1
|
Zou YP, Shan XF, Qiu JX, Geng Y, Xie S, Xiang RL, Cai ZG. Systematic identification of pathological mechanisms, prognostic biomarkers and therapeutic targets by integrating lncRNA expression variation in salivary gland mucoepidermoid carcinoma. Sci Rep 2025; 15:1573. [PMID: 39794354 PMCID: PMC11724123 DOI: 10.1038/s41598-025-85535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Biological processes intricately intertwine with tumorigenesis, significantly influencing treatment outcomes and prognosis. However, the mechanisms fostering mucoepidermoid carcinoma (MEC) remain inadequately elucidated. This research utilizes expression profiles of lncRNAs from clinical MEC tissues and matched normal glandular tissues, integrating public data to explore the biological mechanisms and immune microenvironment characteristics of tumorigenesis. Gene set enrichment analysis identified key pathways, and a customized epithelial-mesenchymal transition (EMT) score elucidated the relationship between pathological processes and prognosis, while an immune signature revealed tumor microenvironment characteristics. MECs exhibited significant enrichment in EMT pathway, with key genes such as Secretogranin II, tissue factor pathway inhibitor 2, and periostin identified as contributors to the EMT process. High EMT scores correlated with upregulated EMT and immune response activity, indicating poor prognosis. Single-sample gene set enrichment analysis unveiled the tumors' immune infiltration signature, suggesting active antigen presentation and a positive immune response for immunotherapy. Additionally, SLC2A1-AS1 and CERS6-AS1 were identified as potential mediators of EMT and the immune environment. This study provides insights into the biological processes of MEC tumorigenesis and identifies potential therapeutic targets for future research.
Collapse
Affiliation(s)
- Yan-Ping Zou
- Department of Oral and Maxillofacial Surgery, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiao-Feng Shan
- Department of Oral and Maxillofacial Surgery, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Geng
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Sciences, Peking University School of Basic Medical Sciences, Ministry of Education, Beijing, China.
- Peking University School of Basic Medical Sciences, No. 38 Xue Yuan Road, Haidian District, Beijing, 100191, P.R. China.
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, Beijing, China.
- Peking University School and Hospital of Stomatology, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P.R. China.
| |
Collapse
|
2
|
Zhang F, Wang B, Zhang W, Xu Y, Zhang C, Xue X. NEIL3 Upregulated by TFAP2A Promotes M2 Polarization of Macrophages in Liver Cancer via the Mediation of Glutamine Metabolism. Digestion 2024; 106:30-44. [PMID: 39342941 DOI: 10.1159/000540804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/04/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Tumor-associated macrophages, which are part of the tumor microenvironment, are a major factor in cancer progression. However, a complete understanding of the regulatory mechanism of M2 polarization of macrophages (Mø) in liver cancer is yet to be established. This study aimed to investigate the potential mechanism by which NEIL3 influenced M2 Mø polarization in liver cancer. METHODS Bioinformatics analysis analyzed NEIL3 expression and its enriched pathways in liver cancer tissue, as well as its correlation with pathway genes. The upstream transcription factor of NEIL3, TFAP2A, was predicted and its expression in liver cancer tissue was analyzed. The binding relationship between the two was analyzed by dual-luciferase reporter and chromatin immunoprecipitation experiments. qRT-PCR assessed NEIL3 and TFAP2A levels in liver cancer cells. Cell viability was detected by CCK-8, while CD206 and CD86 expression was detected by immunofluorescence. IL-10 and CCR2 expressions were assessed using qRT-PCR, and M2 Mø quantity was detected using flow cytometry. Reagent kits tested glutamine (Gln) consumption, α-ketoglutarate, and glutamate content, as well as NADPH/NADP+ and GSH/GSSG ratios. Expression of Gln transport proteins was detected using Western blot. An animal model was established to investigate the influence of NEIL3 expression on liver cancer growth. RESULTS NEIL3 was highly expressed in liver cancer and promoted Mø M2 polarization through Gln metabolism. TFAP2A was identified as the upstream transcription factor of NEIL3 and was highly expressed in liver cancer. Rescue experiments presented that overexpression of NEIL3 reversed the suppressive effect of TFAP2A knockdown on Mø M2 polarization in liver cancer. In vivo experiments demonstrated that the knockdown of NEIL3 could significantly repress the growth of xenograft tumors. CONCLUSION This study suggested that the TFAP2A/NEIL3 axis promoted Mø M2 polarization through Gln metabolism, providing a theoretical basis for immune therapy targeting the liver cancer TME.
