1
|
Danielewicz J, Grzanka M, Sobiech Ł, Jajor E, Horoszkiewicz J, Korbas M, Blecharczyk A, Stuper-Szablewska K, Matysiak K. Impact of Various Essential Oils on the Development of Pathogens of the Fusarium Genus and on Health and Germination Parameters of Winter Wheat and Maize. Molecules 2024; 29:2376. [PMID: 38792237 PMCID: PMC11123840 DOI: 10.3390/molecules29102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, researchers are looking for ways to replace synthetic pesticides with substances of natural origin. Essential oils are produced by plants, among other things, to protect against pathogens, which is why there is interest in their use as fungicides. This experiment assessed the composition of essential oils from a commercial source, their impact on the development of mycelium of pathogens of the Fusarium genus, and the possibility of using them as a pre-sowing treatment. Grains of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) were inoculated with a suspension of mycelium and spores of fungi of the Fusarium genus and then soaked in solutions containing oils of sage (Salvia officinalis L.), cypress (Cupressus sempervirens L.), cumin (Cuminum cyminum L.), and thyme (Thymus vulgaris L.). The obtained results indicate that thyme essential oil had the strongest effect on limiting the development of Fusarium pathogens and seedling infection, but at the same time it had an adverse effect on the level of germination and seedling development of the tested plants. The remaining essential oils influenced the mentioned parameters to varying degrees. Selected essential oils can be an alternative to synthetic fungicides, but they must be selected appropriately.
Collapse
Affiliation(s)
- Jakub Danielewicz
- Department of Mycology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland; (J.D.); (E.J.); (J.H.); (M.K.)
| | - Monika Grzanka
- Department of Agronomy, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (M.G.); (A.B.)
| | - Łukasz Sobiech
- Department of Agronomy, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (M.G.); (A.B.)
| | - Ewa Jajor
- Department of Mycology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland; (J.D.); (E.J.); (J.H.); (M.K.)
| | - Joanna Horoszkiewicz
- Department of Mycology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland; (J.D.); (E.J.); (J.H.); (M.K.)
| | - Marek Korbas
- Department of Mycology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland; (J.D.); (E.J.); (J.H.); (M.K.)
| | - Andrzej Blecharczyk
- Department of Agronomy, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland; (M.G.); (A.B.)
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Kinga Matysiak
- Department of Herbology and Plant Protection Technology, Institute of Plant Protection, National Research Institute, Władysława Wegorka 20, 60-318 Poznan, Poland;
| |
Collapse
|
2
|
Uwineza PA, Urbaniak M, Stępień Ł, Gramza-Michałowska A, Waśkiewicz A. Efficacy of Lamium album as a natural fungicide: impact on seed germination, ergosterol, and mycotoxins in Fusarium culmorum-infected wheat seedlings. Front Microbiol 2024; 15:1363204. [PMID: 38463484 PMCID: PMC10920328 DOI: 10.3389/fmicb.2024.1363204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Fusarium culmorum is a major wheat pathogen, and its secondary metabolites (mycotoxins) cause damage to plants, animals, and human health. In the era of sustainable agriculture, eco-friendly methods of prevention and control are constantly needed. The use of plant extracts as biocontrol agents has gained popularity as they are a source of active substances that play a crucial role in fighting against phytopathogens. This study evaluated the impact of Lamium album on wheat seed germination and seedling growth. In a pot experiment, the effect of L. album on wheat seedlings artificially inoculated with F. culmorum was evaluated by measuring seedling growth parameters, and by using chromatographic methods, ergosterol and mycotoxins levels were analyzed. The results showed that the phytotoxic effect of L. album flower extracts on wheat seed germination and seedling growth was concentration dependent. The radicle length was also reduced compared to the control; however, L. album did not significantly affect the dry weight of the radicle. A slight phytotoxic effect on seed germination was observed, but antifungal effects on artificially infected wheat seedlings were also confirmed with the reduction of ergosterol level and mycotoxins accumulation in the roots and leaves after 21 days of inoculation. F. culmorum DNA was identified in the control samples only. Overall, this study is a successful in planta study showing L. album flower extract protection of wheat against the pathogen responsible for Fusarium crown and root rot. Further research is essential to study the effects of L. album extracts on key regulatory genes for mycotoxin biosynthetic pathways.
