1
|
Moustafa SMN, Elkanzi NAA, Bakr RB. Synthesis and Evaluating the Anticandidal Activities of Triazino[4,3-a]Quinolinecarboxylate Derivatives: A Promising Approach to Combat Candida Infections. Chem Biodivers 2025:e202500045. [PMID: 40100043 DOI: 10.1002/cbdv.202500045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
This study aimed to synthesize novel triazino[4,3-a]quinolinecarboxylate compounds (4, 6, 8, and 10) and evaluate these compounds for their antifungal activity against Candida species. Compound 8 was a standout candidate which demonstrated superior efficacy against C. albicans (minimum inhibitory concentration [MIC] = 45 µg/mL), C. glabrata (MIC = 32 µg/mL), C. parapsilosis (MIC = 36 µg/mL) and C. guilliermondii (MIC = 32 µg/mL) compared to Miconazole (MIC = 50-60 µg/mL). Furthermore, the induced morphological and ultra-structural changes by compound 8 on Candida cells are analyzed by light and transmission electron microscopy. Significant alterations in the viability and the architecture of Candida cells highlight the potential of compound 8 as a lead for further use as an antifungal drug. SARs displayed that substitution with the cyano group (as in compounds 8 and 10) was critical for anticandida potency. A molecular docking study of the most active compounds 8 and 10 was conducted inside 14α-demethylase (CYP51) to predict the binding mode of these compounds as antifungal. The most active compound 8 (MIC = 32-45 µg/mL) demonstrated the highest binding energy score which is equal to -8.93 kcal/mol. The findings of the in vitro anticandidal potential have been supported by molecular docking studies.
Collapse
Affiliation(s)
- Shaima M N Moustafa
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Nadia A A Elkanzi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Rania B Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Pakhariya RP, Bhatnagar A, Pemawat G. Quinoline analogs: multifaceted heterocyclic compounds with varied synthetic strategies and potent antitubercular properties. RSC Adv 2025; 15:3646-3663. [PMID: 39911544 PMCID: PMC11795169 DOI: 10.1039/d4ra08362h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Tuberculosis cases have continuously increased by 64% over the last nine years, from 2014 to 2023. Approximately 33% of the global population is affected by TB. It is a bacterial disease, and Mycobacterium tuberculosis is the most common bacteria that affects the lungs of human beings during the infection. Other hazardous bacterial species causing tuberculosis are M. pinnipedii, M. canettii, M. caprae, M. bovis, M. africanum, and M. microti. TB symptoms in TB-infected patients include fever, chest pain, weight loss, and fatigue. Depending on the stage of infection, the treatment for TB can take approximately six months to two years. Quinoline comprises a pyridine ring fused with a benzene ring, and both these rings share two adjacent carbon atoms and can take part in electrophilic substitution reactions. Quinoline-based heterocyclic compounds are attracting substantial interest owing to their vital role as a class of synthetic and natural molecules. Quinoline and its derivatives display various biological activities, including anti-TB, anticonvulsant, antibiotic, antifungal, antimalarial, antipsychotic, antihypertensive, antileishmanial, antioxidant, tyrosine kinase inhibitory, anti-inflammatory, anticancer, anti-asthmatic, cardiotonic, anthelmintic, antiprotozoal, anti-HIV, and anti-Alzheimer effects. Some fused analogs of quinoline, such as graveolinine, ciprofloxacin, kokusaginine, bedaquiline, levofloxacin, moxifloxacin, and mefloquine, are commercially available as antitubercular drugs. There are various methods available to synthesize quinoline-containing antitubercular drugs. In this review paper, we present three types of synthetic methods in which substituted quinolines, substituted anilines, and miscellaneous starting materials are used and outline MIC values for all the synthesized compounds to signify their anti-TB activity.
