1
|
Martis GJ, Gaonkar SL. Advances in isoxazole chemistry and their role in drug discovery. RSC Adv 2025; 15:8213-8243. [PMID: 40103991 PMCID: PMC11912359 DOI: 10.1039/d4ra08339c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Isoxazoles are a class of five-membered heterocyclic compounds that have gained significant attention in medicinal chemistry due to their diverse biological activities and therapeutic potential. Recent advances in isoxazole chemistry have led to the development of novel synthetic strategies, enabling the creation of a wide array of isoxazole derivatives with enhanced bioactivity and selectivity. This review explores the latest progress in isoxazole synthesis, highlighting key methodologies such as transition metal-catalyzed cycloadditions, green chemistry approaches, and regioselective functionalization techniques. These advances have not only improved the efficiency of isoxazole synthesis but have also facilitated the design of more complex and bioactive derivatives. In addition to their synthetic advances, isoxazoles have demonstrated a broad spectrum of biological activities, including antimicrobial, anticancer, anti-inflammatory, and neuroprotective effects, making them attractive candidates in drug discovery. This review discusses the structural modifications that enhance their pharmacological properties and their potential for developing therapies for diseases such as cancer, neurodegenerative disorders, and infections. Moreover, we examine the emerging trends in isoxazole-based drug discovery, such as the development of multi-targeted therapies and personalized medicine approaches. The evolving role of isoxazoles in drug discovery underscores their continued importance in modern pharmaceutical research and their potential to address unmet medical needs.
Collapse
Affiliation(s)
- Glanish Jude Martis
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576104 Karnataka India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576104 Karnataka India
| |
Collapse
|
2
|
Majirská M, Pilátová MB, Kudličková Z, Vojtek M, Diniz C. Targeting hematological malignancies with isoxazole derivatives. Drug Discov Today 2024; 29:104059. [PMID: 38871112 DOI: 10.1016/j.drudis.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.
Collapse
Affiliation(s)
- Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia.
| | - Zuzana Kudličková
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Hawash M, Jaradat N, Sabobeh R, Abualhasan M, Qaoud MT. New Thiazole Carboxamide Derivatives as COX Inhibitors: Design, Synthesis, Anticancer Screening, In Silico Molecular Docking, and ADME Profile Studies. ACS OMEGA 2023; 8:29512-29526. [PMID: 37599929 PMCID: PMC10433355 DOI: 10.1021/acsomega.3c03256] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
The goal of this work was to create and test a new series of thiazole carboxamide derivatives for their cyclooxygenase (COX) suppressor and anticancer effects. The compounds were characterized using 1H, 13C NMR, and HRMS spectrum analysis, and their selectivity toward COX-1 and COX-2 was assessed using an in vitro COX inhibition assay kit. Cytotoxicity was assessed using an MTS assay against a panel of cancer and normal cell lines. The docking studies were aided by the Prime MM-GBSA method for estimating binding affinities. The density functional theory (DFT) analysis was performed to assess compound chemical reactivity, which was calculated by computing the border orbital energy of both HOMO and LUMO orbitals, as well as the HOMO-LUMO energy gap. For ADME-T analysis, the QiKProp module was employed. Furthermore, using human X-ray crystal structures, molecular docking studies were carried out to discover the probable binding patterns of these drugs within both COX-1 and COX-2 isozymes. The results demonstrated that the most effective compound against the COX-1 enzyme was 2b with an IC50 of 0.239 μM. It also showed potent activity against COX-2 with an IC50 value of 0.191 μM and a selectivity ratio of 1.251. The highest selectivity ratio was 2.766 for compound 2a against COX-2 with an IC50 dose of 0.958 μM relating to the celecoxib ratio of 23.8 and its IC50 against COX-2 of 0.002 μM. Compound 2j also showed good selectivity toward COX-2 (1.507) with an IC50 value of 0.957 μM. All compounds showed negligible cytotoxic activity against the evaluated normal cell lines, and the IC50 values were more than 300 μM, except for compound 2b, whose IC50 values were 203.71 ± 1.89 and 116.96 ± 2.05 μM against LX-2 and Hek293t cell lines, respectively. Moreover, compound 2b showed moderate anticancer activity against COLO205 and B16F1 cancer cell lines with IC50 values of 30.79 and 74.15 μM, respectively.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 400, Palestine