Collapse
Affiliation(s)
- Fabiao Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Binfeng Wang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wenlong Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yongfu Xu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Caiming Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiangyang Xue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Peng P, Yin Q, Sun W, Han J, Guo H, Cheng C, Liu D. Global RNA Interaction and Transcriptome Profiles Demonstrate the Potential Anti-Oncogenic Targets and Pathways of RBM6 in HeLa Cells. FRONT BIOSCI-LANDMRK 2024; 29:330. [PMID: 39344314 DOI: 10.31083/j.fbl2909330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The fate and functions of RNAs are coordinately regulated by RNA-binding proteins (RBPs), which are often dysregulated in various cancers. Known as a splicing regulator, RNA-binding motif protein 6 (RBM6) harbors tumor-suppressor activity in many cancers; however, there is a lack of research on the molecular targets and regulatory mechanisms of RBM6. METHODS In this study, we constructed an RBM6 knock-down (shRBM6) model in the HeLa cell line to investigate its functions and molecular targets. Then we applied improved RNA immunoprecipitation coupled with sequencing (iRIP-seq) and whole transcriptome sequencing approaches to investigate the potential role and RNA targets of RBM6. RESULTS Using The Cancer Genome Atlas dataset, we found that higher expression of RBM6 is associated with a better prognosis in many cancer types. In addition, we found that RBM6 knockdown promoted cell proliferation and inhibited apoptosis, demonstrating that RBM6 may act as an anti-oncogenic protein in cancer cells. RBM6 can regulate the alternative splicing (AS) of genes involved in DNA damage response, proliferation, and apoptosis-associated pathways. Meanwhile, RBM6 knockdown activated type I interferon signaling pathways and inhibited the expression of genes involved in the cell cycle, cellular responses to DNA damage, and DNA repair pathways. The differentially expressed genes (DEGs) by shRBM6 and their involved pathways were likely regulated by the transcription factors undergoing aberrant AS by RBM6 knockdown. For iRIP-seq analysis, we found that RBM6 could interact with a large number of mRNAs, with a tendency for binding motifs GGCGAUG and CUCU. RBM6 bound to the mRNA of cell proliferation- and apoptosis-associated genes with dysregulated AS after RBM6 knockdown. CONCLUSIONS In summary, our study highlights the important role of RBM6, as well as the downstream targets and regulated pathways, suggesting the potential regulatory mechanisms of RBM6 in the development of cancer.
Collapse
Affiliation(s)
- Ping Peng
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Qingqing Yin
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., 430075 Wuhan, Hubei, China
| | - Wei Sun
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Jing Han
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Hao Guo
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., 430075 Wuhan, Hubei, China
| | - Chao Cheng
- Center for BioBigData Analysis, ABLife BioBigData Institute, 430075 Wuhan, Hubei, China
| | - Dongbo Liu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| |
Collapse
|
4
|
Sun X, Li J, Gao X, Huang Y, Pang Z, Lv L, Li H, Liu H, Zhu L. Disulfidptosis‑related lncRNA prognosis model to predict survival therapeutic response prediction in lung adenocarcinoma. Oncol Lett 2024; 28:342. [PMID: 38855504 PMCID: PMC11157670 DOI: 10.3892/ol.2024.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, and disulfidptosis is a newly discovered mechanism of programmed cell death. However, the effects of disulfidptosis-related lncRNAs (DR-lncRNAs) in LUAD have yet to be fully elucidated. The aim of the present study was to identify and validate a novel lncRNA-based prognostic marker that was associated with disulfidptosis. RNA-sequencing and associated clinical data were obtained from The Cancer Genome Atlas database. Univariate Cox regression and lasso algorithm analyses were used to identify DR-lncRNAs and to establish a prognostic model. Kaplan-Meier curves, receiver operating characteristic curves, principal component analysis, Cox regression, nomograms and calibration curves were used to assess the reliability of the prognostic model. Functional enrichment analysis, immune infiltration analysis, somatic mutation analysis, tumor microenvironment and drug predictions were applied to the risk model. Reverse transcription-quantitative PCR