1
|
Rüttiger AS, Ryan D, Spiga L, Lamm-Schmidt V, Prezza G, Reichardt S, Langford M, Barquist L, Faber F, Zhu W, Westermann AJ. The global RNA-binding protein RbpB is a regulator of polysaccharide utilization in Bacteroides thetaiotaomicron. Nat Commun 2025; 16:208. [PMID: 39747016 PMCID: PMC11697453 DOI: 10.1038/s41467-024-55383-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Paramount to human health, symbiotic bacteria in the gastrointestinal tract rely on the breakdown of complex polysaccharides to thrive in this sugar-deprived environment. Gut Bacteroides are metabolic generalists and deploy dozens of polysaccharide utilization loci (PULs) to forage diverse dietary and host-derived glycans. The expression of the multi-protein PUL complexes is tightly regulated at the transcriptional level. However, how PULs are orchestrated at translational level in response to the fluctuating levels of their cognate substrates is unknown. Here, we identify the RNA-binding protein RbpB and a family of noncoding RNAs as key players in post-transcriptional PUL regulation. We demonstrate that RbpB interacts with numerous cellular transcripts, including a paralogous noncoding RNA family comprised of 14 members, the FopS (family of paralogous sRNAs). Through a series of in-vitro and in-vivo assays, we reveal that FopS sRNAs repress the translation of SusC-like glycan transporters when substrates are limited-an effect antagonized by RbpB. Ablation of RbpB in Bacteroides thetaiotaomicron compromises colonization in the mouse gut in a diet-dependent manner. Together, this study adds to our understanding of RNA-coordinated metabolic control as an important factor contributing to the in-vivo fitness of predominant microbiota species in dynamic nutrient landscapes.
Collapse
Affiliation(s)
- Ann-Sophie Rüttiger
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Daniel Ryan
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Luisella Spiga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Vanessa Lamm-Schmidt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, D-97080, Germany
| | - Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
| | - Madison Langford
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, D-97080, Germany
- Department of Biology, University of Toronto, Mississauga, L5L 1C6, Ontario, Canada
| | - Franziska Faber
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, D-97080, Germany
| | - Wenhan Zhu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Alexander J Westermann
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, D-97074, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, D-97080, Germany.
| |
Collapse
|
2
|
El Mouali Y, Tawk C, Huang KD, Amend L, Lesker TR, Ponath F, Vogel J, Strowig T. The RNA landscape of the human commensal Segatella copri reveals a small RNA essential for gut colonization. Cell Host Microbe 2024; 32:1910-1926.e6. [PMID: 39368472 DOI: 10.1016/j.chom.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/19/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
The bacterium Segatella copri is a prevalent member of the human gut microbiota associated with health and disease states. However, the intrinsic factors that determine its ability to colonize the gut effectively remain largely unknown. By extensive transcriptome mapping of S. copri and examining human-derived samples, we discover a small RNA, which we name Segatella RNA colonization factor (SrcF), and show that SrcF is essential for S. copri gut colonization in gnotobiotic mice. SrcF regulates genes involved in nutrient acquisition, and complex carbohydrates, particularly fructans, control its expression. Furthermore, SrcF expression is strongly influenced by human microbiome composition and by the breakdown of fructans by cohabitating commensals, suggesting that the breakdown of complex carbohydrates mediates interspecies signaling among commensals beyond its established function in generating energy. Together, this study highlights the contribution of a small RNA as a critical regulator in gut colonization.
