1
|
Boldaji VN, Mirshekar MA, Arabmoazzen S, Shahrivar FF. Behavioral deficits after traumatic brain injury: Neuroprotective effect of Diosmin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04195-8. [PMID: 40261347 DOI: 10.1007/s00210-025-04195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
Following traumatic brain injury (TBI), the progression of brain tissue injuries and subsequent psychiatric complications considerably affect the quality of life in humans. Diosmin (DM) is a flavonoid and has been demonstrated to improve cognitive deficit and amplify brain electrical activity in the rat model of traumatic brain injury. We aimed to explore the potential protective effects of DM on single-unit neuronal firing, as well as on motor function and behaviors related to depression and anxiety associated with TBI. Forty-eight Wistar rats were randomly divided into sham-operated, TBI, and TBI + DM (100 mg/kg/day; P.O.) Groups. Depression and anxiety-like behaviors and motor function were evaluated through standard behavioral tests and Rotarod apparatus at scheduled points in time. We also measured the neuronal firing rate in the striatum. The results indicated that DM pretreatment significantly improved TBI-induced depression and anxiety-like behaviors (P < 0.01), and motor coordination (P < 0.05). The striatum neuronal firing rate in the TBI + DM Group was significantly higher than the TBI group (216 Vs 49.38 Hz, P < 0.001). The findings suggest that pretreatment with DM may offer protective benefits against TBI-associated behavioral deficits.
Collapse
Affiliation(s)
- Vida Naderi Boldaji
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Mirshekar
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Genetics of Non-communicable Disease Research Center, Zahedan of University Medical Sciences, Zahedan, Iran.
| | - Saiedeh Arabmoazzen
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Faraji Shahrivar
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran
- Department of Physiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| |
Collapse
|
2
|
Singh A, Singh L, Dalal D. Neuroprotective potential of hispidulin and diosmin: a review of molecular mechanisms. Metab Brain Dis 2025; 40:188. [PMID: 40257619 DOI: 10.1007/s11011-025-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Flavonoids are an important class of natural products, particularly, belong to a class of plant secondary metabolites having a polyphenolic structure. They are widely found in fruits, vegetables, and certain beverages. Hispidulin and diosmin are naturally occurring flavonoids recognized for their potential health benefits, such as antioxidant, anti-inflammatory, and neuroprotective properties. Hispidulin is present in several plants, including Arnica montana, Salvia officinalis (sage), and Eupatorium arnottianum. Diosmin is mainly extracted from citrus fruits like lemons and oranges and can also be synthesized from hesperidin, another flavonoid found in citrus fruits. Neurodegenerative diseases are characterized by complex signaling pathways that contribute to neuronal deterioration. The JAK/STAT pathway is involved in inflammatory responses, while the NF-κB/NLRP3 pathway is associated with metabolic stress and inflammation, both facilitating neurodegeneration. Conversely, the AMPK/pGSK3β pathway is crucial for neuroprotection, regulating cellular responses to oxidative stress and promoting neuronal survival. Additionally, the BACE/Aβ pathway exacerbates neuronal damage by triggering inflammatory and oxidative stress responses, highlighting critical targets for therapeutic strategies. Hispidulin and diosmin have emerged as promising agents in the modulation of mediators involved in neuroinflammation and neurodegenerative diseases. Oxidative stress and inflammatory pathways, including those driven by Aβ/BACE1 and JAK/STAT signaling, are central to neuronal damage and disease progression. Recent studies highlight that hispidulin and diosmin exhibit notable neuroprotective effects by targeting these mediators. Hispidulin has been shown to impact key inflammatory cytokines and adhesion molecules, while diosmin influences proinflammatory cytokine production and inflammasome activation. Both compounds offer potential therapeutic benefits by modulating crucial mediators linked to neuroinflammation and neurodegeneration. This review article is designed to explore the intricate mechanistic interplay underlying the neuroprotective effects of hispidulin and diosmin.