was subsequently performed to validate the mRNA expression levels of the lncRNAs in normal cells and tumor cells. These analyses enabled a DR-lncRNA prognosis signature to be constructed, consisting of nine lncRNAs; U91328.1, LINC00426, MIR1915HG, TMPO-AS1, TDRKH-AS1, AL157895.1, AL512363.1, AC010615.2 and GCC2-AS1. This risk model could serve as an independent prognostic tool for patients with LUAD. Numerous immune evaluation algorithms indicated that the low-risk group may exhibit a more robust and active immune response against the tumor. Moreover, the tumor immune dysfunction exclusion algorithm suggested that immunotherapy would be more effective in patients in the low-risk group. The drug-sensitivity results showed that patients in the high-risk group were more sensitive to treatment with crizotinib, erlotinib or savolitinib. Finally, the expression levels of AL157895.1 were found to be lower in A549. In summary, a novel DR-lncRNA signature was constructed, which provided a new index to predict the efficacy of therapeutic interventions and the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Jia Li
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xuedi Gao
- Department of Ophthamology, Jinan Mingshui Eye Hospital, Jinan, Shandong 250200, P.R. China
| | - Yubin Huang
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Zhanyue Pang
- Department of Thoracic Surgery, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Lin Lv
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Hao Li
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Haibo Liu
- Department of Thoracic Surgery, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Liangming Zhu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
5
|
Liu G, Liu X, Zeng W, Zhou W. TFAP2A Upregulates SKA3 to Promote Glycolysis and Reduce the Sensitivity of Lung Adenocarcinoma Cells to Cisplatin. Pharmacology 2024; 109:202-215. [PMID: 38643755 DOI: 10.1159/000536557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/22/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Studies have shown that glycolysis metabolism affects the resistance or sensitivity of tumors to chemotherapy drugs. Emerging from recent research, a paradigm-shifting revelation has unfolded, elucidating the oncogenic nature of SKA3 within the context of lung adenocarcinoma (LUAD). Consequently, this work was designed to delve into the effects of SKA3 on glycolysis and cisplatin (CDDP) resistance in LUAD cells and to find new possibilities for individualized treatment of LUAD. METHODS LUAD mRNA expression data from the TCGA database were procured to scrutinize the differential expression patterns of SKA3 in both tumor and normal tissues. GSEA and Pearson correlation analyses were employed to elucidate the impact of SKA3 on signaling pathways within the context of LUAD. In order to discern the upstream regulatory mechanisms, the ChEA and JASPAR databases were utilized to predict the transcription factors and binding sites associated with SKA3. qRT-PCR and Western blot were implemented to assay the mRNA and protein expression levels of SKA3 and TFAP2A. Chromatin immunoprecipitation and dual-luciferase assays were performed to solidify the binding relationship between the two. Extracellular acidification rate, glucose consumption, lactate production, and glycolysis-related proteins (HK2, GLUT1, and LDHA) were used to evaluate the level of glycolysis. Cell viability under CDDP treatment was determined utilizing the CCK-8, allowing for the calculation of IC50. The expression levels of SKA3 and TFAP2A proteins were detected by immunohistochemistry (IHC). RESULTS SKA3 exhibited upregulation in LUAD tissues and cell lines, establishing a direct linkage with glycolysis pathway. Overexpression of SKA3 fostered glycolysis in LUAD, resulting in reduced sensitivity toward CDDP treatment. The upstream transcription factor of SKA3, TFAP2A, was also upregulated in LUAD and could promote SKA3 transcription. Overexpression of TFAP2A also fostered the glycolysis of LUAD. Rescue assays showed that TFAP2A promoted glycolysis in LUAD cells by activating SKA3, reducing the sensitivity of LUAD cells to CDDP. The IHC analysis revealed a positive correlation between high expression of SKA3 and TFAP2A and CDDP resistance. CONCLUSION In summary, TFAP2A can transcriptionally activate SKA3, promote glycolysis in LUAD, and protect LUAD cells from CDDP treatment, indicating that targeting the TFAP2A/SKA3 axis may become a plausible and pragmatic therapeutic strategy for the clinical governance of LUAD.
