1
|
Pakkhesal S, Shakouri M, Mosaddeghi-Heris R, Kiani Nasab S, Salehi N, Sharafi A, Ahmadalipour A. Bridging the gap: The endocannabinoid system as a functional fulcrum for benzodiazepines in a novel frontier of anxiety pharmacotherapy. Pharmacol Ther 2025; 267:108799. [PMID: 39862927 DOI: 10.1016/j.pharmthera.2025.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses. Moreover, studies have provided evidence of interactions between the eCB system and benzodiazepines in anxiety modulation. For instance, the attenuation of benzodiazepine-induced anxiolysis by cannabinoid receptor antagonism or genetic variations in the eCB system components in animal studies, have been associated with variations in benzodiazepine response and susceptibility to anxiety disorders. The combined use of cannabinoid-based medications, such as cannabinoid receptor agonists and benzodiazepine co-administration, has shown promise in augmenting anxiolytic effects and reducing benzodiazepine dosage requirements. This article aims to comprehensively review and discuss the current evidence on the involvement of the eCB system as a key modulator of benzodiazepine-related anxiolytic effects, and further, the possible mechanisms by which the region-specific eCB system-GABAergic connectivity modulates the neuro-endocrine/behavioral stress response, providing an inclusive understanding of the complex interplay between the eCB system and benzodiazepines in the context of anxiety regulation, to inform future research and clinical practice.
Collapse
Affiliation(s)
- Sina Pakkhesal
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Shakouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Kiani Nasab
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Salehi
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - AmirMohammad Sharafi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ahmadalipour
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
2
|
Rêgo DSB, Calió ML, Filev R, Mello LE, Leslie ATFS. Long-term Effects of Cannabidiol and/or Fentanyl Exposure in Rats Submitted to Neonatal Pain. THE JOURNAL OF PAIN 2024; 25:715-729. [PMID: 37820846 DOI: 10.1016/j.jpain.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The current study aimed to evaluate anxiety behavior, hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) and cannabinoid receptor 1 (CB1) gene expression, and nociceptive response in adulthood after a combination of fentanyl and cannabidiol (CBD) for nociceptive stimuli induced during the first week of life in rats. Complete Freund's adjuvant-induced inflammatory nociceptive insult on postnatal day (PN) 1 and PN3. Both fentanyl and CBD were used alone or in combination from PN1 to PN7. Behavioral and nociceptive tests were performed at PN60 and PN62. The expression of the microglial calcium-binding proteins Iba1 and CB1 was detected in the hippocampus using reverse Quantitative polymerase chain reaction (qPCR) and immunohistochemistry. Our results suggest that the anxiety behavior response and immune activation in adult life depend on the CBD dose combined with fentanyl for the nociceptive stimuli induced during the first week of life. Treatment of neonatal nociceptive insult with CBD and opioids showed significant dose-dependent and male-female differences. The increased gene expression in the hippocampus of the analyzed cannabinoid gene supports this data. In addition, treatment with fentanyl led to an increase in CB1 protein expression. Moreover, the expression of Iba1 varied according to the administered dose of CBD and may or may not be associated with the opioid. A lower dose of CBD during the inflammatory period was associated with enhanced anxiety in adult life. PERSPECTIVE: The treatment of nociceptive stimuli with CBD and opioids during the first week of life demonstrated significant sex differences in adult life on anxiety behavior and supraspinal pain sensitivity.
Collapse
Affiliation(s)
- Débora S B Rêgo
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Michele Longoni Calió
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Renato Filev
- Programa de Orientação e Atendimento a Dependentes (PROAD), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz E Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Ana T F S Leslie
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
3
|
Marazziti D, Carmassi C, Cappellato G, Chiarantini I, Massoni L, Mucci F, Arone A, Violi M, Palermo S, De Iorio G, Dell’Osso L. Novel Pharmacological Targets of Post-Traumatic Stress Disorders. Life (Basel) 2023; 13:1731. [PMID: 37629588 PMCID: PMC10455314 DOI: 10.3390/life13081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychopathological condition with a heterogeneous clinical picture that is complex and challenging to treat. Its multifaceted pathophysiology still remains an unresolved question and certainly contributes to this issue. The pharmacological treatment of PTSD is mainly empirical and centered on the serotonergic system. Since the therapeutic response to prescribed drugs targeting single symptoms is generally inconsistent, there is an urgent need for novel pathogenetic hypotheses, including different mediators and pathways. This paper was conceived as a narrative review with the aim of debating the current pharmacological treatment of PTSD and further highlighting prospective targets for future drugs. The authors accessed some of the main databases of scientific literature available and selected all the papers that fulfilled the purpose of the present work. The results showed that most of the current pharmacological treatments for PTSD are symptom-based and show only partial benefits; this largely reflects the limited knowledge of its neurobiology. Growing, albeit limited, data suggests that the hypothalamic-pituitary-adrenal axis, opioids, glutamate, cannabinoids, oxytocin, neuropeptide Y, and microRNA may play a role in the development of PTSD and could be targeted for novel treatments. Indeed, recent research indicates that examining different pathways might result in the development of novel and more efficient drugs.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Gabriele Cappellato
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Federico Mucci
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Miriam Violi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Giovanni De Iorio
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, 56100 Pisa, Italy (L.D.)