| | - Nidal Jaradat
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 400, Palestine
| | - Rozan Sabobeh
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 400, Palestine
| | - Murad Abualhasan
- Department
of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 400, Palestine
| | - Mohammed T. Qaoud
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
| |
Collapse
|
4
|
Design, synthesis, molecular docking studies and biological evaluation of thiazole carboxamide derivatives as COX inhibitors. BMC Chem 2023; 17:11. [PMID: 36879343 PMCID: PMC9987136 DOI: 10.1186/s13065-023-00924-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) have been the most commonly used class of medications worldwide for the last three decades. OBJECTIVES This study aimed to design and synthesize a novel series of methoxyphenyl thiazole carboxamide derivatives and evaluate their cyclooxygenase (COX) suppressant and cytotoxic properties. METHODS The synthesized compounds were characterized using 1H, 13C-NMR, IR, and HRMS spectrum analysis and were evaluated for their selectivity towards COX-1 and COX-2 using an in vitro COX inhibition assay kit. Besides, their cytotoxicity was evaluated using the Sulforhodamine B (SRB) assay. Moreover, molecular docking studies were conducted to identify the possible binding patterns of these compounds within both COX-1 and COX-2 isozymes, utilizing human X-ray crystal structures. The density functional theory (DFT) analysis was used to evaluate compound chemical reactivity, which was determined by calculating the frontier orbital energy of both HOMO and LUMO orbitals, as well as the HOMO-LUMO energy gap. Finally, the QiKProp module was used for ADME-T analysis. RESULTS The results revealed that all synthesized molecules have potent inhibitory activities against COX enzymes. The percentage of inhibitory activities at 5 µM concentration against the COX2 enzyme was in the range of 53.9-81.5%, while the percentage against the COX-1 enzyme was 14.7-74.8%. That means almost all of our compounds have selective inhibition activities against the COX-2 enzyme, and the most selective compound was 2f, with selectivity ratio (SR) value of 3.67 at 5 µM concentration, which has a bulky group of trimethoxy on the phenyl ring that could not bind well with the COX-1 enzyme. Compound 2h was the most potent, with an inhibitory activity percentage at 5 µM concentration of 81.5 and 58.2% against COX-2 and COX-1, respectively. The cytotoxicity of these compounds was evaluated against three cancer cell lines: Huh7, MCF-7, and HCT116, and negligible or very weak activities were observed for all of these compounds except compound 2f, which showed moderate activities with IC50 values of 17.47 and 14.57 µM against Huh7 and HCT116 cancer cell lines, respectively. Analysis of the molecular docking suggests 2d, 2e, 2f, and 2i molecules were bound to COX-2 isozyme favorably over COX-1 enzyme, and their interaction behaviors within COX-1 and COX-2 isozymes were comparable to celecoxib, as an ideal selective COX-2 drug, which explained their high potency and COX-2 selectivity. The molecular docking scores and expected affinity using the MM-GBSA approach were consistent with the recorded biological activity. The calculated global reactivity descriptors, such as HOMO and LUMO energies and the HOMO-LUMO gaps, confirmed the key structural features required to achieve favorable binding interactions and thus improve affinity. The in silico ADME-T studies asserted the druggability of molecules and have the potential to become lead molecules in the drug discovery process. CONCLUSION In general, the series of the synthesized compounds had a strong effect on both enzymes (COX-1 and COX-2) and the trimethoxy compound 2f was more selective than the other compounds.