Collapse
Affiliation(s)
- Guijun Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Zeng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wangyan Zhou
- Department of Medical Record, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Wang C, Zhao Z, Zhao Y, Zhao J, Xia L, Xia Q. Macroscopic inhibition of DNA damage repair pathways by targeting AP-2α with LEI110 eradicates hepatocellular carcinoma. Commun Biol 2024; 7:342. [PMID: 38503825 PMCID: PMC10951303 DOI: 10.1038/s42003-024-05939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
DNA damage repair (DDR) genes are known to be closely associated with the progression of Hepatocellular carcinoma (HCC). Here we report a unique cluster of "deletion-up" genes in HCC, which are accordantly overexpressed in HCC patients and predict the unfavorable prognosis. Binding motif analysis and further validation with ChIP-qPCR unveil that the AP-2α directly modulate the transcription of critical DNA repair genes including TOP2A, NUDT1, POLD1, and PARP1, which facilitates the sanitation of oxidized DNA lesions. Structural analysis and the following validation identify LEI110 as a potent AP-2α inhibitor. Together, we demonstrate that LEI110 stabilizes AP-2α and sensitizes HCC cells toward DNA-damaging reagents. Altogether, we identify AP-2α as a crucial transcription modulator in HCC and propose small-molecule inhibitors targeting AP-2α are a promising novel class of anticancer agents. Our study provides insights into the concept of macroscopic inhibition of DNA damage repair-related genes in cancer treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| | - Zhenjun Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
7
|
Bao S, Fan Y, Mei Y, Gao J. Integrating single-cell and bulk expression data to identify and analyze cancer prognosis-related genes. Heliyon 2024; 10:e25640. [PMID: 38379985 PMCID: PMC10877256 DOI: 10.1016/j.heliyon.2024.e25640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Compared with traditional evaluation methods of cancer prognosis based on tissue samples, single-cell sequencing technology can provide information on cell type heterogeneity for predicting biomarkers related to cancer prognosis. Therefore, the bulk and single-cell expression profiles of breast cancer and normal cells were comprehensively analyzed to identify malignant and non-malignant markers and construct a reliable prognosis model. We first screened highly reliable differentially expressed genes from bulk expression profiles of multiple breast cancer tissues and normal tissues, and inferred genes related to cell malignancy from single-cell data. Then we identified eight critical genes related to breast cancer to conduct Cox regression analysis, calculate polygenic risk score (PRS), and verify the predictive ability of PRS in two data groups. The results show that PRS can divide breast cancer patients into high-risk group and low-risk group. PRS is related to the overall survival time and relapse-free interval and is a prognosis factor independent of conventional clinicopathological characteristics. Breast cancer is usually regarded as a cancer with a relatively good prognosis. In order to further explore whether this workflow can be applied to cancer with poor prognosis, we selected lung cancer for a comparative study. The results show that this workflow can also build a reasonable prognosis model for lung cancer. This study provides new insight and practical source code for further research on cancer biomarkers and drug targets. It also provides basis for survival prediction, treatment response prediction, and personalized treatment.
Collapse
Affiliation(s)
- Shengbao Bao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxin Fan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Mei
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junxiang Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Xie Y, Li Y, Yang M. DJ-1: A Potential Biomarker Related to Prognosis, Chemoresistance, and Expression of Microenvironmental Chemokine in HR-Positive Breast Cancer. J Immunol Res 2023; 2023:5041223. [PMID: 38125697 PMCID: PMC10732869 DOI: 10.1155/2023/5041223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/13/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
DJ-1 is significantly elevated in various malignancies. However, the clinical significance of DJ-1 in hormone receptor (HR)-positive (HR+) breast cancer remains unclear. We evaluated DJ-1 expression in different databases and validated in vitro assay by RT-PCR and western blot among HR+ breast cancer. The correlations between DJ-1 level and tumor-immune were calculated. Mutational landscape, enriched signaling pathways, and drug sensitivity analyses were also assessed between DJ-1 high and low-expression groups. DJ-1 was upregulated in HR+ breast cancer, and high DJ-1 expression was significantly linked with poor prognosis. DJ-1 was correlated with the expression and function of different immune cells. The low DJ-1 group showed sensitivity to paclitaxel and docetaxel, while the high-expression group showed sensitivity to doxorubicin. CTLA4 and PD-L1 were more sensitive in high-DJ-1 group. It is involved in a range of pathways and might behave as a novel biomarker of prognostic value for the immune environment and drug sensitivity in HR+ breast cancer.
