1
|
Sahu KM, Biswal A, Manisha U, Swain SK. Synthesis and drug release kinetics of ciprofloxacin from polyacrylamide/dextran/carbon quantum dots (PAM/Dex/CQD) hydrogels. Int J Biol Macromol 2024; 269:132132. [PMID: 38723831 DOI: 10.1016/j.ijbiomac.2024.132132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Sustainable release of drug by utilizing β-cyclodextrin (β-CD) based inclusion complex (IC) is the prime objective of the present work. Herein, polyacrylamide/dextran containing carbon quantum dots (PAM/Dex/CQD) nanocomposite hydrogels are prepared by in situ polymerization of acrylamide. The incorporation of CQD triggers the change in orientation of the PAM/Dex polymeric chains to result the formation of stacked surface morphology of the hydrogel. The average particle size of CQD is found to be 4.13 nm from HRTEM analysis. As-synthesized nanocomposite hydrogel exhibits an optimum swelling ratio of 863 % in aqueous medium. The cytotoxicity study is conducted on HeLa cells by taking up to 2 μM concentration of the prepared nanocomposite hydrogel demonstrate 78 % cell viability. In present study, ciprofloxacin (Cipro) is taken as model drug that achieves release of 64.15 % in 32 h from β-Cipro@PAM/Dex/CQD hydrogels in acidic medium. From theoretical study, release rate constants, R2, Akaike information criterion (AIC) and model selection criterion (MSC) are computed to determine the best fitted kinetics model. Peppas-Sahlin model is the best fitted kinetics model for β-Cipro@PAM/Dex/CQD and concluded that the release of Cipro follows Fickian drug diffusion mechanism in acidic medium.
Collapse
Affiliation(s)
- Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Upuluri Manisha
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India.
| |
Collapse
|
2
|
Das IJ, Bal T. Evaluation of Opuntia-carrageenan superporous hydrogel (OPM-CRG SPH) as an effective biomaterial for drug release and tissue scaffold. Int J Biol Macromol 2024; 256:128503. [PMID: 38040152 DOI: 10.1016/j.ijbiomac.2023.128503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The process of wound healing involves complex interplay of systems biology, dependent on coordination of various cell types, both intra and extracellular mechanisms, proteins, and signaling pathways. To enhance these interactions, drugs must be administered precisely and continuously, effectively regulating the intricate mechanisms involved in the body's response to injury. Controlled drug delivery systems (DDS) play a pivotal role in achieving this objective. A proficient DDS shields the wound from mechanical, oxidative, and enzymatic stress, against bacterial contamination ensuring an adequate oxygen supply while optimizing the localized and sustained delivery of drugs to target tissue. A pH-sensitive SPH was designed by blending two natural polysaccharides, Opuntia mucilage and carrageenan, using microwave irradiation and optimized according to swelling index at pH 1.2, 7.0, and 8.0 and % porosity. Optimized grade was analyzed for surface hydrophilicity-hydrophobicity using OCA. Analytical characterizations were performed using FTIR, TGA, XRD, DSC, reflecting semicrystalline behavior. Mechanical property confirmed adequate strength. In vitro drug release study with ciprofloxacin-HCL as model drug showed 97.8 % release within 10 h, fitting to the Korsmeyer-Peppas model following diffusion and erosion mechanism. In vitro antimicrobial, anti-inflammatory assays, zebrafish toxicity, and animal studies in mice with SPH concluded it as a novel biomaterial.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
3
|
Omar AE, Ahmed MM, Abd-Allah WM. Effect of Gamma Irradiation on Silica Nanoparticles for Ciprofloxacin Drug Delivery. SILICON 2022; 14:11171-11180. [DOI: 10.1007/s12633-022-01838-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/20/2022] [Indexed: 09/02/2023]
|
4
|
Fabrication of Flexible pH-Responsive Agarose/Succinoglycan Hydrogels for Controlled Drug Release. Polymers (Basel) 2021; 13:polym13132049. [PMID: 34206692 PMCID: PMC8272162 DOI: 10.3390/polym13132049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Agarose/succinoglycan hydrogels were prepared as pH-responsive drug delivery systems with significantly improved flexibility, thermostability, and porosity compared to agarose gels alone. Agarose/succinoglycan hydrogels were made using agarose and succinoglycan, a polysaccharide directly isolated from Sinorhizobium meliloti. Mechanical and physical properties of agarose/succinoglycan hydrogels were investigated using various instrumental methods such as rheological measurements, attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopic analysis, X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM). The results showed that the agarose/succinoglycan hydrogels became flexible and stable network gels with an improved swelling pattern in basic solution compared to the hard and brittle agarose gel alone. In addition, these hydrogels showed a pH-responsive delivery of ciprofloxacin (CPFX), with a cumulative release of ~41% within 35 h at pH 1.2 and complete release at pH 7.4. Agarose/succinoglycan hydrogels also proved to be non-toxic as a result of the cell cytotoxicity test, suggesting that these hydrogels would be a potential natural biomaterial for biomedical applications such as various drug delivery system and cell culture scaffolds.