Collapse
|
5
|
Hawash M, Qaoud MT, Jaradat N, Abdallah S, Issa S, Adnan N, Hoshya M, Sobuh S, Hawash Z. Anticancer Activity of Thiophene Carboxamide Derivatives as CA-4 Biomimetics: Synthesis, Biological Potency, 3D Spheroid Model, and Molecular Dynamics Simulation. Biomimetics (Basel) 2022; 7:247. [PMID: 36546947 PMCID: PMC9775471 DOI: 10.3390/biomimetics7040247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to synthesize thiophene carboxamide derivatives, which are considered biomimetics of the anticancer medication Combretastatin A-4 (CA-4), and compare the similarity in the polar surface area (PSA) between the novel series and CA-4. Our results showed that the PSA of the most synthesized structures was biomimetic to CA-4, and similar chemical and biological properties were observed against Hep3B cancer cell line. Among the synthesized series 2b and 2e compounds were the most active molecules on Hep3B (IC50 = 5.46 and 12.58 µM, respectively). The 3D results revealed that both 2b and 2e structures confuse the surface of Hep3B cancer cell lines' spheroid formation and force these cells to aggregate into a globular-shaped spheroid. The 2b and 2e showed a comparable interaction pattern to that observed for CA-4 and colchicine within the tubulin-colchicine-binding pocket. The thiophene ring, due to holding a high aromaticity character, participated critically in that observed interaction profile and showed additional advanced interactions over CA-4. The 2b and 2e tubulin complexes showed optimal dynamics trajectories within a time scale of 100 ns at 300 K temperature, which asserts their high stability and compactness. Together, these findings revealed the biomimetic role of 2b and 2e compounds in CA-4 in preventing cancer progression.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Mohammed T. Qaoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Samer Abdallah
- Department of Biology & Biotechnology, Faculty of Science, An-Najah National University, Nablus 00970, Palestine
| | - Shahd Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Nawal Adnan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Marah Hoshya
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Physiology, Pharmacology & Toxicology Division, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine
| | - Zafer Hawash
- Department of Physics, Faculty of Science, Birzeit University, Birzeit, Ramallah 71939, Palestine
| |
Collapse
|
6
|
Hawash M. Recent Advances of Tubulin Inhibitors Targeting the Colchicine Binding Site for Cancer Therapy. Biomolecules 2022; 12:biom12121843. [PMID: 36551271 PMCID: PMC9776383 DOI: 10.3390/biom12121843] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer accounts for numerous deaths each year, and it is one of the most common causes of death worldwide, despite many breakthroughs in the discovery of novel anticancer candidates. Each new year the FDA approves the use of new drugs for cancer treatments. In the last years, the biological targets of anticancer agents have started to be clearer and one of these main targets is tubulin protein; this protein plays an essential role in cell division, as well as in intracellular transportation. The inhibition of microtubule formation by targeting tubulin protein induces cell death by apoptosis. In the last years, numerous novel structures were designed and synthesized to target tubulin, and this can be achieved by inhibiting the polymerization or depolymerization of the microtubules. In this review article, recent novel compounds that have antiproliferation activities against a panel of cancer cell lines that target tubulin are explored in detail. This review article emphasizes the recent developments of tubulin inhibitors, with insights into their antiproliferative and anti-tubulin activities. A full literature review shows that tubulin inhibitors are associated with properties in the inhibition of cancer cell line viability, inducing apoptosis, and good binding interaction with the colchicine binding site of tubulin. Furthermore, some drugs, such as cabazitaxel and fosbretabulin, have been approved by FDA in the last three years as tubulin inhibitors. The design and development of efficient tubulin inhibitors is progressively becoming a credible solution in treating many species of cancers.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
7
|