Collapse
Affiliation(s)
- Yinghong Xie
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuancheng Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, China
| | - Mengzhu Yang
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
- Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
9
|
Jin C, Luo Y, Liang Z, Li X, Kołat D, Zhao L, Xiong W. Crucial role of the transcription factors family activator protein 2 in cancer: current clue and views. J Transl Med 2023; 21:371. [PMID: 37291585 PMCID: PMC10249218 DOI: 10.1186/s12967-023-04189-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The transcription factor family activator protein 2 (TFAP2) is vital for regulating both embryonic and oncogenic development. The TFAP2 family consists of five DNA-binding proteins, including TFAP2A, TFAP2B, TFAP2C, TFAP2D and TFAP2E. The importance of TFAP2 in tumor biology is becoming more widely recognized. While TFAP2D is not well studied, here, we mainly focus on the other four TFAP2 members. As a transcription factor, TFAP2 regulates the downstream targets directly by binding to their regulatory region. In addition, the regulation of downstream targets by epigenetic modification, posttranslational regulation, and interaction with noncoding RNA have also been identified. According to the pathways in which the downstream targets are involved in, the regulatory effects of TFAP2 on tumorigenesis are generally summarized as follows: stemness and EMT, interaction between TFAP2 and tumor microenvironment, cell cycle and DNA damage repair, ER- and ERBB2-related signaling pathway, ferroptosis and therapeutic response. Moreover, the factors that affect TFAP2 expression in oncogenesis are also summarized. Here, we review and discuss the most recent studies on TFAP2 and its effects on carcinogenesis and regulatory mechanisms.
Collapse
Affiliation(s)
- Chen Jin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Luo
- University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Chinese Academy for Medical Sciences Oxford Institute, Oxford, UK
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Linyong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
- Institute of Brain Science and Brain-Inspired Technology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Yang K, Zhao J, Liu S, Man S. RELA promotes the progression of oral squamous cell carcinoma via TFAP2A-Wnt/β-catenin signaling. Mol Carcinog 2023; 62:641-651. [PMID: 36789977 DOI: 10.1002/mc.23512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023]
Abstract
Oral squamous cell carcinoma (OSCC) has emerged as the most prevailing oral malignancy worldwide, characterized by cervical solid lymph node metastasis and strong local invasiveness. Overexpression of Transcription Factor AP-2 alpha (TFAP2A) is observed in a significant proportion of OSCC cases. In this study, we aimed to elucidate the function of TFAP2A in the progression of OSCC and the related molecular signaling pathways. The role of RELA was predicted using bioinformatics analysis. The mRNA abundances of RELA, TFAP2A, and β-catenin were assessed by Western blot and quantitative real-timePCR. The relationship between RELA, TFAP2A, and β-catenin and their correlation with clinicopathological characteristics of OSCC was evaluated. The target of RELA and TFAP2A was identified by the chromatin immunoprecipitation as well as luciferase reporter assay. The colony formation assay and MTS assay were performed to determine the proliferative level of OSCC cells. OSCC cell motility was determined by Transwell assay and wound-healing assay. The protein expressions of epithelial-mesenchymal transition-associated factors were evaluated by Western blot. The expressions of RELA and TFAP2A were elevated in OSCC, and their expressions displayed a positive correlation. The expression levels of RELA and TFAP2A were found to be associated with TNM staging and lymphatic metastasis of OSCC patients. RELA upregulation promoted OSCC progression, as manifested by increased levels of proliferation, invasion, and migration of OSCC cells. We also demonstrated that RELA was directly bound to the promoter of TFAP2A transcription, which activated multiple malignant and metastatic phenotypes. Furthermore, TFAP2A activated the Wnt/β-catenin signaling by targeting the promoter regions of β-catenin. The study found that RELA is critical for promoting the progression of OSCC via the RELA-TFAP2A-Wnt/β-catenin signaling pathway. The RELA-TFAP2A-Wnt/β-catenin signaling pathway is a potential target for reducing the aggressiveness of OSCC.