| |
Collapse
|
4
|
Ney LJ, Akosile W, Davey C, Pitcher L, Felmingham KL, Mayo LM, Hill MN, Strodl E. Challenges and considerations for treating PTSD with medicinal cannabis: the Australian clinician's perspective. Expert Rev Clin Pharmacol 2023; 16:1093-1108. [PMID: 37885234 DOI: 10.1080/17512433.2023.2276309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Preclinical and experimental research have provided promising evidence that medicinal cannabis may be efficacious in the treatment of posttraumatic stress disorder (PTSD). However, implementation of medicinal cannabis into routine clinical therapies may not be straightforward. AREAS COVERED In this review, we describe some of the clinical, practical, and safety challenges that must be addressed for cannabis-based treatment of PTSD to be feasible in a real-world setting. These issues are especially prevalent if medicinal cannabis is to be combined with trauma-focused psychotherapy. EXPERT OPINION Future consideration of the clinical and practical considerations of cannabis use in PTSD therapy will be essential to both the efficacy and safety of the treatment protocols that are being developed. These issues include dose timing and titration, potential for addiction, product formulation, windows of intervention, and route of administration. In particular, exposure therapy for PTSD involves recall of intense emotions, and the interaction between cannabis use and reliving of trauma memories must be explored in terms of patient safety and impact on therapeutic outcomes.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Wole Akosile
- Greater Brisbane Clinical School, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Chris Davey
- Department of Psychiatry, Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Leah M Mayo
- Department of Psychiatry, Mathison Centre for Mental Health Research, and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Matthew N Hill
- Department of Psychiatry, Mathison Centre for Mental Health Research, and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Esben Strodl
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
5
|
Di Salvo A, Conti MB, della Rocca G. Pharmacokinetics, efficacy, and safety of cannabidiol in dogs: an update of current knowledge. Front Vet Sci 2023; 10:1204526. [PMID: 37456953 PMCID: PMC10347378 DOI: 10.3389/fvets.2023.1204526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
In the last 5 years, interest has grown in using phytocannabinoids, particularly cannabidiol (CBD), in veterinary medicine to treat several pathologies, including pain, epilepsy, anxiety, nausea, anorexia, skin lesions, and even some types of cancer, among others. Indeed, due to a positive perception of CBD use, many pet owners are increasingly requesting this option to relieve their pets, and many veterinarians are exploring this possibility for their patients. Besides the widespread empiric use of CBD in pets, the research is trying to obtain proof of its efficacy and lack of adverse effects and to know its pharmacokinetics to define an appropriate posology. This review summarizes all data published so far about the canine pharmacokinetics, efficacy, and tolerability of CBD and cannabidiolic acid (CBDA). Despite a certain number of available pharmacokinetic studies, the kinetic profile of CBD has yet to be fully known, probably because of the very different experimental conditions. In terms of efficacy, most studies have tested CBD' ability to relieve osteoarthritic pain. In contrast, few studies have evaluated its role in epilepsy, behavioral disorders, and skin lesions. From obtained results, some evidence exists supporting the beneficial role of CBD. Nevertheless, the limited number of published studies and the occurrence of bias in almost all require caution in interpreting findings. From tolerability studies, CBD' side effects can be classified as mild or unremarkable. However, studies were prevalently focused on short- to medium-term treatment, while CBD is usually employed for long-term treatment. Further studies are warranted to define better whether CBD could be a valid adjunct in canine treatment.
Collapse
|
6
|
Borges-Assis AB, Uliana DL, Hott SC, Guimarães FS, Lisboa SF, Resstel LBM. Bed nucleus of the stria terminalis CB1 receptors and the FAAH enzyme modulate anxiety behavior depending on previous stress exposure. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110739. [PMID: 36870468 DOI: 10.1016/j.pnpbp.2023.110739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
The endocannabinoid (eCB) anandamide (AEA) is synthesized on-demand in the post-synaptic terminal and can act on presynaptic cannabinoid type 1 (CB1) receptors, decreasing the release of neurotransmitters, including glutamate. AEA action is ended through enzymatic hydrolysis via FAAH (fatty acid amid hydrolase) in the post-synaptic neuron. eCB system molecules are widely expressed in brain areas involved in the modulation of fear and anxiety responses, including the Bed Nucleus of the Stria Terminalis (BNST), which is involved in the integration of autonomic, neuroendocrine, and behavioral regulation. The presence of the CB1 and FAAH was described in the BNST; however, their role in the modulation of defensive reactions is not fully comprehended. In the present work we aimed at investigating the role of AEA and CB1 receptors in the BNST in modulating anxiety-related behaviors. Adult male Wistar rats received local BNST injections of the CB1 receptor antagonist AM251 (0.1-0.6 nmol) and/or the FAAH inhibitor (URB597; 0.001-0.1 nmol) and were evaluated in the elevated plus maze (EPM) test, with or without previous acute restraint stress (2 h) exposure, or in the contextual fear conditioning. We observed that although AM251 and URB597 had no effects on the EPM, they increased and decreased, respectively, the conditioned fear response. Supporting a possible influence of stress in these differences, URB597 was able to prevent the restraint stress-induced anxiogenic effect in the EPM. The present data, therefore, suggest that eCB signaling in the BNST is recruited during more aversive situations to counteract the stress effect.
Collapse
Affiliation(s)
- Anna Bárbara Borges-Assis
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Lescano Uliana
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, USA
| | - Sara Cristina Hott
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sabrina Francesca Lisboa
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Leonardo Barbosa Moraes Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Omran GA, Abd Allah ESH, Mohammed SA, El Shehaby DM. Behavioral, biochemical and histopathological toxic profiles induced by sub-chronic cannabimimetic WIN55, 212-2 administration in mice. BMC Pharmacol Toxicol 2023; 24:8. [PMID: 36750905 PMCID: PMC9906926 DOI: 10.1186/s40360-023-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/04/2023] [Indexed: 02/09/2023] Open
Abstract
WIN55, 212-2 mesylate is a synthetic cannabinoid (SC) agonist of CB1 and CB2 receptors with much higher affinity to CB1 receptor than tetrahydrocannabinol and many potential therapeutic effects. Few studies have evaluated SCs effects on more complex animal behavior and sex differences in cannabinoids toxicology. The current study was undertaken for determination of behavioral (Open Field test), biochemical (liver and kidney function test plus GABA & Glutamate levels), histopathological and CB1 immunohistochemistry risks of sub-chronic administration of SC WIN55, 212-2 mesylate in male and female mice. A total of 40 healthy adult mice were randomly divided into four groups (5 mice each): a negative control group, a vehicle group, a low dose (0.05 mg/kg) group and a high dose group (0.1 mg/kg) for each gender.Open Field Test revealed dose and gender-dependent anxiogenic effect with reduced locomotor activity in both sexes especially the higher doses with female mice being less compromised. GABA and glutamate levels increased significantly in both dose groups compared to controls alongside female mice versus males. No significant biochemical alterations were found in all groups with minimal histopathological changes. The CB1 receptors immunohistochemistry revealed a significant increase in the number of CB1 positive neurons in both low and high dose groups against controls with higher expression in female brains.ConclusionsThere were sexual dimorphism effects induced by sub-chronic exposure to WIN55, 212-2 with lesser female mice affection and dose-dependent influences.
