1
|
Martorina W, Tavares A. Effects of Melatonin on Glycemic Variability in Type 2 Diabetes Mellitus: Protocol for a Crossover, Double-Blind, Placebo-Controlled Trial. JMIR Res Protoc 2023; 12:e47887. [PMID: 37410852 PMCID: PMC10468700 DOI: 10.2196/47887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Glycemic variability is recognized as a significant factor contributing to the development of micro- and macrovascular complications in individuals with type 2 diabetes mellitus (T2DM). Numerous studies have shown that melatonin, a hormone involved in regulating various biological rhythms, including those related to glucose regulation, such as hunger, satiety, sleep, and circadian hormone secretion (ie, cortisol, growth hormone, catecholamines, and insulin), is deficient in individuals with T2DM. This raises an important question: Could melatonin replacement potentially reduce glycemic variability in these patients? This warrants investigation as a novel approach to improving glycemic control and reducing the risk of complications associated with T2DM. OBJECTIVE We aimed to investigate whether melatonin replacement in individuals with T2DM who supposedly have melatonin deficiency can positively impact the regulation of insulin secretion rhythms and improve insulin sensitivity, ultimately resulting in a reduction in glycemic variability. METHODS This study will use a crossover, randomized, double-blind, placebo-controlled trial design. Patients with T2DM in group 1 will receive 3 mg of melatonin at 9:00 PM in the first week, undergo a washout period in the second week, and receive a placebo in the third week (melatonin-washout-placebo). Group 2 will be randomized to receive a placebo-washout-melatonin sequence (3 mg). Capillary blood glucose levels will be measured at 6 different times before and after meals during the last 3 days of the first and third weeks. The study aims to compare the mean differences in blood glucose levels and the coefficient of glycemic variability in patients receiving melatonin and placebo during the first and third weeks. After analyzing the initial results, the number of needed patients will be recalculated. If the recalculated number is higher than 30, new participants will be recruited. Thirty patients with T2DM will be randomized into the 2 groups: melatonin-washout-placebo or placebo-washout-melatonin. RESULTS Participant recruitment took place between March 2023 to April 2023. In all, 30 participants were eligible and completed the study. We expect that patients will show different glycemic variability on the days they receive placebo or melatonin. Studies on melatonin and glycemic control have shown both positive and negative results. We hope that there will be a positive outcome regarding glycemic variability (ie, a reduction in glycemic variability), as melatonin has a well-described chronobiotic effect in the literature. CONCLUSIONS This study aims to determine whether melatonin supplementation can effectively reduce glycemic variability in patients with T2DM. The crossover design is necessary due to the multiple variables involved in the circadian variations of glucose, including diet, physical activity, sleep parameters, and pharmacological treatments. The relatively low cost of melatonin and its potential role in reducing the severe complications associated with T2DM have motivated this research effort. Furthermore, the indiscriminate use of melatonin in current times makes conducting this study essential to evaluate the effect of this substance in patients with T2DM. TRIAL REGISTRATION Brazilian Registry of Clinical Trials RBR-6wg54rb; https://ensaiosclinicos.gov.br/rg/RBR-6wg54rb. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/47887.
Collapse
Affiliation(s)
- Wagner Martorina
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Almir Tavares
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Mental Health, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Mehramiz M, Porter T, Laws SM, Rainey-Smith SR. Sleep, Sirtuin 1 and Alzheimer's disease: A review. AGING BRAIN 2022; 2:100050. [PMID: 36908890 PMCID: PMC9997138 DOI: 10.1016/j.nbas.2022.100050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Sleep plays a major role in brain health, and cognition. Disrupted sleep is a well-described symptom of Alzheimer's disease (AD). However, accumulating evidence suggests suboptimal sleep also increases AD risk. The deacetylase Sirtuin 1 (Sirt 1), encoded by the SIRT1 gene, impacts sleep via its relationship to wake-sleep neurotransmitters and somnogens. Evidence from animal and human studies supports a significant and complex relationship between sleep, Sirt 1/ SIRT1 and AD. Numerous hypotheses attempt to explain the critical impact of Sirt 1/ SIRT1 on wake- and sleep- promoting neurons, their related mechanisms and neurotransmitters. However, there is a paucity of studies assessing the interaction between sleep and Sirt 1/ SIRT1, as a principal component of sleep regulation, on AD pathology. In this review, we explore the potential association between Sirt 1/ SIRT1, sleep, and AD aetiology. Given sleep is a likely modifiable risk factor for AD, and recent studies suggest Sirt 1/ SIRT1 activation can be modulated by lifestyle or dietary approaches, further research in this area is required to explore its potential as a target for AD prevention and treatment.