Collapse
Affiliation(s)
- Kaicheng Yang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jianguang Zhao
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shenghui Liu
- Department of Otolaryngology Head and Neck, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shasha Man
- Department of Stomatology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
11
|
He J, Dong C, Zhang H, Jiang Y, Liu T, Man X. The oncogenic role of TFAP2A in bladder urothelial carcinoma via a novel long noncoding RNA TPRG1-AS1/DNMT3A/CRTAC1 axis. Cell Signal 2023; 102:110527. [PMID: 36410635 DOI: 10.1016/j.cellsig.2022.110527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Overexpression of TFAP2A has been linked to increased lymph node metastasis in basal-squamous bladder cancer. However, its downstream targets in bladder urothelial carcinoma (BLCA), the most malignant cancer of the urinary tract, remain unclear. In the current study, we aim to explore the function and mechanism of TFAP2A in BLCA. METHODS TFAP2A expression and the prognostic significance in BLCA was analyzed using TCGA and GTEX projects. TFAP2A was knocked-down in BLCA cells to study its impact on glucose uptake, lactate and ATP production, expression of HK2, and the number of vascular meshes formed by HUVEC. The target long noncoding RNAs (lncRNAs) of TFAP2A were predicted by bioinformatics tools, followed by ChIP-qPCR and luciferase assays. The downstream targets of TPRG1-AS1 were analyzed by microarray analysis. Rescue experiments were conducted for validation. RESULTS TFAP2A upregulation in BLCA predicted dismal survival of patients. Loss of TFAP2A inhibited glycolysis (as evidenced by reduced glucose uptake, lactate, ATP production, and the expression of HK2) and angiogenesis (decreased number of vascular meshes formed by HUVEC). TFAP2A promoted the transcription of TPRG1-AS1. TPRG1-AS1 reversed the inhibitory effect of TFAP2A knockdown on glycolysis and angiogenesis in BLCA cells. TPRG1-AS1 inhibited the transcription of CRTAC1 by recruiting a DNA methyltransferase to the promoter of CRTAC1 and increasing the DNA methylation of its promoter. CRTAC1 inhibited glycolysis and angiogenesis in BLCA cells. TFAP2A silencing curbed tumor growth in vivo via the TPRG1-AS1/CRTAC1 axis. CONCLUSION TFAP2A reduces CRTAC1 expression by promoting TPRG1-AS1 transcription, thereby expediting BLCA glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Jiani He
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Changming Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Xiaojun Man
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China.
| |
Collapse
|
12
|
Wang J, Chen Q, Peng F, Zhao S, Zhang C, Song X, Yu D, Wu Z, Du J, Ni H, Deng H, Deng W. Transcription factor AP-2α activates RNA polymerase III-directed transcription and tumor cell proliferation by controlling expression of c-MYC and p53. J Biol Chem 2023; 299:102945. [PMID: 36707053 PMCID: PMC9999235 DOI: 10.1016/j.jbc.2023.102945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Deregulation of transcription factor AP2 alpha (TFAP2A) and RNA polymerase III (Pol III) products is associated with tumorigenesis. However, the mechanism underlying this event is not fully understood and the connection between TFAP2A and Pol III-directed transcription has not been investigated. Here, we report that TFAP2A functions as a positive factor in the regulation of Pol III-directed transcription and cell proliferation. We found TFAP2A is also required for the activation of Pol III transcription induced by the silencing of filamin A, a well-known cytoskeletal protein and an inhibitor in Pol III-dependent transcription identified previously. Using a chromatin immunoprecipitation technique, we showed TFAP2A positively modulates the assembly of Pol III transcription machinery factors at Pol III-transcribed gene loci. We found TFAP2A can activate the expression of Pol III transcription-related factors, including BRF1, GTF3C2, and c-MYC. Furthermore, we demonstrate TFAP2A enhances expression of MDM2, a negative regulator of tumor suppressor p53, and also inhibits p53 expression. Finally, we found MDM2 overexpression can rescue the inhibition of Pol III-directed transcription and cell proliferation caused by TFAP2A silencing. In summary, we identified that TFAP2A can activate Pol III-directed transcription by controlling multiple pathways, including general transcription factors, c-MYC and MDM2/p53. The findings from this study provide novel insights into the regulatory mechanisms of Pol III-dependent transcription and cancer cell proliferation.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China; School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Feixia Peng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Hongwei Ni
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China.
