1
|
Fang C, Zhou W. Genetic background of neonatal hypokalemia. Pediatr Nephrol 2025; 40:301-317. [PMID: 39283520 DOI: 10.1007/s00467-024-06492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 12/24/2024]
Abstract
Neonatal hypokalemia (defined as a serum potassium level <3.5 mEq/L) is the most common electrolyte disorder encountered in clinical practice. In addition to common secondary causes, primary genetic etiologies are also closely associated with hypokalemia. Currently, a systematic characterization of these genetic disorders is lacking, making early recognition challenging and clinical management uncertain. This review will aid clinicians by summarizing the genetic background of neonatal hypokalemia from two aspects: (1) increased excretion of K+, whereby genetic factors primarily lead to increased renal Na+ influx, decreased H+ efflux, or reduced Cl- influx, ultimately resulting in increased K+ efflux; and (2) decreased extracellular distribution of K+, whereby genetic factors result in abnormalities in transmembrane ion channels, reducing outward potassium currents or generating inward cation leak currents. We describe over ten genetic diseases associated with neonatal hypokalemia, which involve pathogenic variants in dozens of genes and affect multiple target organs, including the kidneys, intestines, and skeletal muscle. For example, in the renal tubules, pathogenic variants in the SLC12A1 gene encoding the Na+-K+-2Cl- cotransporter lead to renal K+ loss, causing Bartter syndrome type I; in intestinal epithelial cells, pathogenic variants in the SLC26A3 gene result in a defective Cl⁻-HCO₃⁻ exchanger, causing congenital chloride diarrhea; and in skeletal muscle, pathogenic variants in the CACNA1S gene impact membrane calcium ion channels resulting in hypokalemic periodic paralysis. Given the wide variety of organs and genetic alterations that can contribute to neonatal hypokalemia, we believe this review will provide valuable insights for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chuchu Fang
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenhao Zhou
- Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, China.
| |
Collapse
|
2
|
El Haddar Z, El ouali A, Ghanam A, Benajiba N, Rkain M, Babakhouya A. A rare case of steroid 11 beta-hydroxylase deficiency in a child revealed by acute pulmonary edema. Oxf Med Case Reports 2024; 2024:omae042. [PMID: 38784773 PMCID: PMC11110861 DOI: 10.1093/omcr/omae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
We report the case of a 5-year-old boy diagnosed with congenital adrenal hyperplasia due to 11-hydroxylase deficiency, revealed by disorders of sex development (DSD) and acute pulmonary edema due to severe hypertension. We considered the diagnosis based on biological and radiological examinations. The sociocultural background and the delayed diagnosis had a significant impact on the therapeutic decisions. All babies should be screened for 11 beta-hydroxylase deficiency, there should be specialized and interdisciplinary medical centers, and early detection is essential to avoiding serious complications of this disease.
Collapse
Affiliation(s)
- Zohair El Haddar
- Department of Pediatrics, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Aziza El ouali
- Department of Pediatrics, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Ayad Ghanam
- Department of Pediatrics, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Noufissa Benajiba
- Department of Pediatrics, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Maria Rkain
- Department of Pediatrics, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Abdeladim Babakhouya
- Department of Pediatrics, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
3
|
Liu H, Liu F, Wei Z, Liu P, Liu Q, Chen L, Hou X. Identification and functional characterization of compound heterozygous CYP11B1 gene mutations. Endocrine 2024; 84:253-264. [PMID: 38285409 DOI: 10.1007/s12020-023-03614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE 11β-Hydroxylase deficiency (11β-OHD) is the second leading cause of congenital adrenal hyperplasia (CAH), a rare autosomal recessive disease caused by mutations in the CYP11B1 gene. We previously reported the case of a male Chinese patient with typical 11β-OHD symptoms. Sanger sequencing revealed that the patient carried a splice-site mutation, c.595+1G>A in the CYP11B1 gene. His mother and sister harbored the heterozygous mutation, c.595+1G>A. Paradoxically, Sanger sequencing did not detect any abnormality in the CYP11B1 gene of his father and brother. Therefore, in this study, we aimed to further explore the exact genetic etiology of 11β-OHD in this pedigree and analyze the functional consequence of the c.595+1G>A mutation. METHODS Gemomic DNA was extracted from the peripheral blood leukocytes of the family members and normal control individuals, followed by quantitative real-time polymerase chain reaction (qPCR) to detect the copy number of the target CYP11B1 gene fragment. Mutation analysis was also performed via whole-exome sequencing (WES) followed by Sanger sequencing validation. In vitro minigene assay was also performed to investigate the impact of the c.595+1G>A mutation on pre-mRNA splicing. RESULTS qPCR results suggested a heterozygous deletion encompassing position c.595+1 along with flanking exonic and intronic sequences in the CYP11B1 gene of the patient and his father. WES followed by Sanger sequencing verified that the patient carried compound heterozygous mutations in the CYP11B1 gene, including a novel 2840-bp deletion (c.395+661_c.1121+180del) and c.595+1G>A, while his father carried the heterozygous c.395+661_c.1121+180del mutation. No other novel CYP11B1 mutations were found in the rest of the family members. Furthermore, minigene assay revealed that the c.595+1G>A mutation resulted in a 70-bp deletion of exon 3 in the mRNA, and this altered the reading frame at amino acid 176 and created a premature stop codon at amino acid 197. CONCLUSION We identified a novel 2840-bp-sized large deletion and confirmed that the c.595+1G>A mutation disrupts normal pre-mRNA splicing. Either mutation could significantly alter the reading frame and abolish CYP11B1 enzyme activity. Therefore, our findings widen the mutation spectrum of CYP11B1 and provide an accurate diagnosis of 11β-OHD at a molecular genetic level.