Collapse
Affiliation(s)
- Rajendra Prasad Pakhariya
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Ayushi Bhatnagar
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Gangotri Pemawat
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur Rajasthan India
| |
Collapse
|
3
|
La Monica G, Gallo A, Bono A, Alamia F, Lauria A, Alduina R, Martorana A. Novel Antibacterial 4-Piperazinylquinoline Hybrid Derivatives Against Staphylococcus aureus: Design, Synthesis, and In Vitro and In Silico Insights. Molecules 2024; 30:28. [PMID: 39795086 PMCID: PMC11720749 DOI: 10.3390/molecules30010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Molecular hybridization, which consists of the combination of two or more pharmacophores into a single molecule, is an innovative approach in drug design to afford new chemical entities with enhanced biological activity. In the present study, this strategy was pursued to develop a new series of 6,7-dimethoxy-4-piperazinylquinoline-3-carbonitrile derivatives (5a-k) with potential antibiotic activity by combining the quinoline, the piperazinyl, and the benzoylamino moieties, three recurrent frameworks in antimicrobial research. Initial in silico evaluations were conducted on the designed compounds, highlighting favorable ADMET and drug-likeness properties, which were synthesized through a multistep strategy, isolated, and fully characterized. The whole set was tested in vitro against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 10145 representative Gram-positive and Gram-negative strains, respectively. Notably, 5k exhibited potent and selective activity against S. aureus (MIC 10 μM), with a dose- and time-dependent response and capability to affect cell membrane integrity. On the other hand, no significant activity was observed against P. aeruginosa. Further in silico docking and molecular dynamics studies highlighted strong interactions of 5k with bacterial enzymes, such as tyrosyl-tRNA synthetase, pyruvate kinase, and DNA gyrase B, suggesting potential modes of action. These findings underscore the value of the hybridization approach in producing new antimicrobial agents, guiding future optimization for broader-spectrum activity.
Collapse
Affiliation(s)
- Gabriele La Monica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.L.M.); (A.G.); (A.B.); (F.A.); (A.L.); (R.A.)
| | - Annamaria Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.L.M.); (A.G.); (A.B.); (F.A.); (A.L.); (R.A.)
| | - Alessia Bono
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.L.M.); (A.G.); (A.B.); (F.A.); (A.L.); (R.A.)
| | - Federica Alamia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.L.M.); (A.G.); (A.B.); (F.A.); (A.L.); (R.A.)
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.L.M.); (A.G.); (A.B.); (F.A.); (A.L.); (R.A.)
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.L.M.); (A.G.); (A.B.); (F.A.); (A.L.); (R.A.)
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Annamaria Martorana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.L.M.); (A.G.); (A.B.); (F.A.); (A.L.); (R.A.)
| |
Collapse
|
4
|
Rodriguez-Paniagua A, Tesauro C, Knudsen BR, Fuertes M, Alonso C. Phosphine Oxide Indenoquinoline Derivatives: Synthesis and Biological Evaluation as Topoisomerase I Inhibitors and Antiproliferative Agents. Molecules 2024; 29:5992. [PMID: 39770084 PMCID: PMC11678328 DOI: 10.3390/molecules29245992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The synthesis of phosphorous indenoquinolines and their biological evaluation as topoisomerase 1 (TOP1) inhibitors and antiproliferative agents were performed. First, the preparation of new hybrid 5H-indeno[2,1-c]quinolines with a phosphine oxide group was performed by a two-step Povarov-type [4+2]-cycloaddition reaction between the corresponding phosphorated aldimines with indene in the presence of BF3·Et2O. Subsequent oxidation of the methylene present in the structure resulted in the corresponding indeno[2,1-c]quinolin-7-one phosphine oxides 10. The synthesized derivatives were evaluated as TOP1 inhibitors showing higher inhibition values than CPT at prolonged incubation times (5 min). Inhibition of TOP1 was even observed after 30 min of incubation. The cytotoxic activities of these compounds were also studied against different cancer cell lines and a non-cancerous cell line. While some compounds showed cytotoxicity against some cancerous cells, none of the compounds showed any cytotoxicity against the non-cancerous cell line, MRC-5, in contrast to CPT, which exhibits high toxicity against this cell line. These results represent a very interesting advance since the heterocyclic phosphine oxide derivatives have important properties as TOP1 inhibitors and show an interesting cytotoxicity against different cell lines.
Collapse
Affiliation(s)
- Alba Rodriguez-Paniagua
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
| | - Cinzia Tesauro
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark; (C.T.); (B.R.K.)
| | - Birgitta R. Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark; (C.T.); (B.R.K.)