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Pancreatic Cancer-Derived Exosomes Promote the Proliferation, Invasion, and Metastasis of Pancreatic Cancer by the miR-3960/TFAP2A Axis. JOURNAL OF ONCOLOGY 2022; 2022:3590326. [PMID: 36284637 PMCID: PMC9588341 DOI: 10.1155/2022/3590326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
Background The microRNAs (miRNAs) in cancer-derived exosomes have the ability to change tumor microenvironment. This study aims to investigate the role of miRNA in cancer-derived exosomes in pancreatic cancer (PC). Methods Based on the analysis of PC-derived and healthy exosomes by bioinformatics analysis and quantitative real-time PCR validation, the miR-3960 was identified to be the most significantly different miRNA, and TFAP2A proved as its potential target gene. Besides, the exosomes were isolated from PANC-1 cells and identified. After that, PANC-1 cells were treated with the isolated exosomes or transfected with miR-3960 mimics or si-TFAP2A, the effect of PC-derived exosomes, as well as the miR-3960/TFAP2A axis in PC cells, were assessed by the CCK-8, EDU staining, Transwell, cell colony formation, and flow cytometry assays. Furthermore, the effects of exosomes and the miR-3960/TFAP2A axis on PC tumor growth were observed in tumor-bearing mice by the measurement of tumor weight and volume, and hematoxylin-eosin staining. Moreover, the expressions of TFAP2A/PTEN/AKT signaling proteins were detected by Western blot. Results PC-derived exosomes were isolated successfully and proved to have promotion effects on the proliferation, metastasis, and invasion of PC cells both in vitro and tumor growth in vivo. Also, the PC-derived exosomes upregulated the TFAP2A, Bcl-2, and p-AKT/AKT protein levels, and inhibited PTEN and Bax levels and PANC-1 cell apoptosis. Overexpression of miR-3960 antagonized the promotion effect of exosomes on PC cells and the TFAP2A/PTEN/AKT signaling pathway, inhibiting the growth of tumors. Besides, si-TFAP2A enhanced the inhibitory effect of miR-3960 in PC. Conclusion MiR-3960 antagonizes the promotion effect of tumor-derived exosomes on the proliferation, invasion, and metastasis of PC via suppressing TFAP2A.