Collapse
Affiliation(s)
- Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Diksha Dalal
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
3
|
Onuelu JE, Ben-Azu B, Adebayo OG, Fokoua AR, Nekabari MK, Ozah EO, Iwhiwhu P, Ajayi AM, Oyovwi OM, Omogbiy IA, Eduviere AT, Ojezele MO. Taurine, an essential amino acid, attenuates rotenone-induced Parkinson's disease in rats by inhibiting alpha-synuclein aggregation and augmenting dopamine release. Behav Brain Res 2025; 480:115397. [PMID: 39674372 DOI: 10.1016/j.bbr.2024.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Reducing antioxidant levels exacerbates the generation of reactive oxygen/nitrogen species, leading to alpha-synuclein aggregation and the degeneration of dopaminergic neurons. These play a key role in the onset of Parkinson's disease (PD), for which effective treatment remains elusive. This study examined the neuroprotective effects of taurine, an essential β-amino acid with antioxidant and antiinflammation properties, in Swiss male mice exposed to rotenone-induced PD. Mice (20-25 g) were grouped into seven groups (n = 9) and treated with taurine alone (5, 10 and 20 mg/kg, p.o) or levodopa (10 mg/kg, p.o) for 28 consecutive days following intraperitoneal co-administration of rotenone (1.5 mg/kg, in 5 % dimethylsulfoxide) for 14 alternate days. Open-field, rota-rod and hanging-wire motor performance and coordination tests were conducted on days 26-28. Oxidative stress and neuroinflammatory markers; levels of acetylcholinesterase enzyme activity, dopamine, and alpha-synuclein were assayed in the striatal and prefrontal-cortical regions alongside histological examinations. Rotenone significantly reduced latency to fall and akinesia-like behavior with several slip/error relative to vehicle groups. Taurine increased the latency to fall, notably improving motor coordination, locomotor deficit, and neuromuscular competence. Also, rotenone significantly increased malondialdehyde and nitrite; while decreasing acetylcholinesterase activity, glutathione, catalase, superoxide-dismutase, and glutathione-S-transferase levels in the striatum and prefrontal-cortex respectively, which were attenuated by taurine. Taurine increased dopamine levels in the striatum and prefrontal cortex dose-independently. Like carbidopa, taurine decreased alpha-synuclein, tumor-necrosis factor-α and interleukin-6 levels in the striatum and prefrontal-cortex. Additionally, taurine-reversed rotenone-induced neurodegeneration in the striatum and prefrontal cortex indicates neuroprotective function. Conclusively, taurine attenuates rotenone-induced PD-like behavior by enhancing the brain's antioxidant system, inhibiting pro-inflammatory cytokine release, reducing α-synuclein formation, and augmenting dopaminergic release in mice's brains.
Collapse
Affiliation(s)
- Jackson E Onuelu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Olusegun G Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aliance R Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria; Research unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Miracle K Nekabari
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Esther O Ozah
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Prosper Iwhiwhu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Abayomi M Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Obukohwo M Oyovwi
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Itiviere A Omogbiy
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Anthony T Eduviere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Matthew O Ojezele
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
4
|
Villeda-González JD, Gómez-Olivares JL, Baiza-Gutman LA. New paradigms in the study of the cholinergic system and metabolic diseases: Acetyl-and-butyrylcholinesterase. J Cell Physiol 2024; 239:e31274. [PMID: 38605655 DOI: 10.1002/jcp.31274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that belong to the neuromuscular cholinergic system, their main function is to hydrolyze the neurotransmitter acetylcholine (ACh), through their hydrolysis these enzymes regulate the neuronal and neuromuscular cholinergic system. They have recently attracted considerable attention due to the discovery of new enzymatic and nonenzymatic functions. These discoveries have aroused the interest of numerous scientists, consolidating the relevance of this group of enzymes. Recent investigations have revealed a positive correlation between several risk factors for metabolic syndrome (MetS) and the expression of cholinesterases (ChE's), which underscore the impact of high ChE's activity on the pro-inflammatory state associated with MetS. In addition, the excessive hydrolysis of ACh and other choline esters (succinylcholine, propionylcholine, butyrylcholine, etc.) by both ChE's results in the overproduction of fatty acid precursor metabolites, which facilitate the synthesis of very low-density lipoproteins and triacylglycerols. Participation in these processes may represent the link between ChE's and metabolic disorders. However, further scientific research is required to fully elucidate the involvement of ChE's in metabolic diseases. This review aims to collect recent research studies that contribute to understanding the association between the cholinergic system and metabolic diseases.