Collapse
Affiliation(s)
- He Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong, 250117, China
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Zichun Wei
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Pan Liu
- Department of Endocrinology, Tai'an City Central Hospital, 29 Longtan Road, Tai'an, Shandong, 271000, China
| | - Qiao Liu
- MOE Key Laboratory of Experimental Teratology, Department of Genetics, Shandong University School of Basic Medical Sciences, 44 Wenhuaxi Road, Lixia District, Jinan, Shandong, 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Marecek R, De Keyzer E, Taujan G, Baleanu F, Rosu M, Papadopoulou I, Kosmopoulou O, Laura I. Rare cause of a resistant hypertension in a middle-aged man: A case report. Clin Case Rep 2022; 10:e6606. [PMID: 36514461 PMCID: PMC9731286 DOI: 10.1002/ccr3.6606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/30/2022] [Indexed: 12/13/2022] Open
Abstract
Congenital adrenal hyperplasia associated to 11-beta-hydroxylase deficiency is a rare cause of secondary hypertension, usually discovered during childhood; however, a late diagnosis in adults has also been reported. Despite low cortisol levels, accumulated adrenal steroid precursors can activate the glucocorticoid receptor and thus protect the patient against adrenal crisis.
Collapse
Affiliation(s)
- Renata Marecek
- Department of Internal Medicine, Centre Hospitalier Universitaire BrugmannUniversité Libre de BruxellesBrusselsBelgium
| | - Eva De Keyzer
- Department of Cardiology, Centre Hospitalier Universitaire BrugmannUniversité Libre de BruxellesBrusselsBelgium
| | - Georgiana Taujan
- Department of Endocrinology, Centre Hospitalier Universitaire BrugmannUniversité Libre de BruxellesBrusselsBelgium
| | - Felicia Baleanu
- Department of Endocrinology, Centre Hospitalier Universitaire BrugmannUniversité Libre de BruxellesBrusselsBelgium
| | - Mihaela Rosu
- Department of Endocrinology, Centre Hospitalier Universitaire BrugmannUniversité Libre de BruxellesBrusselsBelgium
| | - Ioanna Papadopoulou
- Department of Endocrinology, Centre Hospitalier Universitaire BrugmannUniversité Libre de BruxellesBrusselsBelgium
| | - Olga Kosmopoulou
- Department of Endocrinology, Centre Hospitalier Universitaire BrugmannUniversité Libre de BruxellesBrusselsBelgium
| | - Iconaru Laura
- Department of Endocrinology, Centre Hospitalier Universitaire BrugmannUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
5
|
Leventoğlu E, Döğer E, Büyükkaragöz B, Nalçacı S, Öner G, Alpman BN, Fidan K, Söylemezoğlu O, Bakkaloğlu SA. Late-onset hypertension in a child with growth retardation: Answers. Pediatr Nephrol 2022; 37:2341-2345. [PMID: 35288793 DOI: 10.1007/s00467-022-05510-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Esra Döğer
- Department of Pediatric Endocrinology, Gazi University, Ankara, Turkey
| | - Bahar Büyükkaragöz
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sinem Nalçacı
- Department of Pediatric Endocrinology, Gazi University, Ankara, Turkey
| | - Ganimet Öner
- Department of Pediatric Endocrinology, Gazi University, Ankara, Turkey
| | - Bedriye Nuray Alpman
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Kibriya Fidan
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Oğuz Söylemezoğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sevcan A Bakkaloğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
6
|