Collapse
|
14
|
Liu H, Zhang Q, Song Y, Hao Y, Cui Y, Zhang X, Zhang X, Qin Y, Zhu G, Wang F, Dang J, Ma S, Zhang Y, Guo W, Li S, Guan F, Fan T. Long non-coding RNA SLC2A1-AS1 induced by GLI3 promotes aerobic glycolysis and progression in esophageal squamous cell carcinoma by sponging miR-378a-3p to enhance Glut1 expression. J Exp Clin Cancer Res 2021; 40:287. [PMID: 34517880 PMCID: PMC8436487 DOI: 10.1186/s13046-021-02081-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that lncRNAs play pivotal roles in tumor energy metabolism; however, the detailed mechanisms of lncRNAs in the regulation of tumor glycolysis remain largely unknown. METHODS The expression of SLC2A1-AS1 was investigated by TCGA, GEO dataset and qRT-PCR. The binding of GLI3 to SLC2A1-AS1 promoter was detected by Luciferase Reporter Assay System and Ago2-RIP assay. FISH was performed to determine the localization of SLC2A1-AS1 in ESCC cells. Double Luciferase Report assay was used to investigate the interaction of miR-378a-3p with SLC2A1-AS1 and Glut1. Gain-of-function and Loss-of-function assay were performed to dissect the function of SLC2A1-AS1/miR-378a-3p/Glut1 axis in ESCC progression in vitro and in vivo. RESULTS We identified a novel lncRNA SLC2A1-AS1 in ESCC. SLC2A1-AS1 was frequently overexpressed in ESCC tissues and cells, and its overexpression was associated with TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Importantly, GLI3 and SLC2A1-AS1 formed a regulatory feedback loop in ESCC cells. SLC2A1-AS1 promoted cell growth in vitro and in vivo, migration and invasion, and suppressed apoptosis, leading to EMT progression and increased glycolysis in ESCC cells. SLC2A1-AS1 functioned as ceRNA for sponging miR-378a-3p, resulting in Glut1 overexpression in ESCC cells. MiR-378a-3p inhibited cell proliferation and invasion as well as induced apoptosis, resulting in reduced glycolysis, which was partly reversed by SLC2A1-AS1 or Glut1 overexpression in ESCC cells. CONCLUSION SLC2A1-AS1 plays important roles in ESCC development and progression by regulating glycolysis, and SLC2A1-AS1/miR-378a-3p/Glut1 regulatory axis may be a novel therapeutic target in terms of metabolic remodeling of ESCC patients.
Collapse
Affiliation(s)
- Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Qing Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yinsen Song
- Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yibin Hao
- Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yunxia Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yue Qin
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guangzhao Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinghan Dang
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shenglei Li
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
15
|
Huang W, Wang X, Wu F, Xu F. LncRNA LINC00520 aggravates cell proliferation and migration in lung adenocarcinoma via a positive feedback loop. BMC Pulm Med 2021; 21:287. [PMID: 34496829 PMCID: PMC8425021 DOI: 10.1186/s12890-021-01657-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological subtype of primary lung cancer. To identify the biomarker of diagnosis for LUAD is of great significance. Long non-coding RNAs (lncRNAs) were previously revealed to exert vital effects in numerous cancers. LncRNA long intergenic non-protein coding RNA 520 (LINC00520) served as an oncogene in various cancers. Therefore, our study was specially designed to probe the role of LINC00520 in LUAD. RESULTS LINC00520 expression was detected by RT-qPCR. Next, function of LINC00520 in LUAD was verified by in vitro loss-of-function experiments. DNA pull down, ChIP, RIP, and luciferase reporter assays were conducted to reveal the regulatory mechanism of LINC00520. We found that LINC00520 was upregulated in LUAD. Additionally, LINC00520 upregulation is associated with the poor prognosis for patients with LUAD. Furthermore, LINC00520 downregulation suppressed LUAD cell proliferation and migration and induced cell apoptosis. Forkhead box P3 (FOXP3) is identified as the transcription factor to transcriptionally activate LINC00520. Moreover, LINC00520 positively upregulated FOXP3 expression via sponging miR-3611 in LUAD cells. Subsequently, rescue experiments delineated that miR-3611 downregulation or FOXP3 overexpression reversed the effects of silenced LINC00520 on proliferative and migratory capabilities in LUAD cells. CONCLUSION This study innovatively indicated that lncRNA LINC00520 facilitated cell proliferative and migratory abilities in LUAD through interacting with miR-3611 and targeting FOXP3, which may provide a potential novel insight for treatment of LUAD.
Collapse
Affiliation(s)
- Wen Huang
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Xinxing Wang
- Department of Oncology, Sir Run Run Hospital of Nanjing Medical University, 109 Longmian Avenue, Jiangning District, Nanjing, China
| | - Fubing Wu
- Department of Oncology, Sir Run Run Hospital of Nanjing Medical University, 109 Longmian Avenue, Jiangning District, Nanjing, China.
| | - Fanggui Xu
- Department of Oncology, Sir Run Run Hospital of Nanjing Medical University, 109 Longmian Avenue, Jiangning District, Nanjing, China.
| |
Collapse
|