Collapse
Affiliation(s)
- Mehrane Mehramiz
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Stephanie R Rainey-Smith
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia.,Lifestyle Approaches Towards Cognitive Health Research Group, Murdoch University, Murdoch, WA, Australia.,Australian Alzheimer's Research Foundation (Ralph and Patricia Sarich Neuroscience Research Institute), Nedlands, WA, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, WA, Australia.,School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
3
|
Wu CC, Hung CJ, Wang YY, Lin SY, Chen WY, Kuan YH, Liao SL, Yang CP, Chen CJ. Propofol Improved Glucose Tolerance Associated with Increased FGF-21 and GLP-1 Production in Male Sprague-Dawley Rats. Molecules 2020; 25:3229. [PMID: 32679813 PMCID: PMC7397023 DOI: 10.3390/molecules25143229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
Anesthetics, particularly volatile anesthetics, have been shown to impair glucose metabolism and cause hyperglycemia, closely linking them with mortality and morbidity as related to surgery. Beyond being an anesthetic used for general anesthesia and sedation, intravenous hypnotic propofol displays an effect on glucose metabolism. To extend the scope of propofol studies, its effects on glucose metabolism were evaluated in male Sprague-Dawley rats of various ages. Unlike chloral hydrate and isoflurane, propofol had little effect on basal glucose levels in rats at 2 months of age, although it did reduce chloral hydrate- and isoflurane-induced hyperglycemia. Propofol reduced postload glucose levels after either intraperitoneal or oral administration of glucose in both 7- and 12-month-old rats, but not those at 2 months of age. These improved effects regarding propofol on glucose metabolism were accompanied by an increase in insulin, fibroblast growth factor-21 (FGF-21), and glucagon-like peptide-1 (GLP-1) secretion. Additionally, an increase in hepatic FGF-21 expression, GLP-1 signaling, and FGF-21 signaling, along with a decrease in endoplasmic reticulum (ER) stress, were noted in propofol-treated rats at 7 months of age. Current findings imply that propofol may turn into insulin-sensitizing molecules during situations of existing insulin resistance, which involve FGF-21, GLP-1, and ER stress.
Collapse
Affiliation(s)
- Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-C.W.); (C.-J.H.)
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Chih-Jen Hung
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (C.-C.W.); (C.-J.H.)
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming University, Taipei City 112, Taiwan;
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung City 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (S.-L.L.); (C.-P.Y.)
| | - Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (S.-L.L.); (C.-P.Y.)
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; (S.-L.L.); (C.-P.Y.)
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
4
|
Li C, He X, Huang Z, Han L, Wu X, Li L, Xin Y, Ge J, Sha J, Yin Z, Wang Q. Melatonin ameliorates the advanced maternal age-associated meiotic defects in oocytes through the SIRT2-dependent H4K16 deacetylation pathway. Aging (Albany NY) 2020; 12:1610-1623. [PMID: 31980591 PMCID: PMC7053624 DOI: 10.18632/aging.102703] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022]
Abstract
It has been widely reported that advanced maternal age impairs oocyte quality. To date, various molecules have been discovered to be involved in this process. However, prevention of fertility issues associated with maternal age is still a challenge. In the present study, we find that both in vitro supplement and in vivo administration of melatonin are capable of alleviating the meiotic phenotypes of aged oocytes, specifically the spindle/chromosome disorganization and aneuploidy generation. Furthermore, we identify SIRT2 as a critical effector mediating the effects of melatonin on meiotic structure in old oocytes. Candidate screening shows that SIRT2-controlled deacetylation of histone H4K16 is essential for maintaining the meiotic apparatus in oocytes. Importantly, non-acetylatable-mimetic mutant H4K16R partially rescues the meiotic deficits in oocytes from reproductive aged mice. In contrast, overexpression of acetylation-mimetic mutant H4K16Q abolishes the beneficial effects of melatonin on the meiotic phenotypes in aged oocytes. To sum up, our data uncover that melatonin alleviates advanced maternal aged-associated meiotic defects in oocytes through the SIRT2-depenendet H4K16 deacetylation pathway.
