, scalable, and cost-effective manufacturing technology and the absence of additional complex and time-consuming modification operations.
Collapse
Affiliation(s)
| | - Natalia Yu. Stozhko
- Scientific and Innovation Center of Sensor Technologies, Department of Physics and Chemistry, Ural State University of Economics, 8 Marta St., 62, 620144 Yekaterinburg, Russia; (M.A.B.); (E.A.N.); (E.I.K.); (A.V.T.); (S.V.S.)
| | | | | | | | | |
Collapse
|