| | - Maria Fuertes
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
| |
Collapse
|
5
|
Doan NQH, Tran HN, Nguyen NTM, Pham TM, Nguyen QDK, Vu TT. Synthesis, Antimicrobial - Cytotoxic Evaluation, and Molecular Docking Studies of Quinolin-2-one Hydrazones Containing Nitrophenyl or Isonicotinoyl/Nicotinoyl Moiety. Chem Biodivers 2024; 21:e202401142. [PMID: 39032128 DOI: 10.1002/cbdv.202401142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
By applying the hybrid molecular strategy, in this study, we reported the synthesis of fifteen quinolin-2-one hydrazones containing nitrophenyl or nicotinonyl/isonicotinoyl moiety, followed by in vitro and in silico evaluations of their potential antimicrobial and anticancer activities. In vitro antimicrobial evaluation of the target compounds on seven pathogenic strains, applying the broth microdilution method, revealed that compound 4a demonstrated the most potential antifungal activity against C. albicans (MIC 512 μg mL-1) and C. krusei (MIC 128 μg mL-1). In vitro cytotoxic evaluation of the target compounds on three human cancer cell lines, employing the MTT method, suggested that compound 5c exhibited the most potential cytotoxicities against HepG2 (IC50 10.19 μM), A549 (IC50 20.43 μM), and MDA-MB-231 (IC50 16.82 μM) cells. Additionally, molecular docking studies were performed to investigate the binding characteristics of compounds 4a and 5c with fungal lanosterol 14α-demethylase and human topoisomerase I-II, respectively, thereby contributing to the elucidation of their in vitro antifungal and cytotoxic properties. Furthermore, compounds 4a and 5c, via SwissADME prediction, could exhibit favorable physicochemical and pharmacokinetic properties. In conclusion, this study provides valuable insights into the potential of quinolin-2-one hydrazones as promising candidates for the development of novel antimicrobial and anticancer agents in the future.
Collapse
Affiliation(s)
- Nam Q H Doan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Hoan N Tran
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Nhu T M Nguyen
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Thu M Pham
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Quyen D K Nguyen
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City, 70000, Vietnam
| | - Thanh-Thao Vu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41-43 Dinh Tien Hoang Street, Ben Nghe Ward, District 1, Ho Chi Minh City, 70000, Vietnam
| |
Collapse
|
6
|
Al-Warhi T, Sabt A, Korycka-Machala M, Kassem AF, Shaldam MA, Ibrahim HAA, Kawka M, Dziadek B, Kuzioła M, Eldehna WM, Dziadek J. Benzenesulfonohydrazide-tethered non-fused and fused heterocycles as potential anti-mycobacterial agents targeting enoyl acyl carrier protein reductase (InhA) with antibiofilm activity. RSC Adv 2024; 14:30165-30179. [PMID: 39315015 PMCID: PMC11418391 DOI: 10.1039/d4ra05616g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Because resistant variants of the disease are always emerging, tuberculosis is a global issue that affects economies. New antitubercular medications should be developed, and this can be done by inhibiting druggable targets. Enoyl acyl carrier protein (ACP) reductase (InhA) is a crucial enzyme for the survival of Mycobacterium tuberculosis (MTB). In this study, a series of small molecules based on non-fused and fused heterocycles (pyridine, coumarin, quinoline, and indole) tethered with benzenesulfonohydrazide were prepared via an aza-Michael reaction exploiting a one-pot synthesis approach. The synthesized molecules (2-7) were evaluated for their activity against tubercle bacilli. Three analogues showed efficacy against tuberculosis, with compound 7 demonstrating a MIC value as low as 8 μg mL-1. Consequently, compounds 3 and 7 successfully hindered the growth of mycobacteria in human monocyte-derived macrophages (MDMs), demonstrating their ability to penetrate human professional phagocytes. Furthermore, they restricted the ability of mycobacteria to produce biofilms. In addition, the inhibitory effects of compounds 3 and 7 against InhA were assessed. Compound 7 exhibited the best efficacy, with an IC50 value of 0.91 μM. The findings showed that the sulfonamide and methyl ester's carbonyl functionalities were engaged in hydrogen bonding with the essential Ile194 and Tyr158 residues, respectively.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Małgorzata Korycka-Machala
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences Lodz Poland
| | - Asmaa F Kassem
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh 33516 Egypt
| | | | - Malwina Kawka
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz Lodz Poland
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz Lodz Poland
| | - Magdalena Kuzioła
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences Lodz Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences Lodz Poland
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh 33516 Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria Canal El Mahmoudia St. Alexandria 21648 Egypt
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences Lodz Poland
| |
Collapse
|
7
|
