1
|
Ye J, Shi R, Fan H, Wang D, Xiao C, Yang T, Ye P, Xia B, Zhao B, Wang Y, Liu X. Stevioside Ameliorates Prenatal Obesity Induced Postpartum Depression: The Potential Role of Gut Barrier Homeostasis. Mol Nutr Food Res 2024; 68:e2300255. [PMID: 38100291 DOI: 10.1002/mnfr.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Indexed: 12/17/2023]
Abstract
SCOPE Postpartum depression and cognitive impairment are the common complications of prenatal obesity. Stevioside is a non-nutritive natural sweetener with antioxidant and anti-inflammatory. However, its effects on depression behaviors and cognitive impairment induced by a high-fat diet (HFD) remain unclear. METHODS AND RESULTS An 8-week HFD is used to establish a prenatal obesity model in female C57BL/6J mice to explore the improvement effects of stevioside (0.5 mg mL-1 in drinking water) on maternal depression and cognitive dysfunction after weaning. The results demonstrated that stevioside improves behavioral performance of obese maternal mice, and inhibits neuronal damage and 5-hydroxytryptamine (5-HT) abnormality induced by HFD. In addition, stevioside inhibits oxidative stress by reducing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) and glutathione (GSH) activities in the brains of obese maternal mice. Additionally, stevioside improves gut barrier integrity and prevented lipopolysaccharide (LPS) extravasation, and alleviates neuroinflammation. Correlation analysis shows that gut barrier and serum LPS are closely related to behavioral performance and brain biochemical indicators. CONCLUSION Stevioside is capable to prevent prenatal obesity-induced cognitive and mood disorders by restoring intestinal barrier damage and inhibiting inflammation.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyingzi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Maltsev DV, Skripka MO, Spasov AA, Vassiliev PM, Perfiliev MA, Divaeva LN, Zubenko AA, Morkovnik AS, Klimenko AI, Miroshnikov MV, Klochkov VG, Ianalieva LR. Design, Synthesis and Pharmacological Evaluation of Novel C 2,C 3-Quinoxaline Derivatives as Promising Anxiolytic Agents. Int J Mol Sci 2022; 23:14401. [PMID: 36430878 PMCID: PMC9696749 DOI: 10.3390/ijms232214401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
A new series of quinoxaline derivatives, 2a-4b, were synthesized and their anxiolytic potential was evaluated in vivo using elevated plus maze (EPM), open field (OF) and light-dark box (LDB) techniques. According to the results of the EPM, four active compounds were found in 2a, 2b, 2c, 4b. Their anxiolytic properties were confirmed in terms of LDB and the most active was compound 2b. In the OF, only 2c had an influence on the locomotor activity of the rodents. Thus, the most promising substance was determined; this was 2b, which has the structure of 2-(2-{[3-(4-tert-butylphenyl)quinoxaline-2-yl]methyl}-4,5-dimethoxyphenyl)-N-methylethan-1-amine hydrochloride. The obtained data were analyzed with the pharmacophore feature prediction approach, which made it possible to compare the structures of the studied compounds with the reference drug diazepam, and to determine the contribution of pharmacophores to the manifestation of the activity under study. ADMET analysis was carried out for compound 2b and the acute oral toxicity of this substance was also tested in vivo. As a result of the study, a promising compound with a high anxiolytic effect and low level of toxicity 2b was found, which is of interest for further preclinical study of its properties.