Collapse
Affiliation(s)
- Ghada A. Omran
- grid.252487.e0000 0000 8632 679XForensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman S. H. Abd Allah
- grid.252487.e0000 0000 8632 679XMedical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sherine Ahmed Mohammed
- grid.412659.d0000 0004 0621 726XMedical Histology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Doaa M. El Shehaby
- grid.252487.e0000 0000 8632 679XForensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Banaei-Boroujeni G, Rezayof A, Alijanpour S, Nazari-Serenjeh F. Targeting mediodorsal thalamic CB1 receptors to inhibit dextromethorphan-induced anxiety/exploratory-related behaviors in rats: The post-weaning effect of exercise and enriched environment on adulthood anxiety. J Psychiatr Res 2023; 157:212-222. [PMID: 36495603 DOI: 10.1016/j.jpsychires.2022.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Dextromethorphan (DXM) is an effective over-the-counter antitussive with an alarming increase as an abused drug for recreational purposes. Although reports of the association between DXM administration and anxiety, there are few investigations into the underlying DMX mechanisms of anxiogenic action. Thus, the present study aimed to investigate the role of the mediodorsal thalamus (MD) cannabinoid CB1 receptors (CB1Rs) in DXM-induced anxiety/exploratory-related behaviors in adult male Wistar rats. Animals were bilaterally cannulated in the MD regions. After one week, anxiety and exploratory behaviors were measured using an elevated plus-maze task (EPM) and a hole-board apparatus. Results showed that DXM (3-7 mg/kg, i. p.) dose-dependently increased anxiety-like behaviors. Intra-MD administration of ACPA (2.5-10 ng/rat), a selective CB1 receptor agonist, decreased anxiety-like effects of DXM. The blockade of MD CB1 receptors by AM-251 (40-120 ng/rat) did not affect the EPM task. However, it potentiated the anxiogenic response of an ineffective dose of DXM (3 mg/kg) in the animals. Moreover, the effect of post-weaning treadmill exercise (TEX) and enriched environment (EE) were examined in adulthood anxiety under the drug treatments. Juvenile rats were divided into TEX/EE and control groups. The TEX/EE-juvenile rats were placed on a treadmill and then exposed to EE for five weeks. Interestingly, compared to untreated animals, post-weaning TEX/EE inhibited the anxiety induced by DXM or AM-251/DXM. It can be concluded that the MD endocannabinoid system plays an essential role in the anxiogenic effect of dextromethorphan. Moreover, post-weaning exercise alongside an enriched environment may have an inhibitory effect on adulthood anxiety-like behaviors.
Collapse
Affiliation(s)
- Golnoush Banaei-Boroujeni
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | | |
Collapse
|
9
|
Borgonetti V, Governa P, Manetti F, Miraldi E, Biagi M, Galeotti N. A honokiol-enriched Magnolia officinalis Rehder & E.H. Wilson. bark extract possesses anxiolytic-like activity with neuroprotective effect through the modulation of CB1 receptor. J Pharm Pharmacol 2021; 73:1161-1168. [PMID: 33950239 DOI: 10.1093/jpp/rgab067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The exposure of neurons to an excessive excitatory stimulation induces the alteration of the normal neuronal function. Mood disorders are among the first signs of alterations in the central nervous system function. Magnolia officinalis bark extract has been extensively used in the traditional medicine systems of several countries, showing several pharmacological activities. Honokiol, the main constituent of M. officinalis, is a GABA modulator and a CB1 agonist, which is deeply investigated for its role in modulating mood disorders. METHODS Thus, we evaluated the possible neuroprotective effect of a standardized M. officinalis bark extract (MOE), enriched in honokiol, and its effect on animal mood behavioural tests and in an in vitro model of excitotoxicity. KEY FINDINGS MOE showed neuroprotective effect using SH-SY5Y cells, by normalizing brain-derived neurotrophic factor release. Then, we tested the effect of MOE in different behavioural tests evaluating anxiety and depression and we observed a selective anxiolytic-like effect. Finally, we confirmed the involvement of CB1 in the final effect of MOE by the co-administration of the CB1 antagonist, AM251. CONCLUSION These results suggest that MOE could be considered an effective and safe anxiolytic candidate with neuroprotective activity.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena Siena, Italy
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Florence, Italy
| |
Collapse
|
10
|
The effects of FAAH inhibition on the neural basis of anxiety-related processing in healthy male subjects: a randomized clinical trial. Neuropsychopharmacology 2021; 46:1011-1019. [PMID: 33335310 PMCID: PMC8105363 DOI: 10.1038/s41386-020-00936-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Acute pharmacological inhibition of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), prolongs the regulatory effects of endocannabinoids and reverses the stress-induced anxiety state in a cannabinoid receptor-dependent manner. However, the neural systems underlying this modulation are poorly understood. A single site, randomized, double-blind, placebo-controlled, parallel study was conducted with 43 subjects assigned to receive once daily dosing of either placebo (n = 21) or JNJ-42165279 (100 mg) (n = 22) for 4 consecutive days. Pharmacodynamic effects were assessed on the last day of dosing and included evaluation of brain activation patterns using BOLD fMRI during an (1) emotion face-processing task, (2) inspiratory breathing load task, and (3) fear conditioning and extinction task. JNJ-42165279 attenuated activation in the amygdala, bilateral anterior cingulate, and bilateral insula during the emotion face-processing task consistent with effects previously observed with anxiolytic agents. Higher levels of anandamide were associated with greater attenuation in bilateral anterior cingulate and left insula. JNJ-42165279 increased the activation during anticipation of an aversive interoceptive event in the anterior cingulate and bilateral anterior insula and right inferior frontal cortex. JNJ-42165279 did not affect fear conditioning or within-session extinction learning as evidenced by a lack of differences on a subjective and neural circuit level. Taken together, these results support the hypothesis that JNJ-42165279 at this dose shares some effects with existing anxiolytic agents in dampening response to emotional stimuli but not responses to conditioned fear.
Collapse
|
11
|
Steardo L, Carbone EA, Menculini G, Moretti P, Steardo L, Tortorella A. Endocannabinoid System as Therapeutic Target of PTSD: A Systematic Review. Life (Basel) 2021; 11:life11030214. [PMID: 33803374 PMCID: PMC8000573 DOI: 10.3390/life11030214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 11/23/2022] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a complex disorder involving dysregulation of stress-related hormones and neurotransmitter systems. Research focused on the endocannabinoid system (eCBS) for anxiety and stress regulation, cognitive and emotional responses modulation and aversive memories extinction, leading to the hypothesis that it could represent a possible alternative treatment target for PTSD. In this systematic review, we summarize evidence about the efficacy and safety of medicinal cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), and nabilone in PTSD treatment. The PRISMA statement guidelines were followed. A systematic literature search was conducted in MEDLINE/PubMed, Scopus and Web of Science by two independent researchers, who also performed data extraction and quality assessment. Among the initial 495 papers, 234 were screened for eligibility and 10 were included. Studies suggested that different medicinal cannabinoids at distinct doses and formulations could represent promising treatment strategies for the improvement of overall PTSD symptomatology as well as specific symptom domains (e.g., sleep disorders, arousal disturbances, suicidal thoughts), also influencing quality of life, pain and social impact. Although there is a robust rationale for treatment with drugs that target the eCBS and the results are promising, further studies are needed to investigate the safety and efficacy profile of their prolonged use.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Tommaso Campanella, 115, 88100 Catanzaro, Italy
- Correspondence:
| | - Elvira Anna Carbone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Tommaso Campanella, 115, 88100 Catanzaro, Italy;
| | - Giulia Menculini
- Department of Psychiatry, University of Perugia, Piazzale Lucio Severi, 1, 06132 Perugia, Italy; (G.M.); (P.M.); (A.T.)
| | - Patrizia Moretti
- Department of Psychiatry, University of Perugia, Piazzale Lucio Severi, 1, 06132 Perugia, Italy; (G.M.); (P.M.); (A.T.)
