1
|
Wu Z, Zhang F, Chen Z, Wang X, Liu X, Yang G, Wang S, Huang S, Luo HB, Huang YY, Wu D. Discovery and optimization of 4-(imidazo[1,2-a]pyrimidin-3-yl)thiazol-2-amine derivatives as novel phosphodiesterase 4 inhibitors. Mol Divers 2025; 29:2283-2291. [PMID: 39313709 DOI: 10.1007/s11030-024-10991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Phosphodiesterases (PDEs) are important intracellular enzymes that hydrolyze the second messengers cAMP and/or cGMP. Now several studies have shown that PDE4 received particular attention due to which it represents the most prominent cAMP-metabolizing enzyme involved in many diseases. In this study, we performed prescreening of our internal compound library and discovered the compound (PTC-209) with moderate PDE4 inhibitory activity (IC50 of 4.78 ± 0.08 μM). And a series of 4-(imidazo[1,2-a]pyrimidin-3-yl)thiazol-2-amine derivatives as novel PDE4 inhibitors starting from PTC-209 were successfully designed and synthesized using a structure-based discovery strategy. L19, the most potent inhibitor, exhibited good inhibitory activity (IC50 of 0.48 ± 0.02 μM) and remarkable metabolic stability in rat liver microsomes. Our study presents an example of discovery novel PDE4 inhibitors, which would be helpful for design and optimization of novel inhibitors in future.
Collapse
Affiliation(s)
- Zongmin Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Furong Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Zhexin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xue Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xingfu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Guofeng Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Sen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Deyan Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Yang SF, Li P, Fang ZL, Liang S, Tian HY, Sun BG, Xu K, Zeng CC. A one-pot electrochemical synthesis of 2-aminothiazoles from active methylene ketones and thioureas mediated by NH 4I. Beilstein J Org Chem 2022; 18:1249-1255. [PMID: 36158175 PMCID: PMC9490072 DOI: 10.3762/bjoc.18.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
The electrochemical preparation of 2-aminothiazoles has been achieved by the reaction of active methylene ketones with thioureas assisted by ᴅʟ-alanine using NH4I as a redox mediator. The electrochemical protocol proceeds in an undivided cell equipped with graphite plate electrodes under constant current conditions. Various active methylene ketones, including β-keto ester, β-keto amide, β-keto nitrile, β-keto sulfone and 1,3-diketones, can be converted to the corresponding 2-aminothiazoles. Mechanistically, the in situ generated α-iodoketone was proposed to be the key active species.
Collapse
Affiliation(s)
- Shang-Feng Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Pei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Zi-Lin Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Hong-Yu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Bao-Guo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Cheng-Chu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|