Collapse
Affiliation(s)
- Juan David Villeda-González
- Estancia Posdoctoral CONAHCYT, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Luis Arturo Baiza-Gutman
- Laboratorio en Biología del Desarrollo, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, México
| |
Collapse
|
5
|
Sharma A, Dhingra D, Bhutani R, Nayak A, Garg A. Depression-reminiscent Behavior Induced by Chronic Unpredictable
Mild Stress Paradigm in Mice Substantially Abrogated by Diosmin. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2024; 20:251-269. [DOI: 10.2174/0126660822261988231127072951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2025]
Abstract
Background:
Diosmin has already been described and documented to be neuroprotective,
antioxidant and anti-inflammatory. It may possess or hold depressionalleviating
activity. Therefore, the purpose of the current research protocol is to investigate
the depression-relieving proficiency of diosmin in stressed and unstressed mice.
Methods:
Male mice (Swiss albino) were imperiled to an unpredictable chronic stress paradigm
every day for three sequential weeks, and depression-resembling behavioral despair
was induced. Imipramine 15 mg/kg and diosmin (25, 50 and 100 mg/kg) were dispensed
for 21 successive days to discrete groups of stressed and unstressed mice.
Results:
Both diosmin (100 mg/kg) and 15 mg/kg imipramine administration for 3 consecutive
weeks substantially or significantly diminished the immobility period of mice imperiled
to stress in comparison to stressed mice gauzed with the vehicle. Diosmin (25, 50 and
100 mg/kg) and imipramine considerably reinstated the diminished sucrose proclivity (sucrose
preference percentage; %) in stressed mice, demonstrating their considerable or substantial
depression-relieving effects. The locomotor activities of mice were not considerably
altered by these drugs. Antidepressant-like activity of diosmin for immobility periods
and preference for sucrose was observed to be analogous to imipramine. Diosmin (100
mg/kg) and imipramine substantially quashed CUMS- persuaded escalation of plasma corticosterone
and nitrite levels, malondialdehyde levels and MAO-A activity in the brain of
stressed mice. Both drugs also substantially reversed CUMS-prompted reduction in catalase
activity and brain glutathione levels.
Conclusion:
Accordingly, diosmin revealed significant anti-depressive activity in mice
imperiled to chronic mild unpredictable stress paradigm conceivably via mitigation of nitrosative
and oxidative stress, reticence of brain MAO-A action, and sink drop of plasma
corticosterone degrees.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, G D Goenka University,
Gurugram, 122103, Haryana, India
| | - Dinesh Dhingra
- Department of Pharmaceutical Sciences, Guru Jambheshwar
University of Science and Technology, Hisar, 125001, Haryana, India
| | - Rubina Bhutani
- Department of Pharmacy, School of Medical and Allied Sciences, G D Goenka University,
Gurugram, 122103, Haryana, India
| | - Amit Nayak
- Department of Pharmacy, School of Medical and Allied Sciences, G D Goenka University,
Gurugram, 122103, Haryana, India
| | - Adish Garg
- Department of Pharmaceutical Sciences, Guru Jambheshwar
University of Science and Technology, Hisar, 125001, Haryana, India
| |
Collapse
|
6
|
AlAsmari AF, Al-Shehri MM, Algarini N, Alasmari NA, Alhazmi A, AlSwayyed M, Alharbi M, Alasmari F, Ali N. Role of diosmin in preventing doxorubicin-induced cardiac oxidative stress, inflammation, and hypertrophy: A mechanistic approach. Saudi Pharm J 2024; 32:102103. [PMID: 38799001 PMCID: PMC11127263 DOI: 10.1016/j.jsps.2024.