Hawash M, Jaradat N, Abualhasan M, Qaoud MT, Joudeh Y, Jaber Z, Sawalmeh M, Zarour A, Mousa A, Arar M. Molecular docking studies and biological evaluation of isoxazole-carboxamide derivatives as COX inhibitors and antimicrobial agents. 3 Biotech 2022; 12:342. [PMID: 36345437 PMCID: PMC9636359 DOI: 10.1007/s13205-022-03408-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are considered one of the most commonly used medications globally. Seventeen isoxazole-containing compounds with various functional groups were evaluated in this work to identify which one was the most potent and which group was most selective toward COX-1 and COX-2 by using an in vitro COX inhibition assay kit. Their cytotoxicity was evaluated on the normal hepatic cell line (LX-2) utilizing the MTS assay. Moreover, these molecules' antibacterial and antifungal activities were evaluated using a microdilution assay against several bacterial and fungal species. In addition, molecular docking studies were conducted to identify the possible binding interactions between these compounds and their biological targets by using the X-ray crystal structure of the human COX enzyme and different proteins of bacterial and fungal strains. At the same time, the QiKProp module was used for ADME-T analysis. The results showed that all evaluated isoxazole derivatives showed moderate to potent activities against COX enzymes. The most potent compound against COX-1 and COX-2 enzymes was A13, with IC50 values of 64 and 13 nM, respectively, and a significant selectivity ratio of 4.63. It was clear that the 3,4-dimethoxy substitution on the first phenyl ring and the Cl atom on the other phenyl pushed the 5-methyl-isoxazole ring toward the secondary binding pocket and created the ideal binding interactions with the COX-2 enzyme in comparison with the other compounds. Compound A8 showed antibacterial and antifungal activities against Pseudomonas aeruginosa, Klebsiella pneumonia, and Candida albicans with MIC values of 2 mg/ml. In fact, this compound showed possible binding interactions with the elastase in P. aeruginosa and KPC-2 carbapenemase in K. pneumonia. Furthermore, for better understanding, molecular dynamics simulations were undertaken to study the change in dynamicity of the protein backbone and ligand after the ligand binds to the protein and to ensure the stability of ligand-protein complexes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03408-8.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed T. Qaoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey
| | - Yara Joudeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Zeina Jaber
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Majd Sawalmeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Abdulraziq Zarour
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, 00970 Nablus, Palestine
| | - Ahmed Mousa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, 00970 Nablus, Palestine
| | - Mohammed Arar
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
8
|
Hawash M, Jaradat N, Abualhasan M, Thaher M, Sawalhi R, Younes N, Shanaa A, Nuseirat M, Mousa A. In vitro and in vivo assessment of the antioxidant potential of isoxazole derivatives. Sci Rep 2022; 12:18223. [PMID: 36309576 PMCID: PMC9617852 DOI: 10.1038/s41598-022-23050-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Previously developed fluorophenyl-isoxazole-carboxamides derivatives were re-synthesized and their scavenging activity against DPPH free radical and inhibitory activity against lipase and α-amylase enzymes were evaluated. The inhibition of the tested enzymes was weak while the most potent activities were observed in the DPPH assay. In particular, compounds 2a and 2c demonstrated high antioxidant potency with IC50 values of 0.45 ± 0.21 and 0.47 ± 0.33 µg/ml, respectively, when compared to Trolox, the positive control compound, which has an IC50 value of 3.10 ± 0.92 µg/ml. Based on the in vitro results, the most potent compound 2a was chosen for in vivo evaluation of antioxidant properties using 20 male mice injected intra-peritoneally and divided into four groups. The in vivo results revealed that total antioxidant capacity (TAC) obtained for mice treated with 2a was two folds greater than that of mice treated with the positive control Quercetin. Although further biological and preclinical investigations need to be performed to assess the therapeutic potential of 2a, the results of this study show promising antioxidant activities both in vitro and in vivo.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Manar Thaher
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Rawan Sawalhi
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nadeen Younes
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Amani Shanaa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mariam Nuseirat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ahmed Mousa
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
9
|
