1
|
Liu L, Zhang H, Chen S, Dian W, Zheng Z. Cinnamaldehyde Alleviates Alveolar Epithelial Cell Injury in ALI by Inhibiting the CaMKII Pathway. Cell Biochem Biophys 2025; 83:1097-1104. [PMID: 39316262 DOI: 10.1007/s12013-024-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Alveolar epithelial cell injury plays a key role in acute lung injury (ALI) and is a vital determinant of its severity. Here, we aimed to assess the protective effects of cinnamaldehyde (CA) on lipopolysaccharide (LPS)-induced A549 cells and elucidate the underlying mechanisms. A549 cells were stimulated with 1 μg/mL LPS for 24 h to establish an alveolar epithelial cell injury model and subsequently treated with CA or Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and lactate dehydrogenase release assays were used to evaluate apoptosis, cell viability, and lactate dehydrogenase activity, respectively. Levels of inflammatory cytokines (interleukin-6, interleukin-1β, tumor necrosis tactor-α, and interferon-γ) and oxidative stress markers (reactive oxygen species, superoxide dismutase, catalase, and malondialdehyde) were determined using enzyme-linked immunosorbent assay and specific assay kits, respectively. Furthermore, levels of apoptosis-related proteins (cleaved caspase-3, Bcl-2-associated X, and Bcl-2) and CaMKII were assessed via western blotting. CA did not exhibit significant cytotoxicity in A549 cells. It dose-dependently improved the cell viability, suppressed apoptosis, decreased cleaved caspase-3 and Bcl-2-associated X levels, and increased Bcl-2 levels in LPS-treated A549 cells. It also inhibited inflammatory factor release and oxidative stress in LPS-induced A549 cells. Similar results were observed in the KN93- and CA-treated groups. Western blotting assay revealed that CA and KN93 inhibited CaMKII pathway activation, as indicated by the reduced p-CaMKII and p-phospholamban (PLN) levels and p-CaMKII/CaMKII and p-PLN/PLN ratios. Overall, CA alleviated alveolar epithelial cell injury by inhibiting the inflammatory response and oxidative stress and inducing cell apoptosis in LPS-induced A549 cells by regulating the CaMKII pathway, serving as a potential candidate for ALI prevention and treatment.
Collapse
Affiliation(s)
- Lei Liu
- Department of Emergency, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Hao Zhang
- Department of Emergency, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Siming Chen
- Department of Emergency, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Wankang Dian
- Department of Emergency, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Zhou Zheng
- Department of Emergency, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Sultan AH. The effect of Cinnamomum cassia extract on the pancreatic tissue of albino diabetic rats. J Med Life 2025; 18:109-115. [PMID: 40134449 PMCID: PMC11932502 DOI: 10.25122/jml-2024-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 03/27/2025] Open
Abstract
Cinnamomum cassia (C. cassia) has antihyperglycemic properties. This study aimed to assess the hypoglycemic effects of the aqueous extract of C. cassia on the pancreatic tissue of diabetic rats, comparing histological and biochemical outcomes with those of metformin (MET) administration. A total of 42 male albino rats were divided into seven groups. Distilled water was given to healthy rats in the first group, whereas diabetic rats (DRs) induced by alloxan were treated with the same substance in the second and third groups. Rats with diabetes were given C. cassia treatment for 14 and 30 days in the fourth and fifth groups, whereas non-DRs received the same treatment in the sixth and seventh groups. Furthermore, MET was administered to four groups of DRs. Diabetic rats had reduced serum amylase levels and significantly increased blood glucose levels. Histological examination revealed thickening of the basement membrane in the islets of Langerhans blood channels and capillaries, as well as an increase in α- and δ-cell activity and a reduction in β-cell activity. However, administration of C. cassia aqueous extract caused significant alterations in most measured parameters, including increased serum amylase and decreased blood sugar levels. The daily use of C. cassia decreased glucose levels and induced a substantial increase in β-cell activity and a decrease in α-cell activity. Plant extracts have both regenerative and reparative properties.