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Chemotherapeutic drugs, such as doxorubicin (Dox), are commonly used to treat a variety of malignancies. However, Dox-induced cardiotoxicity limits the drug's clinical applications. Hence, this study intended to investigate whether diosmin could prevent or limit Dox-induced cardiotoxicity in an animal setting. Thirty-two rats were separated into four distinct groups of controls, those treated with Dox (20 mg/kg, intraperitoneal, i.p.), those treated with diosmin 100 mg plus Dox, and those treated with diosmin 200 mg plus Dox. At the end of the experiment, rats were anesthetized and sacrificed and their blood and hearts were collected. Cardiac toxicity markers were analyzed in the blood, and the heart tissue was analyzed by the biochemical assays MDA, GSH, and CAT, western blot analysis (NF-kB, IL-6, TLR-4, TNF-α, iNOS, and COX-2), and gene expression analysis (β-MHC, BNP). Formalin-fixed tissue was used for histopathological studies. We demonstrated that a Dox insult resulted in increased oxidative stress, inflammation, and hypertrophy as shown by increased MDA levels and reduced GSH content and CAT activity. Furthermore, Dox treatment induced cardiac hypertrophy and damage, as evidenced by the biochemical analysis, ELISA, western blot analysis, and gene expression analysis. However, co-administration of diosmin at both doses, 100 mg and 200 mg, mitigated these alterations. Data derived from the current research revealed that the cardioprotective effect of diosmin was likely due to its ability to mitigate oxidative stress and inflammation. However, further study is required to investigate the protective effects of diosmin against Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Al-Shehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasser Algarini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nada A. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Alabid Alhazmi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed AlSwayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Khalid I, Saleem U, Ahmad B, Hawwal MF, Mothana RA. NMDA receptor modulation by Esculetin: Investigating behavioral, biochemical and neurochemical effects in schizophrenic mice model. Saudi Pharm J 2024; 32:101994. [PMID: 38405040 PMCID: PMC10884481 DOI: 10.1016/j.jsps.2024.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Schizophrenia, a global mental health disorder affecting approximately 1 % of the population, is characterized by neurotransmitter dysregulation, particularly dopamine, serotonin, and glutamate. Current antipsychotic therapies, despite their efficacy, are accompanied by adverse effects, which has motivated researchers to investigate more secure substitutes. This study examines the potential antipsychotic effects of esculetin, a natural coumarin derivative recognized for its wide-ranging pharmacological activities (anti-inflammatory, antioxidant, anti-pathogenic, anticancer, and neuroprotective), in animal model of schizophrenia induced by ketamine. In order to induce disease, acute and chronic ketamine administration was performed on Swiss albino mice, supplemented with esculetin (as the test substance) and clozapine (as the reference standard). Behavioral studies and biochemical assays were performed to evaluate positive, negative, and cognitive symptoms of schizophrenia, as well as antioxidant and oxidant levels in various brain regions. Esculetin demonstrated significant improvements in behavioral symptoms, attenuated oxidative stress and neuroinflammation, and modulated neurotransmitter levels. Afterwards, ELISA was performed to evaluate levels of schizophrenia biomarkers AChE, BDNF. Moreover, proinflammatory cytokines (IL-6 and TNF-α) and NF-κB were also determined. Histopathological parameters of under study brain parts i.e., hippocampus, cortex and striata were also assessed. Esculetin and clozapine significantly (***p < 0.0001) altered ketamine induced behavioral symptoms and attenuated ketamine induced oxidative stress and neuroinflammation. Additionally, esculetin significantly (***p < 0.0001) altered neurotransmitter (dopamine, serotonin, glutamate) levels. ELISA analysis depicts ketamine reduced BDNF levels in hippocampus, cortex and striata while esculetin significantly (***p < 0.0001) increased BDNF levels in under study three parts of brain. Histopathological changes were seen in test groups. The findings of this study indicate that esculetin may have therapeutic potential in the treatment of schizophrenia induced by ketamine. As a result, esculetin may have the potential to be utilized as a treatment for schizophrenia.