Collapse
Affiliation(s)
- Congyang Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xi He
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhenyue Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xinghan Wu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yongan Xin
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhiqiang Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Bae WJ, Park JS, Kang SK, Kwon IK, Kim EC. Effects of Melatonin and Its Underlying Mechanism on Ethanol-Stimulated Senescence and Osteoclastic Differentiation in Human Periodontal Ligament Cells and Cementoblasts. Int J Mol Sci 2018; 19:ijms19061742. [PMID: 29895782 PMCID: PMC6032161 DOI: 10.3390/ijms19061742] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
The present study evaluated the protective effects of melatonin in ethanol (EtOH)-induced senescence and osteoclastic differentiation in human periodontal ligament cells (HPDLCs) and cementoblasts and the underlying mechanism. EtOH increased senescence activity, levels of reactive oxygen species (ROS) and the expression of cell cycle regulators (p53, p21 and p16) and senescence-associated secretory phenotype (SASP) genes (interleukin [IL]-1β, IL-6, IL-8 and tumor necrosis factor-α) in HPDLCs and cementoblasts. Melatonin inhibited EtOH-induced senescence and the production of ROS as well as the increased expression of cell cycle regulators and SASP genes. However, it recovered EtOH-suppressed osteoblastic/cementoblastic differentiation, as evidenced by alkaline phosphatase activity, alizarin staining and mRNA expression levels of Runt-related transcription factor 2 (Runx2) and osteoblastic and cementoblastic markers (glucose transporter 1 and cementum-derived protein-32) in HPDLCs and cementoblasts. Moreover, it inhibited EtOH-induced osteoclastic differentiation in mouse bone marrow⁻derived macrophages (BMMs). Inhibition of protein never in mitosis gene A interacting-1 (PIN1) by juglone or small interfering RNA reversed the effects of melatonin on EtOH-mediated senescence as well as osteoblastic and osteoclastic differentiation. Melatonin blocked EtOH-induced activation of mammalian target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and Nuclear factor of activated T-cells (NFAT) c-1 pathways, which was reversed by inhibition of PIN1. This is the first study to show the protective effects of melatonin on senescence-like phenotypes and osteoclastic differentiation induced by oxidative stress in HPDLCs and cementoblasts through the PIN1 pathway.
Collapse
Affiliation(s)
- Won-Jung Bae
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea.
| | - Jae Suh Park
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Soo-Kyung Kang
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul 02447, Korea.
| | - Il-Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Korea.