Collapse
Affiliation(s)
- Youssef El Mouali
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Caroline Tawk
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
3
|
Saunier M, Fortier LC, Soutourina O. RNA-based regulation in bacteria-phage interactions. Anaerobe 2024; 87:102851. [PMID: 38583547 DOI: 10.1016/j.anaerobe.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Interactions of bacteria with their viruses named bacteriophages or phages shape the bacterial genome evolution and contribute to the diversity of phages. RNAs have emerged as key components of several anti-phage defense systems in bacteria including CRISPR-Cas, toxin-antitoxin and abortive infection. Frequent association with mobile genetic elements and interplay between different anti-phage defense systems are largely discussed. Newly discovered defense systems such as retrons and CBASS include RNA components. RNAs also perform their well-recognized regulatory roles in crossroad of phage-bacteria regulatory networks. Both regulatory and defensive function can be sometimes attributed to the same RNA molecules including CRISPR RNAs. This review presents the recent advances on the role of RNAs in the bacteria-phage interactions with a particular focus on clostridial species including an important human pathogen, Clostridioides difficile.
Collapse
Affiliation(s)
- Marion Saunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
4
|
Cui X, Zhang T, Xie T, Guo FX, Zhang YY, Deng YJ, Wang Q, Guo YX, Dong MH, Luo XT. Research Progress on the Correlation Between Hypertension and Gut Microbiota. J Multidiscip Healthc 2024; 17:2371-2387. [PMID: 38770171 PMCID: PMC11104380 DOI: 10.2147/jmdh.s463880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Among cardiovascular diseases, hypertension is the most important risk factor for morbidity and mortality worldwide, and its pathogenesis is complex, involving genetic, dietary and environmental factors. The characteristics of the gut microbiota can vary in response to increased blood pressure (BP) and influence the development and progression of hypertension. This paper describes five aspects of the relationship between hypertension and the gut microbiota, namely, the different types of gut microbiota, metabolites of the gut microbiota, sympathetic activation, gut-brain interactions, the effects of exercise and dietary patterns and the treatment of the gut microbiota through probiotics, faecal microbiota transplantation (FMT) and herbal remedies, providing new clues for the future prevention of hypertension. Diet, exercise and traditional Chinese medicine may contribute to long-term improvements in hypertension, although the effects of probiotics and FMT still need to be validated in large populations.
Collapse
Affiliation(s)
- Xiaomei Cui
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ting Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Xie
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Fang-xi Guo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yu-ying Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuan-jia Deng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Qi Wang
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yi-xing Guo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ming-hua Dong
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiao-ting Luo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of General Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
| |
Collapse
|
5
|
Ryan D, Bornet E, Prezza G, Alampalli SV, Franco de Carvalho T, Felchle H, Ebbecke T, Hayward RJ, Deutschbauer AM, Barquist L, Westermann AJ. An expanded transcriptome atlas for Bacteroides thetaiotaomicron reveals a small RNA that modulates tetracycline sensitivity. Nat Microbiol 2024; 9:1130-1144. [PMID: 38528147 PMCID: PMC10994844 DOI: 10.1038/s41564-024-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/07/2024] [Indexed: 03/27/2024]
Abstract
Plasticity in gene expression allows bacteria to adapt to diverse environments. This is particularly relevant in the dynamic niche of the human intestinal tract; however, transcriptional networks remain largely unknown for gut-resident bacteria. Here we apply differential RNA sequencing (RNA-seq) and conventional RNA-seq to the model gut bacterium Bacteroides thetaiotaomicron to map transcriptional units and profile their expression levels across 15 in vivo-relevant growth conditions. We infer stress- and carbon source-specific transcriptional regulons and expand the annotation of small RNAs (sRNAs). Integrating this expression atlas with published transposon mutant fitness data, we predict conditionally important sRNAs. These include MasB, which downregulates tetracycline tolerance. Using MS2 affinity purification and RNA-seq, we identify a putative MasB target and assess its role in the context of the MasB-associated phenotype. These data-publicly available through the Theta-Base web browser ( http://micromix.helmholtz-hiri.de/bacteroides/ )-constitute a valuable resource for the microbiome community.