Collapse
Affiliation(s)
- Iqra Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bashir Ahmad
- Welsh School of Pharmacy, University of Wales, Cardiff, United Kingdom
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Ben-Azu B, del Re EC, VanderZwaag J, Carrier M, Keshavan M, Khakpour M, Tremblay MÈ. Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Front Cell Neurosci 2023; 17:1139357. [PMID: 37256150 PMCID: PMC10225712 DOI: 10.3389/fncel.2023.1139357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Brain aging, which involves a progressive loss of neuronal functions, has been reported to be premature in probands affected by schizophrenia (SCZ). Evidence shows that SCZ and accelerated aging are linked to changes in epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses have uncovered reduced brain reserves and connectivity in patients with SCZ compared to typically aging individuals. These data may indicate early abnormalities of neuronal function following cyto-architectural alterations in SCZ. The current mechanistic knowledge on brain aging, epigenetic changes, and their neuropsychiatric disease association remains incomplete. With this review, we explore and summarize evidence that the dynamics of gut-resident bacteria can modulate molecular brain function and contribute to age-related neurodegenerative disorders. It is known that environmental factors such as mode of birth, dietary habits, stress, pollution, and infections can modulate the microbiota system to regulate intrinsic neuronal activity and brain reserves through the vagus nerve and enteric nervous system. Microbiota-derived molecules can trigger continuous activation of the microglial sensome, groups of receptors and proteins that permit microglia to remodel the brain neurochemistry based on complex environmental activities. This remodeling causes aberrant brain plasticity as early as fetal developmental stages, and after the onset of first-episode psychosis. In the central nervous system, microglia, the resident immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses and neurological dysfunction. Here, we review recent emerging experimental and clinical evidence regarding the gut-brain microglia axis involvement in SCZ pathology and etiology, the hypothesis of brain reserve and accelerated aging induced by dietary habits, stress, pollution, infections, and other factors. We also include in our review the possibilities and consequences of gut dysbiosis activities on microglial function and dysfunction, together with the effects of antipsychotics on the gut microbiome: therapeutic and adverse effects, role of fecal microbiota transplant and psychobiotics on microglial sensomes, brain reserves and SCZ-derived accelerated aging. We end the review with suggestions that may be applicable to the clinical setting. For example, we propose that psychobiotics might contribute to antipsychotic-induced therapeutic benefits or adverse effects, as well as reduce the aging process through the gut-brain microglia axis. Overall, we hope that this review will help increase the understanding of SCZ pathogenesis as related to chronobiology and the gut microbiome, as well as reveal new concepts that will serve as novel treatment targets for SCZ.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Elisabetta C. del Re
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- VA Boston Healthcare System, Brockton, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada
| |
Collapse
|
9
|
Ain QU, Saleem U, Ahmad B, Khalid I. Pharmacological screening of silibinin for antischizophrenic activity along with its acute toxicity evaluation in experimental animals. Front Pharmacol 2023; 14:1111915. [PMID: 36817163 PMCID: PMC9936411 DOI: 10.3389/fphar.2023.1111915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Silibinin (SIL), a flavolignan extracted from the medicinal plant "silybum marianum (milk thistle)", has traditionally been used to treat liver disease. This phytochemical has displayed neuroprotective properties, its activity against schizophrenia is not elucidated. The present study was designed to evaluate the antipsychotic potential of silibinin and probe its toxic potential. The acute oral toxicity study was assessed as per OECD 425 guidelines. Animals were divided into two groups of female rats (n = 6): one group served as the normal control and the other group received a 2,000 mg/kg dose of SIL. We also evaluated the antipsychotic potential of SIL. To this end, animals were divided into six groups (n = 10) of mice for both the preventive and curative protocols. Group I (CMC 1 mL/kg) served as the normal control and received CMC 1 mL/kg; group II was the diseased group treated with ketamine (10 mg/kg) i.p; group III was the standard group treated with clozapine 1 mg/kg; groups IV, V, and VI served as the treatment groups, receiving SIL 50, 100, and 200 mg/kg, respectively, orally for both protocols. Improvement in positive symptoms of the disease was evaluated by stereotypy and hyperlocomotion, while negative symptoms (behavioral despair) were determined by a forced swim test and a tail suspension test in the mice models. The results suggested that the LD50 of SIL was greater than 2,000 mg/kg. Moreover, SIL prevented and reversed ketamine-induced increase in stereotypy (p < 0.001) and behavioral despair in the forced swim and tail suspension tests (p < 0.001). Taken together, the findings suggest that silibinin is a safe drug with low toxicity which demonstrates significant antipsychotic activity against the positive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan,*Correspondence: Qurat Ul Ain, ; Uzma Saleem,