Collapse
Affiliation(s)
- Dmitriy V. Maltsev
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
- Volgograd Medical Research Center, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
| | - Maria O. Skripka
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
- Volgograd Medical Research Center, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
| | - Alexander A. Spasov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
- Volgograd Medical Research Center, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
| | - Pavel M. Vassiliev
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
- Volgograd Medical Research Center, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
| | - Maxim A. Perfiliev
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
| | - Lyudmila N. Divaeva
- Research Institute of Physical and Organic Chemistry, Southern Federal University, 105/42 Bolshaya Sadovaya Str., 344090 Rostov-on-Don, Russia
| | - Alexander A. Zubenko
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Anatolii S. Morkovnik
- Research Institute of Physical and Organic Chemistry, Southern Federal University, 105/42 Bolshaya Sadovaya Str., 344090 Rostov-on-Don, Russia
| | | | - Mikhail V. Miroshnikov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
| | - Vladlen G. Klochkov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
| | - Laura R. Ianalieva
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov sq., 400131 Volgograd, Russia
| |
Collapse
|
3
|
Neurobiological Links between Stress, Brain Injury, and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8111022. [PMID: 35663199 PMCID: PMC9159819 DOI: 10.1155/2022/8111022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Stress, which refers to a combination of physiological, neuroendocrine, behavioral, and emotional responses to novel or threatening stimuli, is essentially a defensive adaptation under physiological conditions. However, strong and long-lasting stress can lead to psychological and pathological damage. Growing evidence suggests that patients suffering from mild and moderate brain injuries and diseases often show severe neurological dysfunction and experience severe and persistent stressful events or environmental stimuli, whether in the acute, subacute, or recovery stage. Previous studies have shown that stress has a remarkable influence on key brain regions and brain diseases. The mechanisms through which stress affects the brain are diverse, including activation of endoplasmic reticulum stress (ERS), apoptosis, oxidative stress, and excitatory/inhibitory neuron imbalance, and may lead to behavioral and cognitive deficits. The impact of stress on brain diseases is complex and involves impediment of recovery, aggravation of cognitive impairment, and neurodegeneration. This review summarizes various stress models and their applications and then discusses the effects and mechanisms of stress on key brain regions—including the hippocampus, hypothalamus, amygdala, and prefrontal cortex—and in brain injuries and diseases—including Alzheimer’s disease, stroke, traumatic brain injury, and epilepsy. Lastly, this review highlights psychological interventions and potential therapeutic targets for patients with brain injuries and diseases who experience severe and persistent stressful events.
Collapse
|
4
|
Dionisie V, Ciobanu AM, Toma VA, Manea MC, Baldea I, Olteanu D, Sevastre-Berghian A, Clichici S, Manea M, Riga S, Filip GA. Escitalopram Targets Oxidative Stress, Caspase-3, BDNF and MeCP2 in the Hippocampus and Frontal Cortex of a Rat Model of Depression Induced by Chronic Unpredictable Mild Stress. Int J Mol Sci 2021; 22:ijms22147483. [PMID: 34299103 PMCID: PMC8304451 DOI: 10.3390/ijms22147483] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, escitalopram (ESC) has been suggested to have different mechanisms of action beyond its well known selective serotonin reuptake inhibition. The aim of this study is to investigate the effects of escitalopram on oxidative stress, apoptosis, brain-derived neurotrophic factor (BDNF), Methyl-CpG-binding protein 2 (MeCP2), and oligodendrocytes number in the brain of chronic unpredictable mild stress-induced depressed rats. The animals were randomised in four groups (8 in each group): control, stress, stress + ESC 5 and stress + ESC 5/10. ESC was administered for 42 days in a fixed dose (5 mg/kg b.w.) or in an up-titration regimen (21 days ESC 5 mg/kg b.w. then 21 days ESC 10 mg/kg b.w.). Sucrose preference test (SPT) and elevated plus maze (EPM) were also performed. ESC improved the percentage of sucrose preference, locomotion and anxiety. ESC5/10 reduced the oxidative damage in the hippocampus and improved the antioxidant defence in the hippocampus and frontal lobe. ESC5/10 lowered caspase 3 activity in the hippocampus. Escitalopram had a modulatory effect on BDNF and the number of oligodendrocytes in the hippocampus and frontal lobe and also improved the MeCP2 expressions. The results confirm the multiple pathways implicated in the pathogenesis of depression and suggest that escitalopram exerts an antidepressant effect via different intricate mechanisms.