| | - Luca Steardo
- Department of Physiology and Pharmacology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
- Department of Psychiatry, Giustino Fortunato University, 12, 82100 Benevento, Italy
| | - Alfonso Tortorella
- Department of Psychiatry, University of Perugia, Piazzale Lucio Severi, 1, 06132 Perugia, Italy; (G.M.); (P.M.); (A.T.)
| |
Collapse
|
12
|
Joshi N, Onaivi ES. Psychiatric Disorders and Cannabinoid Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:131-153. [PMID: 33332008 PMCID: PMC10810008 DOI: 10.1007/978-3-030-57369-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
With the increasing global use of medical and adult recreational use of cannabis and cannabinoids, this chapter provides overview of evidence from animal and human studies on psychiatric disorders and cannabinoid receptors. We review and present evaluation of the relationship between changes in the ECS and psychiatric disorders. Evidence suggests the existence of a relationship between changes in components of the ECS, and some of the symptoms present in psychiatric disorders. Both CB1Rs and CB2Rs are components of the endocannabinoid system with different cellular and tissue localization patterns that are differentially expressed in the CNS and PNS and are emerging targets for the treatment of number psychiatric disorders. As cannabis preparations are widely used for recreation globally, it is predictable that cannabis use disorders (CUDs) will increase and there is currently no available treatment for CUDs. Although major advances have been reported from cannabinoid and ECS research, there are gaps in scientific knowledge on long-term consequences of cannabis use. Adolescent and cannabis use during pregnancy presents further challenges, and more research will uncover the signaling pathways that couple the gut microbiota with the host ECS. Development of cannabis and cannabinoid nanomedicine for nanotherapy will certainly overcome some of the shortcomings and challenges in medicinal and recreational use of cannabis and cannabinoids. Thus, nanotechnology will allow targeted delivery of cannabinoid formulations with the potential to elevate their use to scientifically validated nanotherapeutic applications as the field of cannabis nanoscience matures.
Collapse
Affiliation(s)
- Neal Joshi
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | | |
Collapse
|
13
|
Kayser RR, Haney M, Raskin M, Arout C, Simpson HB. Acute effects of cannabinoids on symptoms of obsessive-compulsive disorder: A human laboratory study. Depress Anxiety 2020; 37:801-811. [PMID: 32383271 PMCID: PMC7423713 DOI: 10.1002/da.23032] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/01/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Preclinical data implicate the endocannabinoid system in the pathology underlying obsessive-compulsive disorder (OCD), while survey data have linked OCD symptoms to increased cannabis use. Cannabis products are increasingly marketed as treatments for anxiety and other OCD-related symptoms. Yet, few studies have tested the acute effects of cannabis on psychiatric symptoms in humans. METHODS We recruited 14 adults with OCD and prior experience using cannabis to enter a randomized, placebo-controlled, human laboratory study to compare the effects on OCD symptoms of cannabis containing varying concentrations of Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on OCD symptoms to placebo. We used a within-subjects design to increase statistical power. Across three laboratory sessions, participants smoked three cannabis varietals in random order: placebo (0% THC/0% CBD); THC (7.0% THC/0.18% CBD); and CBD (0.4% THC/10.4% CBD). We analyzed acute changes in OCD symptoms, state anxiety, cardiovascular measures, and drug-related effects (e.g., euphoria) as a function of varietal. RESULTS Twelve participants completed the study. THC increased heart rate, blood pressure, and intoxication compared with CBD and placebo. Self-reported OCD symptoms and anxiety decreased over time in all three conditions. Although OCD symptoms did not vary as a function of cannabis varietal, state anxiety was significantly lower immediately after placebo administration relative to both THC and CBD. CONCLUSIONS This is the first placebo-controlled investigation of cannabis in adults with OCD. The data suggest that smoked cannabis, whether containing primarily THC or CBD, has little acute impact on OCD symptoms and yields smaller reductions in anxiety compared to placebo.
Collapse
Affiliation(s)
- Reilly R. Kayser
- Department of Psychiatry, Columbia University Vagelos
College of Physicians and Surgeons, New York, NY,Research Foundation for Mental Hygiene, New York State
Psychiatric Institute, New York, NY
| | - Margaret Haney
- Department of Psychiatry, Columbia University Vagelos
College of Physicians and Surgeons, New York, NY,Research Foundation for Mental Hygiene, New York State
Psychiatric Institute, New York, NY
| | - Marissa Raskin
- Research Foundation for Mental Hygiene, New York State
Psychiatric Institute, New York, NY
| | - Caroline Arout
- Department of Psychiatry, Columbia University Vagelos
College of Physicians and Surgeons, New York, NY,Research Foundation for Mental Hygiene, New York State
Psychiatric Institute, New York, NY
| | - H. Blair Simpson
- Department of Psychiatry, Columbia University Vagelos
College of Physicians and Surgeons, New York, NY,Research Foundation for Mental Hygiene, New York State
Psychiatric Institute, New York, NY
| |
Collapse
|
14
|
Rocha L, Cinar R, Guevara-Guzmán R, Alonso-Vanegas M, San-Juan D, Martínez-Juárez I, Castañeda-Cabral JL, Carmona-Cruz F. Endocannabinoid System and Cannabinoid 1 Receptors in Patients With Pharmacoresistant Temporal Lobe Epilepsy and Comorbid Mood Disorders. Front Behav Neurosci 2020; 14:52. [PMID: 32435186 PMCID: PMC7218130 DOI: 10.3389/fnbeh.2020.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
Experimental evidence points out that the activation of the endocannabinoid system induces neuroprotective effects and reduces mood disorders. In the hippocampus of patients with mesial temporal lobe epilepsy (MTLE), studies indicated augmented cannabinoid 1 receptor (CB1R) binding, in spite of its low mRNA and protein expressions. Although this situation suggests an enhanced CB1R-induced neurotransmission in patients with MTLE, especially those with pharmacoresistant seizures, which present important neuronal damage and high comorbid mood disorders. The present study focused to investigate the status of CB1R and the endocannabinoid system by obtaining CB1R-induced G-protein signaling efficacy and measuring the tissue levels of endocannabinoids in the hippocampus and the temporal neocortex of patients with pharmacoresistant MTLE. Furthermore, the obtained results were correlated with comorbid anxiety and depression. The experiments revealed that patients with MTLE present increased CB1R-induced G-protein signaling efficacy (Emax) as well as an augmented tissue content of anandamide and oleoylethanolamine and low 2-arachidonoylglycerol. Some of these changes were more evident in patients with MTLE without mood disorders. The current findings indicate that pharmacoresistant MTLE is associated with increased CB1R-induced transductional mechanisms as well as augmented tissue content of specific endocannabinoids in the hippocampus and the temporal neocortex. The enhanced endocannabinoid neurotransmission may be involved in the absence of comorbid mood disorders in some patients with MTLE.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | | | - Mario Alonso-Vanegas
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Daniel San-Juan
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Iris Martínez-Juárez
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | | | - Francia Carmona-Cruz
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico
| |
Collapse
|
15
|
Sbarski B, Akirav I. Cannabinoids as therapeutics for PTSD. Pharmacol Ther 2020; 211:107551. [PMID: 32311373 DOI: 10.1016/j.pharmthera.2020.107551] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/08/2020] [Indexed: 02/09/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex disorder that involves dysregulation of multiple neurobiological systems. The traumatic stressor plays a causal role in producing psychological dysfunction and the pattern of findings suggests that the hypothalamic-pituitary-adrenal (HPA) axis, which is instrumental for stress adaptation, is critically dysfunctional in PTSD. Given the lack of understanding of the basic mechanisms and underlying pathways that cause the disorder and its heterogeneity, PTSD poses challenges for treatment. Targeting the endocannabinoid (ECB) system to treat mental disorders, and PTSD in particular, has been the focus of research and interest in recent years. The ECB system modulates multiple functions, and drugs enhancing ECB signaling have shown promise as potential therapeutic agents in stress effects and other psychiatric and medical conditions. In this review, we focus on the interaction between the ECB-HPA systems in animal models for PTSD and in patients with PTSD. We summarize evidence supporting the use of cannabinoids in preventing and treating PTSD in preclinical and clinical studies. As the HPA system plays a key role in the mediation of the stress response and the pathophysiology of PTSD, we describe preclinical studies suggesting that enhancing ECB signaling is consistent with decreasing PTSD symptoms and dysfunction of the HPA axis. Overall, we suggest that a pharmacological treatment targeted at one system (e.g., HPA) may not be very effective because of the heterogeneity of the disorder. There are abnormalities across different neurotransmitter systems in the pathophysiology of PTSD and none of these systems function uniformly among all patients with PTSD. Hence, conceptually, enhancing ECB signaling may be a more effective avenue for pharmacological treatment.