Collapse
Affiliation(s)
- Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Elise Bornet
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Shuba Varshini Alampalli
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Taís Franco de Carvalho
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Hannah Felchle
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Department of Radiation Oncology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Titus Ebbecke
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Regan J Hayward
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
6
|
Prezza G, Liao C, Reichardt S, Beisel CL, Westermann AJ. CRISPR-based screening of small RNA modulators of bile susceptibility in Bacteroides thetaiotaomicron. Proc Natl Acad Sci U S A 2024; 121:e2311323121. [PMID: 38294941 PMCID: PMC10861873 DOI: 10.1073/pnas.2311323121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024] Open
Abstract
Microbiota-centric interventions are limited by our incomplete understanding of the gene functions of many of its constituent species. This applies in particular to small RNAs (sRNAs), which are emerging as important regulators in microbiota species yet tend to be missed by traditional functional genomics approaches. Here, we establish CRISPR interference (CRISPRi) in the abundant microbiota member Bacteroides thetaiotaomicron for genome-wide sRNA screens. By assessing the abundance of different protospacer-adjacent motifs, we identify the Prevotella bryantii B14 Cas12a as a suitable nuclease for CRISPR screens in these bacteria and generate an inducible Cas12a expression system. Using a luciferase reporter strain, we infer guide design rules and use this knowledge to assemble a computational pipeline for automated gRNA design. By subjecting the resulting guide library to a phenotypic screen, we uncover the sRNA BatR to increase susceptibility to bile salts through the regulation of genes involved in Bacteroides cell surface structure. Our study lays the groundwork for unlocking the genetic potential of these major human gut mutualists and, more generally, for identifying hidden functions of bacterial sRNAs.
Collapse
Affiliation(s)
- Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, WürzburgD-97080, Germany
| | - Chunyu Liao
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, WürzburgD-97080, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, WürzburgD-97080, Germany
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, WürzburgD-97080, Germany
- Medical Faculty, University of Würzburg, WürzburgD-97080, Germany
| | - Alexander J. Westermann
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, WürzburgD-97080, Germany
- Institute of Molecular Infection Biology, University of Würzburg, WürzburgD-97080, Germany
- Department of Microbiology, Biocentre, University of Würzburg, WürzburgD-97074, Germany
| |
Collapse
|
7
|
Prezza G, Westermann AJ. CRISPR Interference-Based Functional Small RNA Genomics. Methods Mol Biol 2024; 2741:101-116. [PMID: 38217650 DOI: 10.1007/978-1-0716-3565-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Small RNAs (sRNAs) are versatile regulators universally present in species across the prokaryotic kingdom, yet their functional characterization remains a major bottleneck. Gene inactivation through random transposon insertion has proven extremely valuable in discovering hidden gene functions. However, this approach is biased toward long genes and usually results in the underrepresentation of sRNA mutants. In contrast, CRISPR interference (CRISPRi) harnesses guide RNAs to recruit cleavage-deficient Cas nucleases to specific DNA loci. The ensuing steric hindrance inhibits RNA polymerase assembly at-or migration along-predefined genes, allowing for targeted knockdown screens without major length bias. In this chapter, we provide a detailed protocol for CRISPRi-based functional screening of bacterial sRNAs. Using the abundant microbiota species Bacteroides thetaiotaomicron as a model, we describe the design and generation of a guide library targeting the full intergenic sRNA repertoire of this organism and its application to identify sRNA knockdown-associated fitness effects. Our protocol is generic and thus suitable for the systematic assessment of sRNA-associated phenotypes in a wide range of bacterial species and experimental conditions. We expect CRISPRi-based functional genomics to boost sRNA research in understudied bacterial taxa, for instance, members of the gut microbiota.