Collapse
Affiliation(s)
- Vlad Dionisie
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Adela Magdalena Ciobanu
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Neuroscience Department, Discipline of Psychiatry, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400028 Cluj-Napoca, Romania
- Department of Biochemistry and Experimental Biology, Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, NIRD for Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Correspondence: (V.A.T.); (M.C.M.)
| | - Mihnea Costin Manea
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Correspondence: (V.A.T.); (M.C.M.)
| | - Ioana Baldea
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Diana Olteanu
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Alexandra Sevastre-Berghian
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Mirela Manea
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Sorin Riga
- Department of Stress Research and Prophylaxis, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Romanian Academy of Medical Sciences, 927180 Bucharest, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| |
Collapse
|
5
|
Villas-Boas GR, Lavorato SN, Paes MM, de Carvalho PMG, Rescia VC, Cunha MS, de Magalhães-Filho MF, Ponsoni LF, de Carvalho AAV, de Lacerda RB, da S. Leite L, da S. Tavares-Henriques M, Lopes LAF, Oliveira LGR, Silva-Filho SE, da Silveira APS, Cuman RKN, de S. Silva-Comar FM, Comar JF, do A. Brasileiro L, dos Santos JN, de Freitas WR, Leão KV, da Silva JG, Klein RC, Klein MHF, da S. Ramos BH, Fernandes CKC, de L. Ribas DG, Oesterreich SA. Modulation of the Serotonergic Receptosome in the Treatment of Anxiety and Depression: A Narrative Review of the Experimental Evidence. Pharmaceuticals (Basel) 2021; 14:ph14020148. [PMID: 33673205 PMCID: PMC7918669 DOI: 10.3390/ph14020148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) receptors are found throughout central and peripheral nervous systems, mainly in brain regions involved in the neurobiology of anxiety and depression. 5-HT receptors are currently promising targets for discovering new drugs for treating disorders ranging from migraine to neuropsychiatric upsets, such as anxiety and depression. It is well described in the current literature that the brain expresses seven types of 5-HT receptors comprising eighteen distinct subtypes. In this article, we comprehensively reviewed 5-HT1-7 receptors. Of the eighteen 5-HT receptors known today, thirteen are G protein-coupled receptors (GPCRs) and represent targets for approximately 40% of drugs used in humans. Signaling pathways related to these receptors play a crucial role in neurodevelopment and can be modulated to develop effective therapies to treat anxiety and depression. This review presents the experimental evidence of the modulation of the “serotonergic receptosome” in the treatment of anxiety and depression, as well as demonstrating state-of-the-art research related to phytochemicals and these disorders. In addition, detailed aspects of the pharmacological mechanism of action of all currently known 5-HT receptor families were reviewed. From this review, it will be possible to direct the rational design of drugs towards new therapies that involve signaling via 5-HT receptors.
Collapse
Affiliation(s)
- Gustavo R. Villas-Boas
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
- Correspondence: ; Tel.: +55-(77)-3614-3152
| | - Stefânia N. Lavorato
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Marina M. Paes
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Pablinny M. G. de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Vanessa C. Rescia
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Mila S. Cunha
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Manoel F. de Magalhães-Filho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Luis F. Ponsoni
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Adryano Augustto Valladao de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Roseli B. de Lacerda
- Department of Pharmacology, Center for Biological Sciences, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, Curitiba CEP 81531-990, PR, Brazil;
| | - Lais da S. Leite
- Collegiate Biomedicine, SulAmérica College, Rua Gláuber Rocha, 66, Jardim Paraíso, Luís Eduardo Magalhães CEP 47850-000, BA, Brazil;
| | - Matheus da S. Tavares-Henriques