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
6
|
Sakimura K, Maekawa T, Kume SI, Ohta T. Spontaneously Diabetic Torii (SDT) Fatty Rat, a Novel Animal Model of Type 2 Diabetes Mellitus, Shows Blunted Circadian Rhythms and Melatonin Secretion. Int J Endocrinol 2018; 2018:9065690. [PMID: 30344606 PMCID: PMC6174757 DOI: 10.1155/2018/9065690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/14/2018] [Indexed: 01/05/2023] Open
Abstract
In patients with diabetes mellitus (DM), impairments of circadian rhythms, including the sleep-wake cycle, blood pressure, and plasma melatonin concentrations, are frequently observed. Animal models of DM are also reported to show aberrant circadian rhythms. However, the changes in the circadian rhythms of plasma soluble substances, including melatonin, in diabetic animals are controversial. In the present study, we investigated the circadian rhythms of spontaneous locomotor activity, metabolic parameters (plasma glucose, triglyceride, and total cholesterol), and plasma melatonin concentrations in Spontaneously Diabetic Torii (SDT) fatty rats, a novel animal model of type 2 DM. Although SDT fatty rats exhibited low locomotor activity in the dark phase, no phase shifts were observed. The circadian variations of plasma metabolic parameters were more apparent in the SDT fatty rats compared with control Sprague-Dawley (SD) rats. The circadian rhythms of plasma melatonin concentrations were significantly impaired in SDT fatty rats. To get an insight into the mechanism underlying the impaired melatonin secretion in SDT fatty rats, the expression of arylalkylamine N-acetyltransferase (Aanat) and acetylserotonin O-methyltransferase (Asmt) mRNA, which encode the rate-limiting enzymes for melatonin synthesis, was investigated in the pineal gland. There were no significant differences in Aanat and Asmt expression between the control SD and SDT fatty rats. These results suggest that SDT fatty rats show impaired circadian rhythms and dysregulated melatonin secretion.
Collapse
Affiliation(s)
- Katsuya Sakimura
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Tatsuya Maekawa
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Shin-ichi Kume
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Takeshi Ohta
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| |
Collapse
|
7
|
Rhea EM, Banks WA. The SAMP8 mouse for investigating memory and the role of insulin in the brain. Exp Gerontol 2016; 94:64-68. [PMID: 27979769 DOI: 10.1016/j.exger.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 02/01/2023]
Abstract
SAMP8 mice exhibit changes that commonly occur with normal aging late in life, but do so at a much earlier age. These changes include impairments in learning and memory as early as 8months of age and so the SAMP8 is a useful model to investigate those age-related brain changes that may affect cognition. As brain insulin signaling and memory decline with aging, the SAMP8 model is useful for investigating these changes and interventions that might prevent the decline. This review will summarize the SAMP8 mouse model, highlight changes in brain insulin signaling and its role in memory, and discuss intranasal insulin delivery in investigating effects on insulin metabolism and memory in the SAMP8 mice.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, United States.
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, United States
| |
Collapse
|
8
|
Esteban-Zubero E, García-Gil FA, López-Pingarrón L, Alatorre-Jiménez MA, Iñigo-Gil P, Tan DX, García JJ, Reiter RJ. Potential benefits of melatonin in organ transplantation: a review. J Endocrinol 2016; 229:R129-R146. [PMID: 27068700 DOI: 10.1530/joe-16-0117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Organ transplantation is a useful therapeutic tool for patients with end-stage organ failure; however, graft rejection is a major obstacle in terms of a successful treatment. Rejection is usually a consequence of a complex immunological and nonimmunological antigen-independent cascade of events, including free radical-mediated ischemia-reperfusion injury (IRI). To reduce the frequency of this outcome, continuing improvements in the efficacy of antirejection drugs are a top priority to enhance the long-term survival of transplant recipients. Melatonin (N-acetyl-5-methoxytryptamine) is a powerful antioxidant and ant-inflammatory agent synthesized from the essential amino acid l-tryptophan; it is produced by the pineal gland as well as by many other organs including ovary, testes, bone marrow, gut, placenta, and liver. Melatonin has proven to be a potentially useful therapeutic tool in the reduction of graft rejection. Its benefits are based on its direct actions as a free radical scavenger as well as its indirect antioxidative actions in the stimulation of the cellular antioxidant defense system. Moreover, it has significant anti-inflammatory activity. Melatonin has been found to improve the beneficial effects of preservation fluids when they are enriched with the indoleamine. This article reviews the experimental evidence that melatonin is useful in reducing graft failure, especially in cardiac, bone, otolaryngology, ovarian, testicular, lung, pancreas, kidney, and liver transplantation.
Collapse
Affiliation(s)
| | | | - Laura López-Pingarrón
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | | | - Pablo Iñigo-Gil
- Department of MedicinePsychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | - Dun-Xian Tan
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - José Joaquín García
- Department of Pharmacology and PhysiologyUniversity of Zaragoza, Zaragoza, Spain
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|