Collapse
Affiliation(s)
- Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Wollmuth EM, Angert ER. Microbial circadian clocks: host-microbe interplay in diel cycles. BMC Microbiol 2023; 23:124. [PMID: 37161348 PMCID: PMC10173096 DOI: 10.1186/s12866-023-02839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Circadian rhythms, observed across all domains of life, enable organisms to anticipate and prepare for diel changes in environmental conditions. In bacteria, a circadian clock mechanism has only been characterized in cyanobacteria to date. These clocks regulate cyclical patterns of gene expression and metabolism which contribute to the success of cyanobacteria in their natural environments. The potential impact of self-generated circadian rhythms in other bacterial and microbial populations has motivated extensive research to identify novel circadian clocks. MAIN TEXT Daily oscillations in microbial community composition and function have been observed in ocean ecosystems and in symbioses. These oscillations are influenced by abiotic factors such as light and the availability of nutrients. In the ocean ecosystems and in some marine symbioses, oscillations are largely controlled by light-dark cycles. In gut systems, the influx of nutrients after host feeding drastically alters the composition and function of the gut microbiota. Conversely, the gut microbiota can influence the host circadian rhythm by a variety of mechanisms including through interacting with the host immune system. The intricate and complex relationship between the microbiota and their host makes it challenging to disentangle host behaviors from bacterial circadian rhythms and clock mechanisms that might govern the daily oscillations observed in these microbial populations. CONCLUSIONS While the ability to anticipate the cyclical behaviors of their host would likely be enhanced by a self-sustained circadian rhythm, more evidence and further studies are needed to confirm whether host-associated heterotrophic bacteria possess such systems. In addition, the mechanisms by which heterotrophic bacteria might respond to diel cycles in environmental conditions has yet to be uncovered.
Collapse
Affiliation(s)
- Emily M Wollmuth
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Ryan D, Bornet E, Prezza G, Alampalli SV, de Carvalho TF, Felchle H, Ebbecke T, Hayward R, Deutschbauer AM, Barquist L, Westermann AJ. An integrated transcriptomics-functional genomics approach reveals a small RNA that modulates Bacteroides thetaiotaomicron sensitivity to tetracyclines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528795. [PMID: 36824877 PMCID: PMC9949090 DOI: 10.1101/2023.02.16.528795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Gene expression plasticity allows bacteria to adapt to diverse environments, tie their metabolism to available nutrients, and cope with stress. This is particularly relevant in a niche as dynamic and hostile as the human intestinal tract, yet transcriptional networks remain largely unknown in gut Bacteroides spp. Here, we map transcriptional units and profile their expression levels in Bacteroides thetaiotaomicron over a suite of 15 defined experimental conditions that are relevant in vivo , such as variation of temperature, pH, and oxygen tension, exposure to antibiotic stress, and growth on simple carbohydrates or on host mucin-derived glycans. Thereby, we infer stress- and carbon source-specific transcriptional regulons, including conditional expression of capsular polysaccharides and polysaccharide utilization loci, and expand the annotation of small regulatory RNAs (sRNAs) in this organism. Integrating this comprehensive expression atlas with transposon mutant fitness data, we identify conditionally important sRNAs. One example is MasB, whose inactivation led to increased bacterial tolerance of tetracyclines. Using MS2 affinity purification coupled with RNA sequencing, we predict targets of this sRNA and discuss their potential role in the context of the MasB-associated phenotype. Together, this transcriptomic compendium in combination with functional sRNA genomics-publicly available through a new iteration of the 'Theta-Base' web browser (www.helmholtz-hiri.de/en/datasets/bacteroides-v2)-constitutes a valuable resource for the microbiome and sRNA research communities alike.