- Laboratory of Pharmacology of Toxins (LabTox), Graduate Program in Pharmacology and Medicinal Chemistry (PPGFQM), Institute of Biomedical Sciences (ICB) Federal Universityof Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil;
| | - Luiz A. F. Lopes
- Teaching and Research Manager at the University Hospital—Federal University of Grande Dourados (HU/EBSERH-UFGD), Federal University of Grande Dourados, Rua Ivo Alves da Rocha, 558, Altos do Indaiá, Dourados CEP 79823-501, MS, Brazil;
| | - Luiz G. R. Oliveira
- Nucleus of Studies on Infectious Agents and Vectors (Naive), Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Saulo E. Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Bairro Universitário, Campo Grande CEP 79070-900, MS, Brazil;
| | - Ana P. S. da Silveira
- Faculty of Biological and Health Sciences, Unigran Capital University Center, RuaBalbina de Matos, 2121, Jarddim Universitário, Dourados CEP 79.824-900, MS, Brazil;
| | - Roberto K. N. Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Francielli M. de S. Silva-Comar
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Jurandir F. Comar
- Department of Biochemistry, State Universityof Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil;
| | - Luana do A. Brasileiro
- Nacional Cancer Institute (INCA), Rua Visconde de Santa Isabel, 274, Rio de Janeiro CEP 20560-121, RJ, Brazil;
| | | | - William R. de Freitas
- Research Group on Biodiversity and Health (BIOSA), Center for Training in Health Sciences, Federal University of Southern Bahia, Praça Joana Angélica, 58, São José, Teixeira de Freitas CEP 45988-058, BA, Brazil;
| | - Katyuscya V. Leão
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Jonatas G. da Silva
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Raphael C. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Mary H. F. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Bruno H. da S. Ramos
- Institute of the Spine and Pain Clinic, Rua Dr. Renato Gonçalves, 108, Renato Gonçalves, Barreiras CEP 47806-021, BA, Brazil;
| | - Cristiane K. C. Fernandes
- University Center of Montes Belos, Av. Hermógenes Coelho s/n, Setor Universitário, São Luís de Montes Belos CEP 76100-000, GO, Brazil;
| | - Dayane G. de L. Ribas
- Gaus College and Course, Rua Severino Vieira, 60, Centro, Barreiras CEP 47800-160, BA, Brazil;
| | - Silvia A. Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa postal 364, Dourados CEP 79804-970, MS, Brazil;
| |
Collapse
|
6
|
Krishna V, Bairy KL, Patil N, Sunny SV. Evaluation of the antianxiety and antidepressant activities of mosapride in Wistar albino rats. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2018-0089. [PMID: 31318691 DOI: 10.1515/jbcpp-2018-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/15/2018] [Indexed: 11/15/2022]
Abstract
Background The 5HT4 receptor agonists are antidepressants with a unique mode of action. Many studies have been done on investigational drugs, and mosapride has been shown to have a 5HT3 antagonistic property. In this study, we assessed the potential anxiolytic and antidepressant effects of mosapride on Wistar albino rats. Methods The rats were randomly assigned to two models containing 4 groups of 6 animals each. In the anxiety model, four groups included 0.5 mL of 0.5% carboxymethyl cellulose (CMC), mosapride 1.5 mg/kg, mosapride 3 mg/kg and diazepam 2 mg/kg. They were dosed for 5 days. On the 3rd day, the elevated plus maze (EPM) was conducted, and on the 5th day, the open field (OF) tests were conducted. In the depression model, four groups included 0.5 mL of 0.5% CMC, mosapride 1.5 mg/kg, mosapride 3 mg/kg and imipramine 30 mg/kg. After 3 days of dosing, the forced swim test (FST) was conducted, followed by a washout period of 1 month. Then, the rats were subjected to chronic unpredictable stress with sucrose preference. Results Compared with the control, the mosapride-treated animals showed significant anxiolytic behavior at both high and low doses in the EPM and OF tests. In the FST, both high and low doses of mosapride reduced immobility. The climbing behavior was prominent at a high dose of mosapride, whereas swimming was prominent at a low dose. In the chronic stress model, both doses of mosapride preserved sucrose preference comparable to imipramine. Conclusion These findings suggest that mosapride has anxiolytic and antidepressant activities at clinically used doses.