Collapse
Affiliation(s)
- Afrah Hameed Sultan
- Anatomy and Histology Unit, Basic Science Department, College of Medicine, Hawler Medical University, Kurdistan Region, Iraq
| |
Collapse
|
3
|
Shakour N, Mahdinezhad MR, Hadjzadeh MAR, Sahebkar A, Hadizadeh F. Serum biochemical evaluation following administration of imidazolyl thiazolidinedione in streptozotocin-induced diabetic rats. J Mol Histol 2024; 55:1315-1325. [PMID: 39382759 DOI: 10.1007/s10735-024-10272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Diabetes mellitus represents a prominent global health concern, characterized by a rising prevalence rate. Type 2 Diabetes Mellitus (T2DM) is purported to be associated with an intricate interplay of genetic, environmental, and lifestyle factors. While some progress have been made in T2DM management, controlling associated complications remains a great challenge in medicine. OBJECTIVES This study investigated a synthesized Imidazolyl Thiazolidinedione antidiabetic agent (PA9), focusing on serum parameters. METHODS Streptozotocin-induced diabetic rats (n = 6) were subjected to orally treatment with PA9 (synthesized by Shakour et al. in an equal dose of a standard drug, 0.011 mmol/kg). The study conducted to measure some specific serum factors, including lipid profiles, liver and kidney enzymes, cardiac enzymes, and oxidative stress markers, both before and after treatment. RESULTS The study findings indicated that PA9 effectively ameliorates hyperlipidemia by significantly reducing total cholesterol and triglyceride levels in serum. Additionally, PA9 demonstrated hepatoprotective effects against TZD-induced injuries, as evidenced by decreased levels of alanine transaminase and, alkaline phosphatase. In addition, PA9 also exhibited a modulatory effect on a cardiac injury marker, creatine kinase MB. Moreover, PA9 demonstrated antioxidant properties by reducing oxidative stress markers and enhancing the activities of catalase, thiol, and superoxide dismutase. CONCLUSIONS The synthesized TZD compound (PA9) stands out as a highly promising agent for the management of diabetes. Its significant antihyperlipidemic effects, preventive influences on organ injuries, and demonstrated efficacy in reducing oxidative stress marker (SOD) make it therapeutic agent in diabetes management. This study lays the groundwork for innovative strategies in diabetes management.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Mahdinezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Firouzeh G, Susan A, Zeinab K. Quercetin prevents rats from type 1 diabetic liver damage by inhibiting TGF-ꞵ/apelin gene expression. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100201. [PMID: 39351284 PMCID: PMC11440311 DOI: 10.1016/j.crphar.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background Hyperglycemia-induced oxidative stress is a significant contributor to diabetic complications, including hepatopathy. The current survey aimed to evaluate the ameliorative effect of quercetin (Q) on liver functional disorders and tissue damage developed by diabetes mellitus in rats. Methods Grouping of 35 male Wistar rats was performed as follows: sham; sham + quercetin (sham + Q: quercetin, 50 mg/kg/day in 1 ml 1% DMSO for 6 weeks, by gavage); diabetic control (Diabetes: streptozotocin (STZ), 65 mg/kg, i.p.); diabetic + quercetin 1 (D + Q1: quercetin, 25 mg/kg/day in 1 ml 1% DMSO for 6 weeks, by gavage after STZ injection); and diabetic + quercetin 2 (D + Q2: quercetin, 50 mg/kg/day in 1 ml 1% DMSO for 6 weeks, by gavage after STZ injection). Body weight, food intake, and water intake were measured. Ultimately, the samples of plasma and urine, as well as tissue samples of the liver and pancreas were gathered for later assays. Results STZ injection ended in elevated plasma blood glucose levels, decreased plasma insulin levels, liver dysfunction (increased activity levels of AST, ALT, and ALP, increased plasma levels of total bilirubin, cholesterol, LDL, triglyceride, decreased plasma levels of total protein, albumin and HDL), enhanced levels of malondialdehyde, diminished activities of antioxidant enzymes (superoxide dismutase, and catalase), reduced level of glutathione (GSH) increased gene expression levels of apelin and TGF-ꞵ, plus liver histological destruction. All these changes were diminished by quercetin. However, the measure of improvement in the D + Q2 group was higher than that of the D + Q1 group. Conclusions Quercetin improved liver function after diabetes mellitus type 1, possibly due to reduced lipid peroxidation, increased antioxidant systems, and inhibiting the apelin/TGF-ꞵ signaling pathway.