Vadankula GR, Nilkanth VV, Rizvi A, Yandrapally S, Agarwal A, Chirra H, Biswas R, Arifuddin M, Nema V, Mallika A, Mande SC, Banerjee S. Confronting Tuberculosis: A Synthetic Quinoline-Isonicotinic Acid Hydrazide Hybrid Compound as a Potent Lead Molecule Against Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:2288-2302. [PMID: 38717380 DOI: 10.1021/acsinfecdis.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The current tuberculosis (TB) treatment is challenged by a complex first-line treatment for drug-sensitive (DS) TB. Additionally, the prevalence of multidrug (MDR)- and extensively drug (XDR)-resistant TB necessitates the search for new drug prototypes. We synthesized and screened 30 hybrid compounds containing aminopyridine and 2-chloro-3-formyl quinoline to arrive at a compound with potent antimycobacterial activity, UH-NIP-16. Subsequently, antimycobacterial activity against DS and MDR Mycobacterium tuberculosis (M.tb) strains were performed. It demonstrated an MIC50 value of 1.86 ± 0.21 μM for laboratory pathogenic M.tb strain H37Rv and 3.045 ± 0.813 μM for a clinical M.tb strain CDC1551. UH-NIP-16 also decreased the MIC50 values of streptomycin, isoniazid, ethambutol, and bedaquiline to about 45, 55, 68, and 76%, respectively, when used in combination, potentiating their activities. The molecule was active against a clinical MDR M.tb strain. Cytotoxicity on PBMCs from healthy donors and on human cell lines was found to be negligible. Further, blind docking of UH-NIP-16 using Auto Dock Vina and MGL tools onto diverse M.tb proteins showed high binding affinities with multiple M.tb proteins, the top five targets being metabolically critical proteins CelA1, DevS, MmaA4, lysine acetyltransferase, and immunity factor for tuberculosis necrotizing toxin. These bindings were confirmed by fluorescence spectroscopy using a representative protein, MmaA4. Envisaging that a pathogen will have a lower probability of developing resistance to a hybrid molecule with multiple targets, we propose that UH-NIP-16 can be further developed as a lead molecule with the bacteriostatic potential against M.tb, both alone and in combination with first-line drugs.
Collapse
Affiliation(s)
- Govinda Raju Vadankula
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Vipul V Nilkanth
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Arshad Rizvi
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Sriram Yandrapally
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Anushka Agarwal
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| | - Hepshibha Chirra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Vijay Nema
- Molecular Biology Division, ICMR-National Institute for Translational Virology and AIDS Research, Pune 411026, India
| | - Alvala Mallika
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Shekhar C Mande
- National Centre for Cell Science, Pune 411007, India
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad (UoH), Hyderabad 500046, India
| |
Collapse
|
8
|
Owais M, Kumar A, Hasan SM, Singh K, Azad I, Hussain A, Suvaiv, Akil M. Quinoline Derivatives as Promising Scaffolds for Antitubercular Activity: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1238-1251. [PMID: 38185891 DOI: 10.2174/0113895575281039231218112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Heterocyclic compounds and their derivatives play a significant role in the design and development of novel quinoline drugs. Among the various pharmacologically active heterocyclic compounds, quinolines stand out as the most significant rings due to their broad pharmacological roles, specifically antitubercular activity, and their presence in plant-based compounds. Quinoline is also known as benzpyridine, benzopyridine, and 1-azanaphthalene. It has a benzene ring fused with a pyridine ring, and both rings share two carbon atoms. The importance of quinoline lies in its incorporation as a key component in various natural compounds found in medicinal plant families like Fumariaceae, Berberidaceae, Rutaceae, Papavaraceae, and others. OBJECTIVE This article is expected to have a significant impact on the advancement of effective antitubercular drugs. Through harnessing the potent activity of quinoline derivatives, the research aims to make valuable contributions to combating tuberculosis more efficiently and ultimately reducing the global burden of this infectious disease. METHODS Numerous nitrogen-containing heterocyclic compounds exhibit significant potential as antitubercular agents. These chemicals have fused aromatic nitrogen-heterocyclic nuclei that can change the number of electrons they have, which can change their chemical, physical, and biological properties. This versatility comes from their ability to bind with the receptors in multiple modes, a critical aspect of drug pharmacological screening. Among these compounds, quinoline stands out as it incorporates a stable fusion of a benzene ring with a pyridine nucleus. Quinolines have demonstrated a diverse range of pharmacological activities, including but not limited to anti-tubercular, anti-tumor, anticoagulant, anti-inflammatory, antioxidant, antiviral, antimalarial, anti-HIV, and antimicrobial effects. RESULTS Some molecules, such as lone-paired nitrogen species, include pyrrole, pyrazole, and quinoline. These molecules contain nitrogen and take part in metabolic reactions with other molecules inside the cell. However, an excessive accumulation of reactive nitrogen species can lead to cytotoxicity, resulting in damage to essential biological macromolecules. Among these compounds, quinoline stands out as the oldest and most effective one, exhibiting a wide range of significant properties such as antitubercular, antimicrobial, anti-inflammatory, antioxidant, analgesic, and anticonvulsant activities. Notably, naturally occurring quinoline compounds, such as quinine, have proven to be potent antimalarial drugs. CONCLUSION This review highlights quinoline derivatives' antitubercular potential, emphasizing recent research advancements. Utilizing IC50 values, the study emphasizes the efficacy of various quinoline substitutions, hybrids, and electron-withdrawing groups against MTB H37Rv. Continued research is essential for developing potent, low-toxicity quinoline derivatives to combat tuberculosis.