Khandelwal P, Deinum J. Monogenic forms of low-renin hypertension: clinical and molecular insights. Pediatr Nephrol 2022; 37:1495-1509. [PMID: 34414500 DOI: 10.1007/s00467-021-05246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Monogenic disorders of hypertension are a distinct group of diseases causing dysregulation of the renin-angiotensin-aldosterone system and are characterized by low plasma renin activity. These can chiefly be classified as causing (i) excessive aldosterone synthesis (familial hyperaldosteronism), (ii) dysregulated adrenal steroid metabolism and action (apparent mineralocorticoid excess, congenital adrenal hyperplasia, activating mineralocorticoid receptor mutation, primary glucocorticoid resistance), and (iii) hyperactivity of sodium and chloride transporters in the distal tubule (Liddle syndrome and pseudohypoaldosteronism type 2). The final common pathway is plasma volume expansion and catecholamine/sympathetic excess that causes urinary potassium wasting; hypokalemia and early-onset refractory hypertension are characteristic. However, several single gene defects may show phenotypic heterogeneity, presenting with mild hypertension with normal electrolytes. Evaluation is based on careful attention to family history, physical examination, and measurement of blood levels of potassium, renin, and aldosterone. Genetic sequencing is essential for precise diagnosis and individualized therapy. Early recognition and specific management improves prognosis and prevents long-term sequelae of severe hypertension.
Collapse
Affiliation(s)
- Priyanka Khandelwal
- Division of Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Yildiz M, Isik E, Abali ZY, Keskin M, Ozbek MN, Bas F, Ucakturk SA, Buyukinan M, Onal H, Kara C, Storbeck KH, Darendeliler F, Cayir A, Unal E, Anik A, Demirbilek H, Cetin T, Dursun F, Catli G, Turan S, Falhammar H, Baris T, Yaman A, Haklar G, Bereket A, Guran T. Clinical and Hormonal Profiles Correlate With Molecular Characteristics in Patients With 11β-Hydroxylase Deficiency. J Clin Endocrinol Metab 2021; 106:e3714-e3724. [PMID: 33830237 DOI: 10.1210/clinem/dgab225] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Given the rarity of 11β-hydroxylase deficiency (11βOHD), there is a paucity of data about the differences in clinical and biochemical characteristics of classic (C-11βOHD) and nonclassic 11βOHD (NC-11βOHD). OBJECTIVE To characterize a multicenter pediatric cohort with 11βOHD. METHOD The clinical and biochemical characteristics were retrospectively retrieved. CYP11B1 gene sequencing was performed. Seventeen plasma steroids were quantified by liquid chromatography-mass spectrometry and compared to that of controls. RESULTS 102 patients (C-11βOHD, n = 92; NC-11βOHD, n = 10) from 76 families (46,XX; n = 53) had biallelic CYP11B1 mutations (novel 9 out of 30). Five 46,XX patients (10%) were raised as males. Nineteen patients (19%) had initially been misdiagnosed with 21-hydroxylase deficiency. Female adult height was 152 cm [-1.85 SD score (SDS)] and male 160.4 cm (-2.56 SDS).None of the NC-11βOHD girls had ambiguous genitalia (C-11βOHD 100%), and none of the NC-11βOHD patients were hypertensive (C-11βOHD 50%). Compared to NC-11βOHD, C-11βOHD patients were diagnosed earlier (1.33 vs 6.9 years; P < 0.0001), had higher bone age-to-chronological age (P = 0.04) and lower adult height (-2.46 vs -1.32 SDS; P = 0.05). The concentrations of 11-oxygenated androgens and 21-deoxycortisol were low in all patients. The baseline ACTH and stimulated cortisol were normal in NC-11βOHD. Baseline cortisol; cortisone; 11-deoxycortisol; 11-deoxycorticosterone and corticosterone concentrations; and 11-deoxycortisol/cortisol, 11-deoxycorticosterone/cortisol, and androstenedione/cortisol ratios were higher in C-11βOHD than NC-11βOHD patients (P < 0.05). The 11-deoxycortisol/cortisol ratio >2.2, <1.5, and <0.1 had 100% specificity to segregate C-11βOHD, NC-11βOHD, and control groups. CONCLUSION NC-11βOHD can escape from clinical attention due to relatively mild clinical presentation. However, steroid profiles enable the diagnosis, differential diagnosis, and subtyping of 11βOHD.