Collapse
Affiliation(s)
| | - Abbasi Susan
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran
| | - Karimi Zeinab
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Cordero-Pérez P, Hernández-Cruz FE, Garza-Guzmán D, Moreno-Peña DP, Sánchez-Martínez C, Torres-González L, Muñoz-Espinosa LE, Zapata-Chavira H, Cura-Esquivel I, Serrano-Sandoval MI, Rodríguez-Rodríguez DR. Antidiabetic and Anti-Inflammatory Effect of Cinnamomum cassia Oil in Alloxan-Induced Diabetic Rats. Pharmaceuticals (Basel) 2024; 17:1135. [PMID: 39338300 PMCID: PMC11435133 DOI: 10.3390/ph17091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus presents a great diversity of treatments that cause adverse effects; therefore, plants are a source of compounds that may have fewer adverse effects; Cinnamomum cassia (C. cassia) has compounds with potential antidiabetic activity. The objective was to evaluate the antidiabetic effect of C. cassia oil (CCO) and its impact on oxidative stress in Wistar rats. Five groups were evaluated: (1) sham (SH), (2) 300 mg/kg CCO (CCO), (3) diabetic (D) induced with alloxan, (4) D + 300 mg/kg of CCO (D + CCO), and (5) D + 500 mg/kg of metformin (D + MET); all were treated for 5 days. CCO did not show alteration in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) vs. SH. D + CCO vs. D significantly reduced glucose (333 ± 109 vs. 458 ± 81 mg/dL), ALT (66 ± 15 vs. 160 ± 54 U/L), AST (119 ± 26 vs. 243 ± 104 U/L), and blood urea nitrogen (18.8 ± 2.3 vs. 29.2 ± 6.9 mg/dL). No significant changes were observed in D + CCO vs. D in malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD), whereas a significant reduction in MDA and GSH was achieved in D + MET, with an increase in SOD. There was a reduction in Rela and Gpx in D + CCO and D + MET vs. D. CCO has antidiabetic and anti-inflammatory effects and reduces ALT, AST, and BUN levels.
Collapse
Affiliation(s)
- Paula Cordero-Pérez
- Liver Unit, Department of Internal Medicine, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (P.C.-P.); (D.G.-G.); (D.P.M.-P.); (L.T.-G.); (L.E.M.-E.)
| | - Flor Edith Hernández-Cruz
- Liver Unit, Department of Internal Medicine, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (P.C.-P.); (D.G.-G.); (D.P.M.-P.); (L.T.-G.); (L.E.M.-E.)
| | - Daniel Garza-Guzmán
- Liver Unit, Department of Internal Medicine, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (P.C.-P.); (D.G.-G.); (D.P.M.-P.); (L.T.-G.); (L.E.M.-E.)
| | - Diana Patricia Moreno-Peña
- Liver Unit, Department of Internal Medicine, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (P.C.-P.); (D.G.-G.); (D.P.M.-P.); (L.T.-G.); (L.E.M.-E.)
| | - Concepción Sánchez-Martínez
- Nephrology Service, Department of Internal Medicine, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico;
| | - Liliana Torres-González
- Liver Unit, Department of Internal Medicine, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (P.C.-P.); (D.G.-G.); (D.P.M.-P.); (L.T.-G.); (L.E.M.-E.)
| | - Linda E. Muñoz-Espinosa
- Liver Unit, Department of Internal Medicine, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (P.C.-P.); (D.G.-G.); (D.P.M.-P.); (L.T.-G.); (L.E.M.-E.)