Collapse
Affiliation(s)
- Vybhava Krishna
- Kasturba Medical College, Manipal Academy of Higher Education, Pharmacology, MadhavnagarManipal, India
| | - K L Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences, University, Ras Al Khaimah, UAE
| | - Navin Patil
- Kasturba Medical College, Manipal Academy of Higher Education, Pharmacology, MadhavnagarManipal, India
| | - Sweenly V Sunny
- Kasturba Medical College, Manipal Academy of Higher Education, Pharmacology, MadhavnagarManipal, India
| |
Collapse
|
7
|
Temporal profiling of an acute stress-induced behavioral phenotype in mice and role of hippocampal DRR1. Psychoneuroendocrinology 2018; 91:149-158. [PMID: 29555365 DOI: 10.1016/j.psyneuen.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/08/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
Understanding the neurobiological mechanisms underlying the response to an acute stressor may provide novel insights into successful stress-coping strategies. Acute behavioral stress-effects may be restricted to a specific time window early after stress-induction. However, existing behavioral test batteries typically span multiple days or even weeks, limiting the feasibility for a broad behavioral analysis following acute stress. Here, we designed a novel comprehensive behavioral test battery in male mice that assesses multiple behavioral dimensions within a sufficiently brief time window to capture acute stress-effects and its temporal profile. Using this battery, we investigated the behavioral impact of acute social defeat stress (ASD) early thereafter (ASD-early, ∼4 h), when circulating corticosterone levels were elevated, and late after stress-induction (ASD-late, ∼8 h), when corticosterone were returned to timed control levels. ASD-early, but not ASD-late, displayed hippocampal-dependent cognitive impairments in the Y-maze and in the spatial object recognition test. The actin-binding protein (ABP) Tumor suppressor down-regulated in renal cell carcinoma 1 (DRR1) has been described as resilience-promoting factor but the potential of DRR1 to curb stress-effects has not been investigated. Hippocampal DRR1 mRNA-expression was increased in ASD-early and ASD-late whereas DRR1-protein levels were increased only in ASD-late. We hypothesized that the absence of hippocampal DRR1 protein-upregulation in ASD-early caused the associated cognitive impairments. Hence, virus-mediated hippocampal DRR1-overexpression was induced as putative treatment, but cognitive deficits in ASD-early were not improved. We conclude that hippocampal DRR1-overexpression is insufficient to protect from the detrimental cognitive effects following acute social stress where perhaps a more global response in local actin dynamics, involving multiple stress-responsive ABPs that act synergistically, was warranted.
Collapse
|
8
|
The role of the AMPA receptor and 5-HT3 receptor on aggressive behavior and depressive-like symptoms in chronic social isolation-reared mice. Physiol Behav 2016; 153:70-83. [DOI: 10.1016/j.physbeh.2015.10.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 12/30/2022]
|
9
|
Kurhe Y, Mahesh R. Ondansetron attenuates co-morbid depression and anxiety associated with obesity by inhibiting the biochemical alterations and improving serotonergic neurotransmission. Pharmacol Biochem Behav 2015; 136:107-16. [PMID: 26188166 DOI: 10.1016/j.pbb.2015.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/05/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
In our earlier study we reported the antidepressant activity of ondansetron in obese mice. The present study investigates the effect of ondansetron on depression and anxiety associated with obesity in experimental mice with biochemical evidences. Male Swiss albino mice were fed with high fat diet (HFD) for 14weeks to induce obesity. Then the subsequent treatment with ondansetron (0.5 and 1mg/kg, p.o.), classical antidepressant escitalopram (ESC) (10mg/kg, p.o.) and vehicle (distilled water 10ml/kg, p.o.) was given once daily for 28days. Behavioral assay for depression including sucrose preference test, forced swim test (FST) and anxiety such as light dark test (LDT) and hole board test (HBT) were performed in obese mice. Furthermore, in biochemical estimations oral glucose tolerance test (OGTT), plasma leptin, insulin, corticosterone, brain oxidative stress marker malonaldehyde (MDA), antioxidant reduced glutathione (GSH) and serotonin assays were performed. Results indicated that HFD fed obese mice showed severe depressive and anxiety-like behaviors. Chronic treatment with ondansetron inhibited the co-morbid depression and anxiety in obese mice by increasing sucrose consumption in sucrose preference test and reducing the immobility time in FST, increasing time and transitions of light chamber in LDT, improving head dip and crossing scores in HBT compared to HFD control mice. Ondansetron in obese mice inhibited glucose sensitivity in OGTT, improved plasma leptin and insulin sensitivity, reversed hypothalamic pituitary adrenal (HPA) axis hyperactivity by reducing the corticosterone concentration, restored brain pro-oxidant/anti-oxidant balance by inhibiting MDA and elevating GSH concentrations and facilitated serotonergic neurotransmission. In conclusion, ondansetron reversed the co-morbid depression and anxiety associated with obesity in experimental mice by attenuating the behavioral and biochemical abnormalities.
Collapse
Affiliation(s)
- Yeshwant Kurhe
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India.
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India
| |
Collapse
|