Hawash M, Jaradat N, Eid AM, Abubaker A, Mufleh O, Al-Hroub Q, Sobuh S. Synthesis of novel isoxazole-carboxamide derivatives as promising agents for melanoma and targeted nano-emulgel conjugate for improved cellular permeability. BMC Chem 2022; 16:47. [PMID: 35751124 PMCID: PMC9229817 DOI: 10.1186/s13065-022-00839-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer is one of the most dangerous and widespread diseases in the world today and it has risen to the position of the leading cause of death around the globe in the last few decades. Due to the inherent resistance of many types of cancer to conventional radiotherapy and chemotherapy, it is vital to develop innovative anticancer medications. Recently, a strategy based on nanotechnology has been used to improve the effectiveness of both old and new cancer drugs. OBJECTIVES The present study aimed to design and synthesize a series of phenyl-isoxazole-Carboxamide derivatives, evaluate their anticancer properties, and improve the permeability of potent compounds into cancer cells by using a nano-emulgel strategy. METHODS The coupling reaction of aniline derivatives and isoxazole-Carboxylic acid was used to synthesize a series of isoxazole-Carboxamide derivatives. IR, HRMS, 1H-NMR, and 13C-NMR spectroscopy techniques, characterized all the synthesized compounds. The in-vitro cytotoxic evaluation was performed by using the MTS assay against seven cancer cell lines, including hepatocellular carcinoma (Hep3B and HepG2), cervical adenocarcinoma (HeLa), breast carcinoma (MCF-7), melanoma (B16F1), colorectal adenocarcinoma (Caco-2), and colon adenocarcinoma (Colo205), as well as human hepatic stellate (LX-2) in addition to the normal cell line (Hek293T). A nano-emulgel was developed for the most potent compound, using a self-emulsifying technique. RESULTS All synthesized compounds were found to have potent to moderate activities against B16F1, Colo205, and HepG2 cancer cell lines. The results revealed that the 2a compound has broad spectrum activity against B16F1, Colo205, HepG2, and HeLa cancer cell lines with an IC50 range of 7.55-40.85 µM. Moreover, compound 2e was the most active compound against B16F1 with an IC50 of 0.079 µM compared with Dox (IC50 = 0.056 µM). Nanoemulgel was used to increase the potency of the 2e molecule against this cancer cell line, and the IC50 was reduced to 0.039 µM. The antifibrotic activities were investigated against the LX-2 cell line, and it was found that our synthesized molecules showed better antifibrotic activities at 1 µM than 5-FU, and the cell viability values were 67 and 95%, respectively. CONCLUSION This study suggests that a 2e nano-formalized compound is a potential and promising anti-melanoma agent.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad Abubaker
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ola Mufleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Qusay Al-Hroub
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| |
Collapse
|
10
|
Gado F, Ferrisi R, Di Somma S, Napolitano F, Mohamed KA, Stevenson LA, Rapposelli S, Saccomanni G, Portella G, Pertwee RG, Laprairie RB, Malfitano AM, Manera C. Synthesis and In Vitro Characterization of Selective Cannabinoid CB2 Receptor Agonists: Biological Evaluation against Neuroblastoma Cancer Cells. Molecules 2022; 27:3019. [PMID: 35566369 PMCID: PMC9101764 DOI: 10.3390/molecules27093019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent β-arrestin2 recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines with micromolar potency (IC50 of FG158a = 11.8 μM and FG160a = 13.2 μM in SH-SY5Y cells) by a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds, FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that this signaling pathway might be involved in its potential anti-cancer effect.
Collapse
Affiliation(s)
- Francesca Gado
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (F.G.); (R.F.); (S.R.); (G.S.)
| | - Rebecca Ferrisi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (F.G.); (R.F.); (S.R.); (G.S.)
| | - Sarah Di Somma
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Napoli, Italy; (S.D.S.); (F.N.); (G.P.)
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Napoli, Italy; (S.D.S.); (F.N.); (G.P.)
| | - Kawthar A. Mohamed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (K.A.M.); (R.B.L.)
| | - Lesley A. Stevenson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (L.A.S.); (R.G.P.)
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (F.G.); (R.F.); (S.R.); (G.S.)
| | - Giuseppe Saccomanni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (F.G.); (R.F.); (S.R.); (G.S.)
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Napoli, Italy; (S.D.S.); (F.N.); (G.P.)
| | - Roger G. Pertwee
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; (L.A.S.); (R.G.P.)
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (K.A.M.); (R.B.L.)
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Anna Maria Malfitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Napoli, Italy; (S.D.S.); (F.N.); (G.P.)
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (F.G.); (R.F.); (S.R.); (G.S.)
| |
Collapse
|
11
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|