| | - Homero Zapata-Chavira
- Transplant Service, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico;
| | - Idalia Cura-Esquivel
- Pediatric Service, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico;
| | - Marisol Idalí Serrano-Sandoval
- Liver Unit, Department of Internal Medicine, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (P.C.-P.); (D.G.-G.); (D.P.M.-P.); (L.T.-G.); (L.E.M.-E.)
| | - Diana Raquel Rodríguez-Rodríguez
- Liver Unit, Department of Internal Medicine, University Hospital “Dr. José E. González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Nuevo León, Mexico; (P.C.-P.); (D.G.-G.); (D.P.M.-P.); (L.T.-G.); (L.E.M.-E.)
| |
Collapse
|
6
|
Islam Shawon S, Nargis Reyda R, Qais N. Medicinal herbs and their metabolites with biological potential to protect and combat liver toxicity and its disorders: A review. Heliyon 2024; 10:e25340. [PMID: 38356556 PMCID: PMC10864916 DOI: 10.1016/j.heliyon.2024.e25340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
The liver is an essential organ that helps the body with immunity, metabolism, and detoxification, among other functions. Worldwide, liver illnesses are a leading cause of mortality and disability. There are few effective treatment choices, but they frequently have unfavorable side effects. Investigating the potential of medicinal plants and their bioactive phytoconstituents in the prevention and treatment of liver disorders has gained more attention in recent years. An assessment of the hepatoprotective potential of medicinal plants and their bioactive secondary metabolites is the goal of this thorough review paper. To determine their hepatoprotective activity, these plants were tested against liver toxicity artificially induced in rats, mice and rabbits by chemical agents such as carbon tetrachloride (CCl4), paracetamol (PCM), thioacetamide (TAA), N-nitrosodiethylamine, d-galactosamine/lipopolysaccharide, antitubercular medicines (rifampin, isoniazid) and alcohol. To find pertinent research publications published between 1989 and 2022, a comprehensive search of electronic bibliographic databases (including Web of Science, SpringerLink, ScienceDirect, Google Scholar, PubMed, Scopus, and others) was carried out. The investigation comprised 203 plant species from 81 families in total. A thorough discussion was mentioned regarding the hepatoprotective qualities of plants belonging to several families, such as Fabaceae, Asteraceae, Lamiaceae, and Euphorbiaceae. The plant groups Asteraceae and Fabaceae were the most frequently shown to have hepatoprotective properties. The phytochemical constituents namely flavonoids, phenolic compounds, and alkaloids exhibited the highest frequency of hepatoprotective action. Also, some possible mechanism of action of some active constituents from medicinal plants was discussed in brief which were found in some studies. In summary, the information on medicinal plants and their potentially hepatoprotective bioactive phytoconstituents has been consolidated in this review which emphasizes the importance of further research to explore the efficacy and safety of these natural remedies for various liver ailments.