Collapse
Affiliation(s)
| | - Monika Urbaniak
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | | |
Collapse
|
3
|
Valente MT, Orzali L, Manetti G, Magnanimi F, Matere A, Bergamaschi V, Grottoli A, Bechini S, Riccioni L, Aragona M. Rapid molecular assay for the evaluation of clove essential oil antifungal activity against wheat common bunt. FRONTIERS IN PLANT SCIENCE 2023; 14:1130793. [PMID: 37342131 PMCID: PMC10277744 DOI: 10.3389/fpls.2023.1130793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Common bunt of durum wheat (DW), Triticum turgidum L. ssp. durum (Desf.) Husn., is caused by the two closely related fungal species belonging to Tilletia genus (Tilletiales, Exobasidiomycetes, Ustilaginomycotina): Tilletia laevis Kühn (syn. T. foetida (Wallr.) Liro.) and T. caries (DC) Tul. (syn. T. tritici (Bjerk.) G. Winter). This is one of the most devastating diseases in wheat growing areas worldwide, causing considerable yield loss and reduction of wheat grains and flour quality. For these reasons, a fast, specific, sensitive, and cost-effective method for an early diagnosis of common bunt in wheat seedlings is urgent. Several molecular and serological methods were developed for diagnosis of common bunt in wheat seedlings but at late phenological stages (inflorescence) or based on conventional PCR amplification, with low sensitivity. In this study, a TaqMan Real Time PCR-based assay was developed for rapid diagnosis and quantification of T. laevis in young wheat seedlings, before tillering stage. This method, along with phenotypic analysis, was used to study conditions favoring pathogen infection and to evaluate the effectiveness of clove oil-based seed dressing in controlling the disease. The overall results showed that: i) the Real Time PCR assay was able to quantify T. laevis in young wheat seedlings after seed dressing by clove oil in different formulations, greatly reducing times of analysis. It showed high sensitivity, detecting up to 10 fg of pathogen DNA, specificity and robustness, allowing to directly analyze crude plant extracts and representing a useful tool to speed up the tests of genetic breeding for disease resistance; ii) temperature was a critical point for disease development when using wheat seeds contaminated by T. laevis spores; iii) at least one of the clove oil-based formulations tested was able to efficiently control wheat common bunt, suggesting that clove oil dressing could represent a promising tool for managing the disease, especially in sustainable farming.
Collapse
Affiliation(s)
- Maria Teresa Valente
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
| | - Laura Orzali
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
| | - Giuliano Manetti
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Francesco Magnanimi
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Antonio Matere
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
| | - Valentino Bergamaschi
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Alessandro Grottoli
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
| | - Sara Bechini
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
| | - Luca Riccioni
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
| | - Maria Aragona
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), Rome, Italy
| |
Collapse
|
4
|
Combination of Bacillus velezensis RC218 and Chitosan to Control Fusarium Head Blight on Bread and Durum Wheat under Greenhouse and Field Conditions. Toxins (Basel) 2022; 14:toxins14070499. [PMID: 35878237 PMCID: PMC9323812 DOI: 10.3390/toxins14070499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Fusarium graminearum sensu stricto is, worldwide, the main causal agent of Fusarium head blight in small cereal crops such as wheat, barley, and oat. The pathogen causes not only reductions in yield and grain quality but also contamination with type-B trichothecenes such as deoxynivalenol. Prevention strategies include the use of less susceptible cultivars through breeding programs, cultural practices, crop rotation, fungicide application, or a combination of them through an integrated pest management. Additionally, the use of more eco-friendly strategies by the evaluation of microorganisms and natural products is increasing. The effect of combining Bacillus velezensis RC218 and chitosan on Fusarium Head Blight (FHB) and deoxynivalenol accumulation under greenhouse and field conditions in bread and durum wheat was evaluated. Under greenhouse conditions, both B. velezensis RC218 and chitosan (0.1%) demonstrated FHB control, diminishing the severity by 38 and 27%, respectively, while the combined treatment resulted in an increased reduction of 54% on bread wheat. Field trials on bread wheat showed a biocontrol reduction in FHB by 18 to 53%, and chitosan was effective only during the first year (48% reduction); surprisingly, the combination of these active principles allowed the control of FHB disease severity by 39 and 36.7% during the two harvest seasons evaluated (2017/18, 2018/19). On durum wheat, the combined treatment showed a 54.3% disease severity reduction. A reduction in DON accumulation in harvested grains was observed for either bacteria, chitosan, or their combination, with reductions of 50.3, 68, and 64.5%, respectively, versus the control.