Collapse
Affiliation(s)
- Brenda Sbarski
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- School of Psychological Sciences, Integrated Brain and Behavior Research Center, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
16
|
Slawek D, Meenrajan SR, Alois MR, Comstock Barker P, Estores IM, Cook R. Medical Cannabis for the Primary Care Physician. J Prim Care Community Health 2019; 10:2150132719884838. [PMID: 31646929 PMCID: PMC6820188 DOI: 10.1177/2150132719884838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Medical cannabis use is common in the United States and increasingly more socially acceptable. As more patients seek out and acquire medical cannabis, primary care physicians will be faced with a growing number of patients seeking information on the indications, efficacy, and safety of medical cannabis. We present a case of a patient with several chronic health conditions who asks her primary care provider whether she should try medical cannabis. We provide a review of the pharmacology of medical cannabis, the state of evidence regarding the efficacy of medical cannabis, variations in the types of medical cannabis, and safety monitoring considerations for the primary care physician.
Collapse
Affiliation(s)
- Deepika Slawek
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | | | | | | | | | - Robert Cook
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
17
|
Use of Medicinal Cannabis and Synthetic Cannabinoids in Post-Traumatic Stress Disorder (PTSD): A Systematic Review. ACTA ACUST UNITED AC 2019; 55:medicina55090525. [PMID: 31450833 PMCID: PMC6780141 DOI: 10.3390/medicina55090525] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023]
Abstract
Background and Objectives: Post-traumatic stress disorder (PTSD) is a common psychiatric disorder resulting from a traumatic event, is manifested through hyperarousal, anxiety, depressive symptoms, and sleep disturbances. Despite several therapeutic approaches being available, both pharmacological and psychological, recently a growing interest has developed in using cannabis and synthetic cannabinoids stems from their consideration as more efficient and better tolerated alternatives for the treatment of this condition. The present paper aims to evaluate the clinical and therapeutic potentials of medical cannabis and synthetic cannabinoids in treating PTSD patients. Methods: A systematic electronic search was performed, including all papers published up to May 2019, using the following keywords (((cannabis[Title/Abstract]) OR (synthetic cannabinoids [Title/Abstract])) AND ((PTSD[Title/Abstract]) OR (Posttraumatic stress disorder[Title/Abstract]))) for the topics ‘Cannabis’, ‘Synthetic Cannabinoids’, ‘PTSD’, and MESH terms, on the PubMed, Cochrane Library, and Web of Science online databases. For data gathering purposes, PRISMA guidelines were followed. Results were organized into two groups, considering cannabis and synthetic cannabinoids as different therapeutic approaches for PTSD. Results: Present data show that cannabis and synthetic cannabinoids, both acting on the endocannabinoids system, may have a potential therapeutic use for improving PTSD symptoms, e.g., reducing anxiety, modulating memory-related processes, and improving sleep. Conclusions: Even though the current literature suggests that cannabis and synthetic cannabinoids may have a role in the treatment of PTSD, there is currently limited evidence regarding their safety and efficacy. Therefore, additional research is needed in order to better understand the effectiveness and therapeutic usage of these drug classes and monitor their safety.
Collapse
|
18
|
Bonaccorso S, Ricciardi A, Zangani C, Chiappini S, Schifano F. Cannabidiol (CBD) use in psychiatric disorders: A systematic review. Neurotoxicology 2019; 74:282-298. [PMID: 31412258 DOI: 10.1016/j.neuro.2019.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/21/2022]
Abstract
Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) are the most represented phytocannabinoids in Cannabis sativa plants. However, CBD may present with a different activity compared with the psychotomimetic THC. Most typically, CBD is reported to be used in some medical conditions, including chronic pain. Conversely, the main aim of this systematic review is to assess and summarise the available body of evidence relating to both efficacy and safety of CBD as a treatment for psychiatric disorders, alone and/or in combination with other treatments. Eligible studies included randomized controlled trials (RCT) assessing the effect of CBD in a range of psychopathological conditions, such as substance use; psychosis, anxiety, mood disturbances, and other psychiatric (e.g., cognitive impairment; sleep; personality; eating; obsessive-compulsive; post-traumatic stress/PTSD; dissociative; and somatic) disorders. For data gathering purposes, the PRISMA guidelines were followed. The initial search strategy identified some n = 1301 papers; n = 190 studies were included after the abstract's screening and n = 27 articles met the inclusion criteria. There is currently limited evidence regarding the safety and efficacy of CBD for the treatment of psychiatric disorders. However, available trials reported potential therapeutic effects for specific psychopathological conditions, such as substance use disorders, chronic psychosis, and anxiety. Further large-scale RCTs are required to better evaluate the efficacy of CBD in both acute and chronic illnesses, special categories, as well as to exclude any possible abuse liability.