Collapse
Affiliation(s)
- Shahparan Islam Shawon
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rashmia Nargis Reyda
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nazmul Qais
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
7
|
Guy-Armand GN, Cedric Y, Nadia NAC, Kevin TDA, Sandra TNJ, Sidiki NNA, Azizi MA, Payne VK. Efficacy of Khaya grandifoliola Stem Bark Ethanol Extract in the Treatment of Cerebral Malaria in Swiss albino Mice Using Plasmodium berghei NK65 Strain. J Parasitol Res 2023; 2023:5700782. [PMID: 38028126 PMCID: PMC10653973 DOI: 10.1155/2023/5700782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cerebral malaria is one of the most severe and dangerous forms of malaria and is potentially fatal. This study was aimed at evaluating the anticerebral malaria efficacy of Khaya grandifoliola used by traditional healers. Method Fifty grams of Khaya grandifoliola stem bark was macerated in 1 L ethanol (95%) for 72 h. The filtrate was dried at 40°C until the obtention of a dry extract. The antimalarial test was evaluated using the Peter 4-day suppressive test and the Rane curative test. Mice were group into 6 groups of 6 mice each. For the antioxidant test, parameters such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and nitric oxide (NO) were assessed. The livers of mice were crushed and centrifuged in order to be measured. Aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) using the Dutch Diagnostics Kit and blood were collected for haematological parameters. Results The ethanol extract showed a suppressive activity of 78.12%, 75.30%, and 68.69% at 500 mg/kg, 250 mg/kg, and 125 mg/kg, respectively. Similarly, the curative activity showed a statistically significant reduction in parasitemia (p < 0.05). Antioxidant parameter assays showed a low value of MDA and a high value of SOD, CAT, NO, and GSH in the negative control group. A statistically significant higher values of ASAT and ALAT were observed in the negative control compared to the other test groups (p < 0.05). Haematological parameters showed a statistically significant decrease in white blood cells, red blood cells, haemoglobin, and platelets in the negative control group (p < 0.05). Conclusion The results of this study justify the traditional usage of Khaya grandifoliola in the treatment of cerebral malaria. However, in vivo toxicity assessment is still necessary to verify its safeness.
Collapse
Affiliation(s)
- Gamago Nkadeu Guy-Armand
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Yamssi Cedric
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Bamenda, P.O. Box 39, Bambili, Cameroon
| | - Noumedem Anangmo Christelle Nadia
- Department of Microbiology, Hematology and Immunology Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, P.O. Box 96, Dschang, Cameroon
| | - Tako Djimefo Alex Kevin
- Department of Animal Organisms, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | | | | | - Mounvera Abdel Azizi
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Vincent Khan Payne
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| |
Collapse
|
8
|
Moreira LDSG, Brum IDSDC, de Vargas Reis DCM, Trugilho L, Chermut TR, Esgalhado M, Cardozo LFMF, Stenvinkel P, Shiels PG, Mafra D. Cinnamon: an aromatic condiment applicable to chronic kidney disease. Kidney Res Clin Pract 2023; 42:4-26. [PMID: 36747357 PMCID: PMC9902738 DOI: 10.23876/j.krcp.22.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Cinnamon, a member of the Lauraceae family, has been widely used as a spice and traditional herbal medicine for centuries and has shown beneficial effects in cardiovascular disease, obesity, and diabetes. However, its effectiveness as a therapeutic intervention for chronic kidney disease (CKD) remains unproven. The bioactive compounds within cinnamon, such as cinnamaldehyde, cinnamic acid, and cinnamate, can mitigate oxidative stress, inflammation, hyperglycemia, gut dysbiosis, and dyslipidemia, which are common complications in patients with CKD. In this narrative review, we assess the mechanisms by which cinnamon may alleviate complications observed in CKD and the possible role of this spice as an additional nutritional strategy for this patient group.