Collapse
Affiliation(s)
- Melek Yildiz
- Department of Pediatric Endocrinology, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
- Department of Pediatric Endocrinology and Diabetes, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Emregul Isik
- Clinics of Pediatric Endocrinology, Gaziantep Children's Hospital, Gaziantep, Turkey
| | - Zehra Yavas Abali
- Department of Pediatric Endocrinology and Diabetes, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Keskin
- Department of Pediatric Endocrinology and Diabetes, Gaziantep University, School of Medicine , Gaziantep, Turkey
| | - Mehmet Nuri Ozbek
- Department of Pediatric Endocrinology and Diabetes, SBU Diyarbakir Gazi Yasargil Education and Research Hospital, Diyarbakir, Turkey
| | - Firdevs Bas
- Department of Pediatric Endocrinology and Diabetes, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Seyit Ahmet Ucakturk
- Department of Pediatric Endocrinology, Ankara City Hospital, Children's Hospital, Ankara, Turkey
| | - Muammer Buyukinan
- Department of Pediatric Endocrinology, Konya Training and Research Hospital, Konya, Turkey
| | - Hasan Onal
- Department of Pediatric Endocrinology, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Cengiz Kara
- Department of Pediatrics, Division of Pediatric Endocrinology, Altinbas University, Faculty of Medicine, Istanbul, Turkey
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Feyza Darendeliler
- Department of Pediatric Endocrinology and Diabetes, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology and Diabetes, Erzurum Training and Research Hospital, Erzurum, Turkey
| | - Edip Unal
- Department of Pediatric Endocrinology and Diabetes, SBU Diyarbakir Gazi Yasargil Education and Research Hospital, Diyarbakir, Turkey
| | - Ahmet Anik
- Department of Pediatric Endocrinology and Diabetes, Adnan Menderes University, School of Medicine , Aydin, Turkey
| | - Huseyin Demirbilek
- Department of Pediatric Endocrinology and Diabetes, Hacettepe University, School of Medicine , Ankara, Turkey
| | - Tugba Cetin
- Department of Pediatric Endocrinology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Fatma Dursun
- Department of Pediatric Endocrinology and Diabetes, Istanbul University of Health Science, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Gonul Catli
- Department of Pediatric Endocrinology, Izmir Katip Celebi University, School of Medicine , Izmir, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Henrik Falhammar
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tugba Baris
- Gelisim Genetik Tani Merkezi, Istanbul, Turkey
| | - Ali Yaman
- Department of Biochemistry, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Goncagul Haklar
- Department of Biochemistry, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, Marmara University, Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
8
|
Karlekar MP, Sarathi V, Lila A, Rai K, Arya S, Bhandare VV, Atluri S, Patil V, Ramteke-Jadhav S, Shah NS, Kunwar A, Bandgar T. Expanding genetic spectrum and discriminatory role of steroid profiling by LC-MS/MS in 11β-hydroxylase deficiency. Clin Endocrinol (Oxf) 2021; 94:533-543. [PMID: 33275286 DOI: 10.1111/cen.14376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To report clinical, hormonal and structural effects of CYP11B1 pathogenic variations in Indian patients with 11β-hydroxylase deficiency (11βOHD) and find hormonal criteria that accurately distinguish 11βOHD from 21α-hydroxylase deficiency (21OHD). DESIGN Retrospective record review of genetically diagnosed patients with 11βOHD. PATIENTS AND MEASUREMENTS Clinical features, hormonal parameters at diagnosis (by immunoassay) and recent follow-up of 13 genetically proven 11βOHD patients managed at our centre were retrospectively reviewed. ACTH-stimulated serum adrenal steroids (measured by LC-MS/MS) of 11βOHD were compared with those of simple virilizing and non-classic 21OHD. Structural analysis of the observed pathogenic variations was performed by computational modelling. RESULTS Nine (four females) and four (all females) patients had classic and non-classic disease, respectively. All 11βOHD patients had elevated ACTH-stimulated serum 11-deoxycortisol (26.5-342.7 nmol/L) whereas none had elevated serum 17-hydroxyprogesterone (4.2-21.2 nmol/L); both hormonal parameters distinguished 11βOHD from 21OHD with 100% accuracy. ACTH-stimulated serum cortisol, but not 11-deoxycortisol, clearly distinguished classic (<70 nmol/L) from non-classic (>160 nmol/L) disease. Thirteen (eight novel, two recurrent) pathogenic variants were observed. Only missense mutations were observed among patients with non-classic disease. Computational modelling predicted the possible affection of enzyme structure and function for all the observed missense mutations. CONCLUSIONS This first Indian study describes 13 11βOHD patients, including four with the rarer non-classic variant. A total of eight novel pathogenic variants were identified in our study, highlighting regional genetic heterogeneity. Measurement of ACTH-stimulated adrenal steroids by LC-MS/MS will help avoid the misdiagnosis of 11βOHD as 21OHD and has potential to distinguish classic from non-classic 11βOHD.