Collapse
Affiliation(s)
- Mohammad Owais
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow 226026 (U.P.), India
| | - Arun Kumar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow 226026 (U.P.), India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow 226026 (U.P.), India
| | - Kuldeep Singh
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow 226026 (U.P.), India
| | - Iqbal Azad
- Department of Chemistry, Integral University, Kursi Road, Lucknow 226026 (U.P.), India
| | - Arshad Hussain
- Harsha Institute of Pharmacy, Itaunja, Lucknow 226203, (U.P.), India
| | - Suvaiv
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow 226026 (U.P.), India
| | - Mohd Akil
- Department of Chemistry, Integral University, Kursi Road, Lucknow 226026 (U.P.), India
| |
Collapse
|
9
|
Teneva Y, Simeonova R, Valcheva V, Angelova VT. Recent Advances in Anti-Tuberculosis Drug Discovery Based on Hydrazide-Hydrazone and Thiadiazole Derivatives Targeting InhA. Pharmaceuticals (Basel) 2023; 16:ph16040484. [PMID: 37111241 PMCID: PMC10140854 DOI: 10.3390/ph16040484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberculosis is an extremely serious problem of global public health. Its incidence is worsened by the presence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis. More serious forms of drug resistance have been observed in recent years. Therefore, the discovery and/or synthesis of new potent and less toxic anti-tubercular compounds is very critical, especially having in mind the consequences and the delays in treatment caused by the COVID-19 pandemic. Enoyl-acyl carrier protein reductase (InhA) is an important enzyme involved in the biosynthesis of mycolic acid, a major component of the M. tuberculosis cell wall. At the same time, it is a key enzyme in the development of drug resistance, making it an important target for the discovery of new antimycobacterial agents. Many different chemical scaffolds, including hydrazide hydrazones and thiadiazoles, have been evaluated for their InhA inhibitory activity. The aim of this review is to evaluate recently described hydrazide-hydrazone- and thiadiazole-containing derivatives that inhibit InhA activity, resulting in antimycobacterial effects. In addition, a brief review of the mechanisms of action of currently available anti-tuberculosis drugs is provided, including recently approved agents and molecules in clinical trials.
Collapse
Affiliation(s)
- Yoanna Teneva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Rumyana Simeonova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | |
Collapse
|
10
|
Verma S, Lal S, Narang R, Sudhakar K. Quinoline Hydrazide/Hydrazone Derivatives: Recent Insights on Antibacterial Activity and Mechanism of Action. ChemMedChem 2023; 18:e202200571. [PMID: 36617503 DOI: 10.1002/cmdc.202200571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Antibiotics are becoming gradually ineffective due to drug resistance, leading to greater difficulty in the treatment of infectious diseases. Therefore, the development of new chemical entities with different mechanisms of action is essential in the fight against resistant microorganisms. Various studies have shown that quinoline hydrazide/hydrazone derivatives possess several biological activities, such as antimalarial, antitubercular, anticancer, anti-inflammatory, and antimicrobial. Among these activities, the antibacterial activity of quinoline hydrazide/hydrazone derivatives is noteworthy. The synthetic flexibility of the quinoline ring has led to the development of a wide range of structurally diverse quinoline hydrazide/hydrazone derivatives, which can act at various bacterial targets such as DNA gyrase, glucosamine-6-phosphate synthase, enoyl ACP reductase, and 3-ketoacyl ACP reductase. This review emphasizes the antibacterial potential of various reported quinoline hydrazide/hydrazone derivatives based on substitution in the quinoline ring. The antibacterial activity of various metal-quinoline hydrazide/hydrazone complexes is also discussed. The aim of this review is to assemble and scrutinize the latest reports in this promising area of drug development.