Collapse
|
5
|
TRPM8 channel inhibitor-encapsulated hydrogel as a tunable surface for bone tissue engineering. Sci Rep 2021; 11:3730. [PMID: 33580126 PMCID: PMC7881029 DOI: 10.1038/s41598-021-81041-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
A major limitation in the bio-medical sector is the availability of materials suitable for bone tissue engineering using stem cells and methodology converting the stochastic biological events towards definitive as well as efficient bio-mineralization. We show that osteoblasts and Bone Marrow-derived Mesenchymal Stem Cell Pools (BM-MSCP) express TRPM8, a Ca2+-ion channel critical for bone-mineralization. TRPM8 inhibition triggers up-regulation of key osteogenesis factors; and increases mineralization by osteoblasts. We utilized CMT:HEMA, a carbohydrate polymer-based hydrogel that has nanofiber-like structure suitable for optimum delivery of TRPM8-specific activators or inhibitors. This hydrogel is ideal for proper adhesion, growth, and differentiation of osteoblast cell lines, primary osteoblasts, and BM-MSCP. CMT:HEMA coated with AMTB (TRPM8 inhibitor) induces differentiation of BM-MSCP into osteoblasts and subsequent mineralization in a dose-dependent manner. Prolonged and optimum inhibition of TRPM8 by AMTB released from the gels results in upregulation of osteogenic markers. We propose that AMTB-coated CMT:HEMA can be used as a tunable surface for bone tissue engineering. These findings may have broad implications in different bio-medical sectors.
Collapse
|
6
|
Sonochemical synthesis and swelling behavior of Fe3O4 nanocomposite based on poly(acrylamide-co-acrylic acid) hydrogel for drug delivery application. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02382-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
Abstract
Antibacterial epoxy resins (EP) have great potential in medical and electronic fields. During the process of extracting artemisinin from Artemisia annua, artemisia naphtha (AN) is generated as waste. The components of AN show antibacterial activity, and hence, it is introduced as a novel antibacterial agent in the epoxy matrix. In this study, the properties of epoxy resins with various AN loading were investigated. The results showed that AN/EP composites presented strong antibacterial activity against Escherichia coli and Staphylococcus aureus at the sterilization ratio of 100% against E. coli and 99.96% against S. aureus, respectively. Meanwhile, the thermal properties (curing temperature and glass transition temperature) of AN/EP composites remained well, and the mechanical property was even improved. Especially, the flexural strength of AN/EP composites could be reinforced by 62.9% when the content of AN was up to 5 wt%. For comparison, Artemisia annua powder (AAP), which was directly smashed from natural A. annua, was also mixed with epoxy resins as an antibacterial agent and showed excellent antibacterial property. Therefore, antibacterial epoxy composites containing A. annua waste as a natural resource with the enhanced mechanical property may have enormous potential in future biological and healthcare fields.
Collapse
|
8
|
Nikravan G, Haddadi-Asl V, Salami-Kalajahi M. Stimuli-responsive DOX release behavior of cross-linked poly(acrylic acid) nanoparticles. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCross-linked poly(acrylic acid) nanoparticles were synthesized via distillation precipitation polymerization of acrylic acid and ethylene glycol dimethacrylate withdifferent molar ratios. Spherical nanoparticles with diameters between 75 and 122 nm were synthesized and exhibited temperature and pH-responsive behaviors. However, this behavior was less pronounced for samples with higher cross-linking degrees. The potential of all nanoparticles as carriers for controlled release of doxorubicin (DOX) anti-cancer drug was examined at pH values of 1.2, 5.3 and 7.4. An obvious alleviation in burst release behavior and the amount of cumulative drug release was seen for all nanoparticles as the pH of the medium and the cross-linking degree of nanoparticle increased. Also kinetics of drug release was studied using mathematical models of zero-order, first-order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell, where Higuchi and Korsmeyer-Peppas models best defined the kinetics of drug release.
Collapse
Affiliation(s)
- Goolia Nikravan
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
9
|
Chen H, Jin Y, Wang J, Wang Y, Jiang W, Dai H, Pang S, Lei L, Ji J, Wang B. Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties. NANOSCALE 2018; 10:20946-20962. [PMID: 30406235 DOI: 10.1039/c8nr07146b] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of antibiotics has been an epoch-making invention in the past few decades for the treatment of infectious diseases. However, the intravenous injection of antibiotics lacking responsiveness and targeting properties has led to low drug utilization and high cytotoxicity. More importantly, it has also caused the development and spread of drug-resistant bacteria due to repeated medication and increased dosage. The differences in the microenvironments of the bacterial infection sites and normal tissues, such as lower pH, high expression of some special enzymes, hydrogen peroxide and released toxins, etc., are usually used for targeted and controlled drug delivery. In addition, bacterial surface charges, antigens and the surface structures of bacterial cell walls are all different from normal tissue cells. Based on the special bacterial infection microenvironments and bacteria surface properties, a series of drug delivery systems has been constructed for highly efficient drug release. This review summarizes the recent progress in targeted and responsive drug delivery systems for enhanced antibacterial properties.
Collapse
Affiliation(s)
- Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jingjie Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yuqin Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wenya Jiang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Hangdong Dai
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Shuaiyue Pang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Lei Lei
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China. and Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China
| |
Collapse
|