Collapse
Affiliation(s)
| | | | | | - Liana Trugilho
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil
| | - Tuany R. Chermut
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil
| | - Marta Esgalhado
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Brazil
| | | | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden,Correspondence: Peter Stenvinkel Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital M99, 141 86 Stockholm, Sweden. E-mail:
| | - Paul G. Shiels
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Brazil,Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Brazil,Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Zhou Q, Lei X, Fu S, Li Z, Chen Y, Long C, Li S, Chen Q. Efficacy of cinnamon supplementation on glycolipid metabolism in T2DM diabetes: A meta-analysis and systematic review. Front Physiol 2022; 13:960580. [PMID: 36505061 PMCID: PMC9731104 DOI: 10.3389/fphys.2022.960580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Cinnamon is a spice used in cooking and in large quantities as a medical complement with hypoglycemic and lipid-lowering properties. The potential pharmacological mechanisms underlying cinnamon's anti-diabetic properties and its active ingredients have not been adequately determined. The current meta-analysis aims to systematically review the potential pharmacological mechanisms underlying the hypoglycemic and hypolipidemic efficacy of cinnamon administration and summarize clinical recommendations of cinnamon and its active ingredients. Method: Relevant randomized clinical trials (RCTs) were identified through a literature search that spanned the years January 2005 to April 2022. Retrieve electronic databases including Web of Science, PubMed, Embase, Medline, and the Cochrane Library. To obtain standardized mean differences (SMDs), continuous outcomes were pooled and 95 percent confidence intervals (CIs) were provided. Categorical outcomes were aggregated to calculate relative risks (RRs) and were accompanied by 95% CIs. Heterogeneity was measured using the Cochrane Q-test and I2 statistics, with a p < 0.05 considered as substantial heterogeneity. If I2 was less than 50%, a fixed effect model was employed; otherwise, a random effect model was used. Subgroup analyses and sensitivity analyses were performed to identify the origins of heterogeneity. Publication bias was retrieved by means of a funnel-plot analysis and Egger's test. The data were analyzed using revman (V.5.3) and stata (V.15) software packages. Results: These 16 RCTs included a total of 1,020 patients who were followed for a duration ranging from 40 days to 4 months. According to the current meta-analysis results, glycolipid levels in diabetic individuals who received cinnamon were significantly improved as compared to those who got placebo (All p < 0.05). An adverse effect was only detected in one patient. Conclusion: These findings imply that cinnamon has a significant influence on lipid and glucose metabolism regulation. An even more pronounced effect was observed in patients with HbA1c of 8%. The results of this study suggested that cinnamon may be utilized as hypoglycemic and lipid-lowering supplement in clinical settings with a guaranteed safety profile.Systematic Review Registration: [PROSPERO], identifier [CRD42022322735].
Collapse
|
10
|
Farazandeh M, Mahmoudabady M, Asghari AA, Niazmand S. Diabetic cardiomyopathy was attenuated by cinnamon treatment through the inhibition of fibro-inflammatory response and ventricular hypertrophy in diabetic rats. J Food Biochem 2022; 46:e14206. [PMID: 35474577 DOI: 10.1111/jfbc.14206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes that emphasizes the urgency of developing new drug therapies. With an illustrious history in traditional medicine to improve diabetes, cinnamon has been shown to possess blood lipids lowering effects and antioxidative and anti-inflammatory properties. However, the extent to which it protects the diabetic heart has yet to be determined. Forty-eight rats were administered in the study and grouped as: control; diabetic; diabetic rats given 100, 200, or 400 mg/kg cinnamon extract, metformin (300 mg/kg), valsartan (30 mg/kg), or met/val (combination of both drugs), via gavage for six weeks. Fasting blood sugar (FBS) and markers of cardiac injury including creatine kinase-muscle/brain (CK-MB), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were evaluated in blood samples. Malondialdehyde (MDA) levels, the total contents of thiol, superoxide dismutase (SOD), and catalase (CAT) activities were measured. Histopathology study and gene expression measurement of angiotensin II type 1 receptor (AT1), atrial natriuretic peptide (ANP), beta-myosin heavy chain (β-MHC), and brain natriuretic peptide (BNP) were done on cardiac tissue. FBS and cardiac enzyme indicators were reduced in all treated groups. A reduction in MDA level and enhancement in thiol content alongside with increase of SOD and CAT activities were observed in extract groups. The decrease of inflammation and fibrosis was obvious in treated groups, notably in the high-dose extract group. Furthermore, all treated diabetic groups showed a lowering trend in AT1, ANP, β-MHC, and BNP gene expression. Cinnamon extract, in addition to its hypoglycemic and antioxidant properties, can prevent diabetic heart damage by alleviating cardiac inflammation and fibrosis. PRACTICAL APPLICATIONS: This study found that cinnamon extract might protect diabetic heart damage by reducing inflammation and fibrosis in cardiac tissue, in addition to lowering blood glucose levels and increasing antioxidant activity. Our data imply that including cinnamon in diabetic participants' diets may help to reduce risk factors of cardiovascular diseases.
Collapse
Affiliation(s)
- Maryam Farazandeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Akbar Asghari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|