Collapse
|
5
|
Kačániová M, Galovičová L, Borotová P, Vukovic NL, Vukic M, Kunová S, Hanus P, Bakay L, Zagrobelna E, Kluz M, Kowalczewski PŁ. Assessment of Ocimum basilicum Essential Oil Anti-Insect Activity and Antimicrobial Protection in Fruit and Vegetable Quality. PLANTS (BASEL, SWITZERLAND) 2022; 11:1030. [PMID: 35448757 PMCID: PMC9031667 DOI: 10.3390/plants11081030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Basil (Ocimum basilicum) is a commonly used herb; it also contains essential oils and other valuable compounds. The basil oil obtained has a pleasant aroma, but also a broad spectrum of biological activity. This work reports on the chemical composition, antioxidant, antimicrobial and anti-insect activity in vitro and in situ of Ocimum basilicum essential oil (OBEO) obtained by steam distillation of fresh flowering plants. Gas chromatography-mass spectrometry, DPPH, agar and disc diffusion and vapor phase methods were used to analyze the OBEO properties. The analysis of the chemical composition of OBEO showed that its main components were methyl chavicol (88.6%), 1,8-cineole (4.2%) and α-trans-bergamotene (1.7%). A strong antioxidant effect was demonstrated at the level of 77.3%. The analysis of antimicrobial properties showed that OBEO exerts variable strength of inhibiting activity against various groups of microorganisms. The growth inhibition zones ranged from 9.67 to 15.33 mm in Gram-positive (G+) and Gram-negative (G-) bacteria and from 5.33 to 7.33 mm in yeast. The lowest measured minimal inhibition concentration (MIC) was 3.21 µL/mL against Gram-negative Azotobacter chrococcum and Gram-positive Micrococcus luteus. The antimicrobial activity of in situ vapor phase of OBEO was also confirmed on apples, pears, potatoes and kohlrabi. The highest insecticidal activity against Pyrrhocorisapterus, observed at the concentration of 100%, caused the death of 80% of individuals. Due to its broad spectrum of activity, OBEO seems an ideal candidate for preserving fruit and vegetables.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35601 Rzeszow, Poland; (E.Z.); (M.K.)
| | - Lucia Galovičová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.L.V.); (M.V.)
| | - Simona Kunová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Pavel Hanus
- Department of Food Technology and Human Nutrition, Institute of Food and Nutrition Technology, University of Rzeszow, 35959 Rzeszow, Poland;
| | - Ladislav Bakay
- Institute of Landscape Architecture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Edyta Zagrobelna
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35601 Rzeszow, Poland; (E.Z.); (M.K.)
| | - Maciej Kluz
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35601 Rzeszow, Poland; (E.Z.); (M.K.)
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60624 Poznań, Poland
| |
Collapse
|
6
|
Kačániová M, Galovičová L, Valková V, Ďuranová H, Štefániková J, Čmiková N, Vukic M, Vukovic NL, Kowalczewski PŁ. Chemical Composition, Antioxidant, In Vitro and In Situ Antimicrobial, Antibiofilm, and Anti-Insect Activity of Cedar atlantica Essential Oil. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030358. [PMID: 35161339 PMCID: PMC8839266 DOI: 10.3390/plants11030358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 05/08/2023]
Abstract
The present study was designed to evaluate commercial cedar essential oil (CEO), obtained by hydrodistillation from cedar wood, in relationship to its chemical composition and antioxidant, in vitro and in situ antimicrobial, antibiofilm, and anti-insect activity. For these purposes, gas chromatography-mass spectrometry, DPPH radical-scavenging assay, agar and disc diffusion, and vapor phase methods were used. The results from the volatile profile determination showed that δ-cadinene (36.3%), (Z)-β-farnesene (13.8%), viridiflorol (7.3%), and himachala-2,4-diene (5.4%) were the major components of the EO chemical constitution. Based on the obtained results, a strong antioxidant effect (81.1%) of the CEO was found. CEO is characterized by diversified antimicrobial activity, and the zones of inhibition ranged from 7.33 to 21.36 mm in gram-positive and gram-negative bacteria, and from 5.44 to 13.67 mm in yeasts and fungi. The lowest values of minimal inhibition concentration (MIC) were noted against gram-positive Micrococcus luteus (7.46 µL/mL) and against yeast Candida krusei (9.46 µL/mL). It seems that the vapor phase of CEO can inhibit the growth of the microscopic filamentous fungi of the genus Penicillium according to in situ antifungal analysis on bread, carrots, and celery. This finding confirms the impact of CEO on the change in the protein structure of older biofilms of Pseudomonas fluorescens and Salmonella enterica subsp. enterica. Insecticidal activity of a vapor phase has also been demonstrated against Pyrrhocoris apterus. CEO showed various advantages on antimicrobial activity, and it is an ideal substitute for food safety.
Collapse
Affiliation(s)
- Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (L.G.); (V.V.); (N.Č.)
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
- Correspondence: (M.K.); (P.Ł.K.)
| | - Lucia Galovičová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (L.G.); (V.V.); (N.Č.)
| | - Veronika Valková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (L.G.); (V.V.); (N.Č.)
| | - Hana Ďuranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (H.Ď.); (J.Š.)
| | - Jana Štefániková
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (H.Ď.); (J.Š.)
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (L.G.); (V.V.); (N.Č.)
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.V.); (N.L.V.)
| | - Nenad L. Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (M.V.); (N.L.V.)
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznan, Poland
- Correspondence: (M.K.); (P.Ł.K.)
| |
Collapse
|