Collapse
Affiliation(s)
| | - Angelo Ricciardi
- Camden and Islington NHS Mental Health Foundation Trust, London, UK; Department of Mental Health, ASL Roma 1, Rome, Italy
| | - Caroline Zangani
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Stefania Chiappini
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
19
|
Wirz L, Reuter M, Felten A, Schwabe L. An endocannabinoid receptor polymorphism modulates affective processing under stress. Soc Cogn Affect Neurosci 2019; 13:1177-1189. [PMID: 30239920 PMCID: PMC6234318 DOI: 10.1093/scan/nsy083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/17/2018] [Indexed: 02/04/2023] Open
Abstract
Stress has a critical impact on affective and cognitive processing. Based on rodent data suggesting that endocannabinoid signaling via CB1 receptors serves as an emotional buffer, we hypothesized that a common variant of the gene coding for the CB1 receptor modulates affective processing under stress (CNR1; rs1049353 A vs G allele). Therefore, 139 participants, genotyped for this polymorphism, underwent a stress or control manipulation before they viewed emotionally neutral and negative pictures in a magnetic resonance imaging scanner. The ventromedial prefrontal cortex, known for its crucial role in emotion regulation, was significantly more activated in AA/AG vs GG genotype carriers when viewing negative pictures after stress. Under no-stress conditions, AA/AG genotype carriers showed enhanced crosstalk between the ventrolateral prefrontal cortex and the amygdala. We further assessed participants' 24 h-delayed memory for the presented pictures and found that memory performance correlated with amygdala and hippocampus activity and connectivity in stressed carriers of the AA/AG but not the GG genotype. These findings underline the modulatory role of the endocannabinoid system in stress effects on emotion and cognition and provide insights into the neural mechanisms that may contribute to the suggested protective effect of the AA/AG genotype of the CB1 receptor polymorphism against stress-related psychopathologies.
Collapse
Affiliation(s)
- Lisa Wirz
- Department of Cognitive Psychology, University of Hamburg, Hamburg Germany
| | - Martin Reuter
- Department of Differential and Biological Psychology, University of Bonn, Bonn, Germany
| | - Andrea Felten
- Department of Differential and Biological Psychology, University of Bonn, Bonn, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, University of Hamburg, Hamburg Germany
| |
Collapse
|
20
|
Torrence RD, Rojas DC, Troup LJ. Awareness of Emotional Expressions in Cannabis Users: An Event-Related Potential Study. Front Psychol 2019; 10:69. [PMID: 30774608 PMCID: PMC6367265 DOI: 10.3389/fpsyg.2019.00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/10/2019] [Indexed: 11/17/2022] Open
Abstract
Cannabis use has been associated with anxiogenic effects when used in low frequency for a short duration, but cannabis can also have anxiogenic effects when used heavily for a long duration. Animal studies have indicated the neurobiological mechanisms related to cannabis and anxiety; however, research has been limited on the related neurocognitive mechanisms. Previous research has indicated that cannabis use is associated with alterations in event-related potentials (ERPs). The purpose of the current study was to examine anxiety related attentional processing of emotional expressions using ERP methods. We used a backward masking paradigm to restrict awareness of facial expressions (i.e., fearful, happy, and neutral). The results indicated that cannabis use was associated with differences in emotional processing. Specifically, the results suggested cannabis users had increased P1 amplitudes toward happy facial expressions compared to fearful and neutral. Additionally, cannabis users seemed to have reduced N170 hemisphere lateralization.
Collapse
Affiliation(s)
- Robert D Torrence
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, United States
| | - Donald C Rojas
- Department of Psychology, Colorado State University, Fort Collins, CO, United States
| | - Lucy J Troup
- Strategic Hub for Psychology, Social Work, Health Behaviours and Addictions, University of the West of Scotland, Paisley, Scotland
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Anxiety- and trauma-related disorders are prevalent and debilitating mental illnesses associated with a significant socioeconomic burden. Current treatment approaches often have inadequate therapeutic responses, leading to symptom relapse. Here we review recent preclinical and clinical findings on the potential of cannabinoids as novel therapeutics for regulating fear and anxiety. RECENT FINDINGS Evidence from preclinical studies has shown that the non-psychotropic phytocannabinoid cannabidiol and the endocannabinoid anandamide have acute anxiolytic effects and also regulate learned fear by dampening its expression, enhancing its extinction and disrupting its reconsolidation. The findings from the relevant clinical literature are still very preliminary but are nonetheless encouraging. Based on this preclinical evidence, larger-scale placebo-controlled clinical studies are warranted to investigate the effects of cannabidiol in particular as an adjunct to psychological therapy or medication to determine its potential utility for treating anxiety-related disorders in the future.
Collapse
Affiliation(s)
- Eleni P. Papagianni
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Carl W. Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
22
|
Functional characterization of the cannabinoid receptors 1 and 2 in zebrafish larvae using behavioral analysis. Psychopharmacology (Berl) 2019; 236:2049-2058. [PMID: 30820632 PMCID: PMC6647118 DOI: 10.1007/s00213-019-05193-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/07/2019] [Indexed: 12/30/2022]
Abstract
RATIONALE The endocannabinoid system (ECS) comprises the cannabinoids anandamide and 2-arachidonoylglycerol and the cannabinoid receptors 1 and 2 (Cnr1 and Cnr2). The function of these receptors in relation to zebrafish larval behavior is poorly understood, even though the zebrafish larva has become a versatile animal model in biomedical research. OBJECTIVES The objective of the present study is to characterize the function of Cnr1 and Cnr2 in relation to behavior in zebrafish. METHODS Behavioral analysis of zebrafish larvae was performed using a visual motor response (VMR) test, which allows locomotor activity to be determined under basal conditions and upon a dark challenge. RESULTS Treatment with the non-specific Cnr agonists WIN55,212-2 and CP55,940 resulted in a decrease in locomotion. This was observed for both basal and challenge-induced locomotion, although the potency for these two effects was different, which suggests different mechanisms of action. In addition, WIN55,212-2 increased the reaction time of the startle response after the dark challenge. Using the Cnr1 antagonist AM251 and a cnr1-/- mutant line, it was shown that the effects were mediated by Cnr1 and not Cnr2. Interestingly, administration of the antagonist AM251 alone does not have an effect on locomotion, which indicates that endogenous cannabinoid activity does not affect locomotor activity of zebrafish larvae. Upon repeated dark challenges, the WIN55,212-2 effect on the locomotor activity decreased, probably due to desensitization of Cnr1. CONCLUSIONS Taken together, these results show that Cnr1 activation by exogenous endocannabinoids modulates both basal and challenge-induced locomotor activity in zebrafish larvae and that these behavioral effects can be used as a readout to monitor the Cnr1 responsiveness in the zebrafish larva model system.