Collapse
|
10
|
Paraphocaeicola brunensis gen. nov., sp. nov., Carrying Two Variants of nimB Resistance Gene from Bacteroides fragilis, and Caecibacteroides pullorum gen. nov., sp. nov., Two Novel Genera Isolated from Chicken Caeca. Microbiol Spectr 2022; 10:e0195421. [PMID: 35170999 PMCID: PMC8849064 DOI: 10.1128/spectrum.01954-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Three difficult-to-cultivate, strictly anaerobic strains, AN20T, AN421T, and AN502, were analyzed within a project studying possible probiotics for newly hatched chickens. Phylogenetic analyses showed that strains AN20T, AN421T, and AN502 formed two well-separated phylogenetic lineages in all phylogenetic and phylogenomic trees comprising members of the family Bacteroidaceae. Comparison to reference genomes of type species Bacteroides fragilis NCTC 9343T, Phocaeicola abscessus CCUG 55929T, and Capsularis zoogleoformans ATCC 33285T showed low relatedness based on the calculated genome-to-genome distance and orthologous average nucleotide identity. Analysis of fatty acid profiles showed iso-C15:0, anteiso-C15:0, C16:0, C18:1ω9c, and iso-C17:0 3OH as the major fatty acids for all three strains and additionally C16:0 3OH for AN421T and AN502. A specific combination of respiratory quinones different from related taxa was found in analyzed strains, MK-5 plus MK-11 in strain AN20T and MK-5 plus MK-10 in strains AN421T and AN502. Strains AN421T and AN502 harbor complete CRISPR loci with CRISPR array, type II-C, accompanied by a set of cas genes (cas9, cas1, and cas2) in close proximity. Interestingly, strain AN20T was found to harbor two copies of nimB gene with >95% similarity to nimB of B. fragilis, suggesting a horizontal gene transfer between these taxa. In summary, three isolates characterized in this study represent two novel species, which we proposed to be classified in two novel genera of the family Bacteroidaceae, for which the names Paraphocaeicola brunensis sp. nov. (AN20T = CCM 9041T = DSM 111154T) and Caecibacteroides pullorum sp. nov. (AN421T= CCM 9040T = DSM 111155T) are proposed. IMPORTANCE This study represents follow-up research on three difficult-to-cultivate anaerobic isolates originally isolated within a project focused on strains that are able to stably colonize newly hatched chickens, thus representing possible probiotics. This project is exceptional in that it successfully isolates several miscellaneous strains that required modified and richly supplemented anaerobic media, as information on many gut-colonizing bacteria is based predominantly on metagenomic studies. Superior colonization of newly hatched chickens by Bacteroides spp., Phocaeicola spp., or related taxa can be considered of importance for development of future probiotics. Although different experiments can also be performed with provisionally characterized isolates, precise taxonomical definition is necessary for subsequent broad communication. The aim of this study is therefore to thoroughly characterize these isolates that represent novel genera and precisely determine their taxonomic position among related taxa to facilitate further research and communication involving these strains.
Collapse
|
11
|
Prezza G, Ryan D, Mädler G, Reichardt S, Barquist L, Westermann AJ. Comparative genomics provides structural and functional insights into Bacteroides RNA biology. Mol Microbiol 2021; 117:67-85. [PMID: 34379855 DOI: 10.1111/mmi.14793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of the RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homologue to have an RNA-related function. We apply an in-silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions, and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic co-conservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members.
Collapse
Affiliation(s)
- Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Gohar Mädler
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Sarah Reichardt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Westermann AJ, Vogel J. Cross-species RNA-seq for deciphering host-microbe interactions. Nat Rev Genet 2021; 22:361-378. [PMID: 33597744 DOI: 10.1038/s41576-021-00326-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
The human body is constantly exposed to microorganisms, which entails manifold interactions between human cells and diverse commensal or pathogenic bacteria. The cellular states of the interacting cells are decisive for the outcome of these encounters such as whether bacterial virulence programmes and host defence or tolerance mechanisms are induced. This Review summarizes how next-generation RNA sequencing (RNA-seq) has become a primary technology to study host-microbe interactions with high resolution, improving our understanding of the physiological consequences and the mechanisms at play. We illustrate how the discriminatory power and sensitivity of RNA-seq helps to dissect increasingly complex cellular interactions in time and space down to the single-cell level. We also outline how future transcriptomics may answer currently open questions in host-microbe interactions and inform treatment schemes for microbial disorders.
Collapse
Affiliation(s)
- Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany. .,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany. .,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Affiliation(s)
- Jürgen Lassak
- Department Biologie I, Ber. Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152 Martinsried, Munich, Germany
| | - Andreas Schlundt
- Goethe-Universität Frankfurt am Main, Institut für Molekulare Biowissenschaften, Biozentrum, Campus Riedberg, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
| |
Collapse
|