Collapse
Affiliation(s)
- Sangeeta Verma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Sukhbir Lal
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Bengaluru, Phagwara, 144402, India
| |
Collapse
|
11
|
Elebiju OF, Ajani OO, Oduselu GO, Ogunnupebi TA, Adebiyi E. Recent advances in functionalized quinoline scaffolds and hybrids-Exceptional pharmacophore in therapeutic medicine. Front Chem 2023; 10:1074331. [PMID: 36688036 PMCID: PMC9859673 DOI: 10.3389/fchem.2022.1074331] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Quinoline is one of the most common nitrogen-containing heterocycles owing to its fascinating pharmacological properties and synthetic value in organic and pharmaceutical chemistry. Functionalization of this moiety at different positions has allowed for varying pharmacological activities of its derivative. Several publications over the last few decades have specified various methods of synthesis. This includes classical methods of synthesizing the primary quinoline derivatives and efficient methods that reduce reaction time with increased yield employing procedures that fulfill one of the twelve green chemistry principles, "safer solvent". The metal nanoparticle-catalyzed reaction also serves as a potent and effective technique for the synthesis of quinoline with excellent atom efficiency. The primary focus of this review is to highlight the routes to synthesizing functionalized quinoline derivatives, including hybrids that have moieties with predetermined activities bound to the quinoline moiety which are of interest in synthesizing drug candidates with dual modes of action, overcoming toxicity, and resistance amongst others. This was achieved using updated literature, stating the biological activities and mechanisms through which these compounds administer relief. The ADMET studies and Structure-Activity Relationship (SAR) of novel derivatives were also highlighted to explore the drug-likeness of the quinoline-hybrids and the influence of substituent characteristics and position on the biological activity of the compounds.
Collapse
Affiliation(s)
- Oluwadunni F. Elebiju
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Olayinka O. Ajani
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Gbolahan O. Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Temitope A. Ogunnupebi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Computer and Information Science, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Synthesis, crystal structures and antibacterial properties of four complexes derived from mono- or diquinoline-substituted acylhydrazone ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Hybrid Azine Derivatives: A Useful Approach for Antimicrobial Therapy. Pharmaceutics 2022; 14:pharmaceutics14102026. [PMID: 36297461 PMCID: PMC9610418 DOI: 10.3390/pharmaceutics14102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Nowadays, infectious diseases caused by microorganisms are a major threat to human health, mostly because of drug resistance, multi-drug resistance and extensive-drug-resistance phenomena to microbial pathogens. During the last few years, obtaining hybrid azaheterocyclic drugs represents a powerful and attractive approach in modern antimicrobial therapy with very promising results including overcoming microbial drug resistance. The emphasis of this review is to notify the scientific community about the latest recent advances from the last five years in the field of hybrid azine derivatives with antimicrobial activity. The review is divided according to the main series of six-member ring azaheterocycles with one nitrogen atom and their fused analogs. In each case, the main essential data concerning synthesis and antimicrobial activity are presented.
Collapse
|
14
|
Autoxidation of 4-Hydrazinylquinolin-2(1 H)-one; Synthesis of Pyridazino[4,3- c:5,6- c']diquinoline-6,7(5 H,8 H)-diones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072125. [PMID: 35408525 PMCID: PMC9000902 DOI: 10.3390/molecules27072125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
Abstract
An efficient synthesis of a series of pyridazino[4,3-c:5,6-c']diquinolines was achieved via the autoxidation of 4-hydrazinylquinolin-2(1H)-ones. IR, NMR (1H and 13C), mass spectral data, and elemental analysis were used to fit and elucidate the structures of the newly synthesized compounds. X-ray structure analysis and theoretical calculations unequivocally proved the formation of the structure. The possible mechanism for the reaction is also discussed.
Collapse
|
15
|
Antiproliferative activity of zinc oxide-silver nanocomposite interlinked with Vaccinium arctostaphylos L. fruit extract against cancer cells and bacteria. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Polo-Cuadrado E, Ferrer K, Osorio E, Brito I, Cisterna J, Gutiérrez M. Crystal structure, Hirshfeld surface analysis and DFT studies of N-(4-acetylphenyl)quinoline-3-carboxamide. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|