Collapse
Affiliation(s)
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Anurag Lila
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Khushnandan Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sneha Arya
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | | | - Sridevi Atluri
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Virendra Patil
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Swati Ramteke-Jadhav
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Nalini S Shah
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Tushar Bandgar
- Department of Endocrinology, Seth G S Medical College & KEM Hospital, Mumbai, India
| |
Collapse
|
9
|
Abstract
Essential hypertension is a highly prevalent disease in the general population. Secondary hypertension is characterized by a specific and potentially reversible cause of increased blood pressure levels. Some secondary endocrine forms of hypertension are common (caused by uncontrolled cortisol, aldosterone, or catecholamines production). This article describes rare monogenic forms of hypertension, characterized by electrolyte disorders and suppressed renin-aldosterone axis. They represent simple models for the physiology of renal control of sodium levels and plasma volume, thus reaching a high scientific interest. Furthermore, they could explain some features closer to the essential phenotype of hypertension, suggesting a mechanistically driven personalized treatment.
Collapse
MESH Headings
- Adrenal Hyperplasia, Congenital/complications
- Adrenal Hyperplasia, Congenital/metabolism
- Adrenal Hyperplasia, Congenital/therapy
- Arthrogryposis/complications
- Arthrogryposis/metabolism
- Arthrogryposis/therapy
- Cleft Palate/complications
- Cleft Palate/metabolism
- Cleft Palate/therapy
- Clubfoot/complications
- Clubfoot/metabolism
- Clubfoot/therapy
- Hand Deformities, Congenital/complications
- Hand Deformities, Congenital/metabolism
- Hand Deformities, Congenital/therapy
- Humans
- Hypertension/drug therapy
- Hypertension/etiology
- Hypertension/metabolism
- Hypertension/physiopathology
- Liddle Syndrome/complications
- Liddle Syndrome/metabolism
- Liddle Syndrome/therapy
- Mineralocorticoid Excess Syndrome, Apparent/complications
- Mineralocorticoid Excess Syndrome, Apparent/metabolism
- Mineralocorticoid Excess Syndrome, Apparent/therapy
- Mineralocorticoid Excess Syndrome, Apparent
Collapse
Affiliation(s)
- Filippo Ceccato
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padova, Via Ospedale Civile, 105, Padova 35128, Italy.
| | - Franco Mantero
- Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padova, Via Ospedale Civile, 105, Padova 35128, Italy
| |
Collapse
|
10
|
46,XX DSD due to Androgen Excess in Monogenic Disorders of Steroidogenesis: Genetic, Biochemical, and Clinical Features. Int J Mol Sci 2019; 20:ijms20184605. [PMID: 31533357 PMCID: PMC6769793 DOI: 10.3390/ijms20184605] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
The term 'differences of sex development' (DSD) refers to a group of congenital conditions that are associated with atypical development of chromosomal, gonadal, or anatomical sex. Disorders of steroidogenesis comprise autosomal recessive conditions that affect adrenal and gonadal enzymes and are responsible for some conditions of 46,XX DSD where hyperandrogenism interferes with chromosomal and gonadal sex development. Congenital adrenal hyperplasias (CAHs) are disorders of steroidogenesis that mainly involve the adrenals (21-hydroxylase and 11-hydroxylase deficiencies) and sometimes the gonads (3-beta-hydroxysteroidodehydrogenase and P450-oxidoreductase); in contrast, aromatase deficiency mainly involves the steroidogenetic activity of the gonads. This review describes the main genetic, biochemical, and clinical features that apply to the abovementioned conditions. The activities of the steroidogenetic enzymes are modulated by post-translational modifications and cofactors, particularly electron-donating redox partners. The incidences of the rare forms of CAH vary with ethnicity and geography. The elucidation of the precise roles of these enzymes and cofactors has been significantly facilitated by the identification of the genetic bases of rare disorders of steroidogenesis. Understanding steroidogenesis is important to our comprehension of differences in sexual development and other processes that are related to human reproduction and fertility, particularly those that involve androgen excess as consequence of their impairment.
Collapse
|