Collapse
|
23
|
Shirzadian A, Ostadhadi S, Hassanipour M, Shafaroodi H, Khoshnoodi M, Haj-Mirzaian A, Sharifzadeh M, Amiri S, Ghasemi M, Dehpour AR. Acute foot-shock stress decreased seizure susceptibility against pentylenetetrazole-induced seizures in mice: Interaction between endogenous opioids and cannabinoids. Epilepsy Behav 2018; 87:25-31. [PMID: 30170259 DOI: 10.1016/j.yebeh.2018.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Stressful conditions affect the brain's neurotransmission and neural pathways that are involved in seizure susceptibility. Stress alters the intensity and/or frequency of seizures. Although evidence indicates that chronic stress exerts proconvulsant effects and acute stress has anticonvulsant properties, the underlying mechanisms which mediate these effects are not well understood. In the present study, we assessed the role of endogenous opioids, endocannabinoids, as well as functional interaction between opioid and cannabinoid systems in the anticonvulsant effects of acute foot-shock stress (FSS) against pentylenetetrazole (PTZ)-induced seizures in mice. METHODS Prolonged intermittent FSS was chosen as an acute stress model. Seizure threshold was determined after 30 min of stress induction in male Naval Medical Research Institute (NMRI) mice (20-30 g). Opioid and cannabinoid receptor antagonists were administered before animal placement in the FSS apparatus. RESULTS Acute FSS significantly decreased seizure susceptibility in animals. The administration of the cannabinoid receptor 1 (CB1) antagonist, AM251, completely blocked the anticonvulsant effect of acute FSS at the doses of 1 pg/kg-100 μg/kg but not at 1 fg/kg. Pretreatment with the nonspecific opioid receptor antagonist, naltrexone (NTX), significantly inhibited the anticonvulsant effects of acute FSS at 1 and 2 mg/kg but not at 0.3 mg/kg. However, coadministration of the subeffective doses of AM251 (1 fg/kg) and NTX (0.3 mg/kg) reversed the anticonvulsant effects of acute FSS. CONCLUSIONS Opioid and cannabinoid systems are involved in the anticonvulsant effects of acute FSS, and these neurotransmission systems interact functionally in response to acute FSS.
Collapse
Affiliation(s)
- Armin Shirzadian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Ostadhadi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Hassanipour
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khoshnoodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neurosciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Worley NB, Hill MN, Christianson JP. Prefrontal endocannabinoids, stress controllability and resilience: A hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:180-188. [PMID: 28392485 PMCID: PMC6746235 DOI: 10.1016/j.pnpbp.2017.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 01/29/2023]
Abstract
Stressor exposure is a predisposing risk factor for many psychiatric conditions such as PTSD and depression. However, stressors do not influence all individuals equally and in response to an identical stressor some individuals may be vulnerable while others are resilient. While various biological and behavioral factors contribute to vulnerability versus resilience, an individual's degree of control over the stressor is among the most potent. Even with only one experience with control over stress, behavioral control has been shown to have acute and long-lasting stress-mitigating effects. This suggests that control both blunts the response to acute stress and prepares the subject to be resilient to future stressors. In this review, we first summarize the evidence which suggests the ventromedial prefrontal cortex (vmPFC) is a critical component of stressor controllability circuits and a locus of neuroplasticity supporting the acute and long-lasting consequences of control. We next review the central endocannabinoid (eCB) system as a possible mediator of short and long-term synaptic transmission in the vmPFC, and offer a hypothesis whereby eCBs regulate vmPFC circuits engaged when a subject has control over stress and may contribute to the encoding of acute stress coping into long lasting stressor resilience.
Collapse
Affiliation(s)
- Nicholas B. Worley
- Department of Psychology, Boston College, Chestnut Hill, MA USA,Corresponding Author: Nicholas Worley, Boston College, Department of Psychology, McGuinn Hall Rm. 300, Chestnut Hill, MA 02467 USA,
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, CAN
| | | |
Collapse
|
25
|
Maggio N, Shavit Stein E, Segal M. Cannabidiol Regulates Long Term Potentiation Following Status Epilepticus: Mediation by Calcium Stores and Serotonin. Front Mol Neurosci 2018; 11:32. [PMID: 29467619 PMCID: PMC5808210 DOI: 10.3389/fnmol.2018.00032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/24/2018] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a devastating disease, with cognitive and emotional consequences that are not curable. In recent years, it became apparent that cannabinoids help patients to cope with epilepsy. We have studied the effects of cannabidiol (CBD) on the ability to produce long term potentiation (LTP) in stratum radiatum of CA1 region of the mouse hippocampus. Exposure to seizure-producing pilocarpine reduced the ability to generate LTP in the slice. Pre-exposure to CBD prevented this effect of pilocarpine. Furthermore, CBD caused a marked increase in ability to generate LTP, an effect that was blocked by calcium store antagonists as well as by a reduction in serotonin tone. Serotonin, possibly acting at a 5HT1A receptor, or fenfluramine (FFA), which causes release of serotonin from its native terminals, mimicked the effect of CBD. It is proposed that CBD enhances non-NMDA LTP in the slice by facilitating release of serotonin from terminals, consequently ameliorating the detrimental effects of pilocarpine.
Collapse
Affiliation(s)
- Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Pergolizzi JV, Lequang JA, Taylor R, Raffa RB, Colucci D. The role of cannabinoids in pain control: the good, the bad, and the ugly. Minerva Anestesiol 2018; 84:955-969. [PMID: 29338150 DOI: 10.23736/s0375-9393.18.12287-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cannabinoids appear to possess many potential medical uses, which may extend to pain control. A narrative review of the literature has found a variety of studies testing botanical and synthetic cannabinoids in different pain syndromes (acute pain, cancer pain, chronic noncancer pain, fibromyalgia pain, migraine, neuropathic pain, visceral pain, and others). Results from these studies are mixed; cannabinoids appear to be most effective in controlling neuropathic pain, allodynia, medication-rebound headache, and chronic noncancer pain, but do not seem to offer any advantage over nonopioid analgesics for acute pain. Cannabinoids seem to work no better than placebo for visceral pain and conferred only modest analgesic effect in cancer pain. Cannabinoids do many good things - they appear to be effective in treating certain types of pain without the issues of tolerance associated with opioids. Negatively, marijuana currently has a very murky legal status all over the world - laws regulating its use are inconsistent and in flux. Thus, both patients and prescribers may be unsure about whether or not it is an appropriate form of pain control. Cannabinoid-based analgesia has been linked to potential memory deficits and cognitive impairment. A great deal more remains to be elucidated about cannabinoids which may emerge to play an important role in the treatment of neuropathic and possibly other painful conditions. There remains a great deal more to learn about the role of cannabinoids in pain management.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Colucci
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
27
|
Meng H, Johnston B, Englesakis M, Moulin DE, Bhatia A. Selective Cannabinoids for Chronic Neuropathic Pain. Anesth Analg 2017; 125:1638-1652. [DOI: 10.1213/ane.0000000000002110] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Zhang ZS, Qiu ZK, He JL, Liu X, Chen JS, Wang YL. Resveratrol ameliorated the behavioral deficits in a mouse model of post-traumatic stress disorder. Pharmacol Biochem Behav 2017; 161:68-76. [PMID: 28947177 DOI: 10.1016/j.pbb.2017.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/20/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023]
Abstract
Post-traumatic stress disorder (PTSD) has become a major psychiatric and neurological issue. Resveratrol is shown to be effective on depression and anxiety. However, the mechanism of anti-PTSD-like effects of resveratrol remains unknown. The present study aimed to explore the possible molecular and cellular mechanisms underlying the anti-PTSD-like effects of resveratrol. Following a 2-day exposure to inescapable electric foot shocks, animals were administered resveratrol (10, 20, and 40mg/kg, i.g.) during the behavioral tests, which included contextual freezing measurement, elevated plus maze test, staircase test, and open field test. Similar to the positive control drug sertraline (15mg/kg, i.g.), the behavioral deficits of stressed mice were blocked by resveratrol (20 and 40mg/kg, i.g.), which reversed the increased freezing time in contextual freezing measurement and the number of rears in the staircase test and blocked the decrease in time and number of entries in open arms in the elevated plus maze test without affecting the locomotor activity in the open field test. In addition, resveratrol (20 and 40mg/kg, i.g.) antagonized the decrease in the levels of progesterone and allopregnanolone in the prefrontal cortex and hippocampus. Furthermore, long-term resveratrol attenuated the dysfunctions of hypothalamic-pituitary-adrenal axis simultaneously. Collectively, the evidence indicated that the anti-PTSD-like effects of resveratrol were associated with the normalization of biosynthesis of neurosteroids in the brain and prevention of the hypothalamic-pituitary-adrenal axis dysfunction.