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan,*Correspondence: Qurat Ul Ain, ; Uzma Saleem,
| | - Bashir Ahmad
- Hamza College of Pharmaceutical and Allied Health Sciences, Lahore, Pakistan
| | - Iqra Khalid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
10
|
Lipopolysaccharide Exacerbates Ketamine-Induced Psychotic-Like Behavior, Oxidative Stress, and Neuroinflammation in Mice: Ameliorative Effect of Diosmin. J Mol Neurosci 2023; 73:129-142. [PMID: 36652038 DOI: 10.1007/s12031-022-02077-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 01/19/2023]
Abstract
Schizophrenia, a neuropsychiatric disorder has been associated with aberrant neurotransmission affecting behaviors, social preference, and cognition. Limitations in understanding its pathogenesis via the dopamine hypothesis have engendered other hypotheses such as the glutamate hypothesis. That antagonism of the N-methyl-D-aspartate receptor (NMDAR) elicits schizophrenia-like behaviors indistinguishable from the disorder in animal and human models. There are growing concerns that redox imbalance and neuro-immuno dysfunction may play role in aggravating the symptomologies of this disorder. This 14-day treatment study was designed to investigate the effect of diosmin on lipopolysaccharide (LPS) plus ketamine (NMDAR antagonist). Mice were divided into 4 groups (n = 6). Group 1 was administered 5% DMSO (10 mL/kg, i.p) while group 2-4 received LPS (0.1 mg/kg, i.p) daily for 14 days. Diosmin (50 mg/kg, i.p) and risperidone (0.5 mg/kg, i.p) were given to groups 3 and 4 respectively. Groups 2-4 were given KET (20 mg/kg, i.p.) daily from days 8-14. Behavioral tests were done 30 min after the last dose, and oxidative stress and neuroinflammatory maker were assayed. LPS plus ketamine-induced hyperlocomotion, stereotypy, decreased social preference, and memory impairment. Furthermore, LPS plus-ketamine-induced oxidative stress (reduced GSH, CAT, SOD, and increased MDA and nitrite levels) and marked pro-inflammatory cytokines TNF-α and IL-6 suggesting neuroinflammation. However, diosmin attenuated behavioral deficits and improved memory. Additionally, diosmin potentiated antioxidant level via increased GSH, CAT, and SOD while reducing MDA and nitrite levels. Finally, diosmin reduced TNF-α and IL-6 suggesting anti-neuro-immuno activity. Conclusively, diosmin attenuated LPS plus ketamine-induced behavioral deficits, oxidative stress, neuroinflammation, and improved memory.
Collapse
|
11
|
Normalization of HPA Axis, Cholinergic Neurotransmission, and Inhibiting Brain Oxidative and Inflammatory Dynamics Are Associated with The Adaptogenic-like Effect of Rutin Against Psychosocial Defeat Stress. J Mol Neurosci 2023; 73:60-75. [PMID: 36580190 DOI: 10.1007/s12031-022-02084-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
Social defeat stress (SDS) due to changes in biochemical functions has been implicated in the pathogenesis of affective and cognitive disorders. Employing pharmacological approach with adaptogens in the management and treatment of psychosocial stress is increasingly receiving scientific attention. In this study, we investigated the neuroprotective effect of rutin, a bioflavonoid with neuroprotective and anti-inflammatory functions on neurobehavioral and neuro-biochemical changes in mice exposed to SDS. Groups of mice named the intruder mice received normal saline (10 mL/kg), rutin (5, 10, and 20 mg/kg, i.p.), and ginseng (50 mg/kg, i.p.) daily for 14 days, and then followed by 10 min daily SDS (physical/psychological) exposures to aggressor mice from days 7-14. Investigations consisting of neurobehavioral (locomotion, memory, anxiety, and depression) phenotypes, neuro-biochemical (oxidative, nitrergic, cholinergic, and pro-inflammatory cytokines) levels in discrete brain regions, and hypothalamic-pituitary-adrenal (HPA) axis consisting adrenal weight, corticosterone, and glucose concentrations were assessed. Rutin restored the neurobehavioral deficits and reduced the activity of acetylcholinesterase in the brains. Adrenal hypertrophy, increased serum glucose and corticosterone levels were significantly attenuated by rutin. SDS-induced release of tumor necrosis factor-alpha and interleukin-6 in the striatum, prefrontal cortex, and hippocampus were also suppressed by rutin in a brain-region-dependent manner. Moreover, SDS-induced oxidative stress characterized by low antioxidants (glutathione, superoxide-dismutase, catalase) and lipid peroxidation and nitrergic stress were reversed by rutin in discrete brain regions. Collectively, our data suggest that rutin possesses an adoptogenic potential in mice exposed to SDS via normalization of HPA, oxidative/nitrergic, and neuroinflammatory inhibitions. Thus, may be adopted in the management of neuropsychiatric syndrome due to psychosocial stress.
Collapse
|