Collapse
Affiliation(s)
- Ze-Shun Zhang
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai 519015, PR China
| | - Zhi-Kun Qiu
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jia-Li He
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, PR China
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing 100039, PR China
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yu-Lu Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China.
| |
Collapse
|
29
|
Silveira MM, Arnold JC, Laviolette SR, Hillard CJ, Celorrio M, Aymerich MS, Adams WK. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci Biobehav Rev 2017; 76:380-395. [PMID: 27639448 PMCID: PMC5350061 DOI: 10.1016/j.neubiorev.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/02/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023]
Abstract
Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Jonathon C Arnold
- The Brain and Mind Centre and Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Steven R Laviolette
- Addiction Research Group and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marta Celorrio
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain
| | - María S Aymerich
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Thomas E, Stein DJ. Novel pharmacological treatment strategies for posttraumatic stress disorder. Expert Rev Clin Pharmacol 2016; 10:167-177. [PMID: 27835034 DOI: 10.1080/17512433.2017.1260001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION A wide range of medications have been studied for posttraumatic stress disorder (PTSD) and a number are registered for this indication. Nevertheless, current pharmacotherapies are only partially effective in some patients, and are minimally effective in others. Thus novel treatment avenues need to be explored. Areas covered: In considering novel pharmacological agents for the treatment of PTSD, this paper takes a translational approach. We outline how advances in our understanding of the underlying neurobiology of PTSD may inform the identification of potential new treatment targets, including glutamatergic, noradrenergic and opioid pathways. Expert commentary: Continued investigation of the neural substrates and signalling pathways involved in responses to trauma may inform the development of novel treatment targets for future drug development for PTSD. However, the translation of preclinical findings to clinical practice is likely to be complex and gradual.
Collapse
Affiliation(s)
- Eileen Thomas
- a Division of Consultation Liaison, Department of Psychiatry and Mental Health , University of Cape Town , Cape Town , South Africa
| | - Dan J Stein
- b US/UCT MRC Unit on Anxiety and Stress Disorders, Department of Psychiatry and Mental Health , University of Cape Town , Cape Town , South Africa
| |
Collapse
|
31
|
Metrik J, Jackson K, Bassett SS, Zvolensky MJ, Seal K, Borsari B. The mediating roles of coping, sleep, and anxiety motives in cannabis use and problems among returning veterans with PTSD and MDD. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2016; 30:743-754. [PMID: 27786514 DOI: 10.1037/adb0000210] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Veterans with posttraumatic stress disorder (PTSD) and major depressive disorder (MDD), the 2 most prevalent mental health disorders in the Iraq and Afghanistan veterans, are at increased risk for cannabis use and problems including cannabis use disorder (CUD). The present study examined the relationship of PTSD and MDD with cannabis use frequency, cannabis problems, and CUD as well as the role of 3 coping-oriented cannabis use motives (coping with negative affect, situational anxiety, and sleep) that might underlie this relationship. Participants were veterans (N = 301) deployed post-9/11/2001 recruited from a Veterans Health Administration facility in the Northeast United States based on self-reported lifetime cannabis use. There were strong unique associations between PTSD and MDD and cannabis use frequency, cannabis problems, and CUD. Mediation analyses revealed the 3 motives accounted, in part, for the relationship between PTSD and MDD with 3 outcomes in all cases but for PTSD with cannabis problems. When modeled concurrently, sleep motives, but not situational anxiety or coping with negative affect motives, significantly mediated the association between PTSD and MDD with use. Together with coping motives, sleep motives also fully mediated the effects of PTSD and MDD on CUD and in part the effect of MDD on cannabis problems. Findings indicate the important role of certain motives for better understanding the relation between PTSD and MDD with cannabis use and misuse. Future work is needed to explore the clinical utility in targeting specific cannabis use motives in the context of clinical care for mental health and CUD. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Kristina Jackson
- Center for Alcohol and Addiction Studies, Brown University School of Public Health
| | | | | | | | | |
Collapse
|
32
|
Nuclear Lipids in the Nervous System: What they do in Health and Disease. Neurochem Res 2016; 42:321-336. [PMID: 27766461 DOI: 10.1007/s11064-016-2085-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
In the last 20 years it has been widely demonstrated that cell nucleus contains neutral and polar lipids localized in nuclear membranes, nucleoli, nuclear matrix and chromatin. Nuclear lipids may show specific organization forming nuclear lipid microdomains and have both structural and functional roles. Depending on their localization, nuclear lipids play different roles such as the regulation of nuclear membrane and nuclear matrix fluidity but they also can act as platforms for vitamin and hormone function, for active chromatin anchoring, and for the regulation of gene expression, DNA duplication and transcription. Crosstalk among different kinds of lipid signalling pathways influence the physiopathology of numerous cell types. In neural cells the nuclear lipids are involved in cell proliferation, differentiation, inflammation, migration and apoptosis. Abnormal metabolism of nuclear lipids might be closely associated with tumorigenesis and neurodegenerative diseases such as Alzheimer disease and Parkinson disease among others.
Collapse
|
33
|
|
34
|
Anxiofit‐1 and reduction of subthreshold and mild anxiety: evaluation of a health claim pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|