1
|
Minniakhmetov IR, Khusainova RI, Laptev DN, Yalaev BI, Karpova YS, Deev RV, Salakhov RR, Panteleev DD, Smirnov KV, Melnichenko GA, Shestakova MV, Mokrysheva NG. Genetic Structure of Hereditary Forms of Diabetes Mellitus in Russia. Int J Mol Sci 2025; 26:740. [PMID: 39859454 PMCID: PMC11766241 DOI: 10.3390/ijms26020740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia. The study identified 180 pathogenic or likely pathogenic variants across 13 genes (GCK, HNF1A, HNF1B, HNF4A, ABCC8, INS, INSR, KCNJ11, PAX4, PDX1, ZFP57, BLK, WFS1), representing 46.44% of the analyzed cohort (235 individuals). The glucokinase gene (GCK) had the highest number of identified variants, with 111 variants detected in 161 patients, 20 of which were identified for the first time. In the tissue-specific transcription factor genes HNF1A, HNF4A, and HNF1B, 34 variants were found in 38 patients, including 13 that were previously unreported. Seventeen variants were identified in the ABCC8 gene, which encodes the ATP-binding cassette transporter 8 of subfamily C, each found in a different patient; four of these were novel discoveries. Nine pathogenic or likely pathogenic variants were identified in the insulin gene (INS) and its receptor gene (INSR), including four previously unreported variants. Additionally, we identified 10 previously unreported variants in six other genes among 11 patients. Variants in the genes GCK, HNF1A, HNF1B, HNF4A, ABCC8, INS, and INSR were the main contributors to the genetic pathogenesis of hereditary diabetes mellitus in the Russian cohort. These findings enhance our understanding of the molecular mechanisms underlying the disease and provide a solid basis for future studies aimed at improving diagnostic accuracy and advancing personalized therapeutic strategies. This knowledge provides a foundation for developing region-specific genetic testing algorithms and personalized therapeutic strategies, which are critical for future initiatives in precision medicine.
Collapse
Affiliation(s)
- Ildar R. Minniakhmetov
- Endocrinology Research Center, Moscow 117292, Russia; (R.I.K.); (D.N.L.); (B.I.Y.); (Y.S.K.); (R.V.D.); (R.R.S.); (D.D.P.); (K.V.S.); (G.A.M.); (M.V.S.); (N.G.M.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bandeira CP, Schaan BD, Cureau FV. Association of BMI and WC for insulin resistance and type 2 diabetes among Brazilian adolescents. J Pediatr (Rio J) 2025; 101:30-37. [PMID: 39147370 PMCID: PMC11763841 DOI: 10.1016/j.jped.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVE To investigate how body mass index (BMI) and waist circumference (WC) may be associated with insulin resistance and type 2 diabetes (T2DM) in Brazilian adolescents. METHODS Cross-sectional study using data from the Brazilian Study of Cardiovascular Risks in Adolescents (ERICA) including adolescents aged 12-17 years. The relationship between adiposity and T2DM was investigated using ordinal logistic regression models. To study the association between adiposity categories and the occurrence of insulin resistance, linear regression models were used. RESULTS The prevalence of T2DM for the same BMI category did not increase with the presence of high WC. Regarding insulin resistance, for the same BMI categories, having a high WC resulted in a higher prevalence of insulin resistance (HOMA-IR). The only groups significantly associated with prediabetes and T2DM were those with obesity by BMI with elevated WC (POR 1.68, 95 % CI 1.45; 1.94) and obesity with normal WC (POR 1.58, 95 % CI 1.01; 2.46). Similar findings were observed concerning insulin resistance, where the increased WC had its greatest effect when associated with obesity by BMI (β Coefficient 2.20, 95 % CI 1.89; 2.50). CONCLUSION The combination of BMI and WC is better for assessing adolescents at risk of developing T2DM.
Collapse
Affiliation(s)
- Cesar Pirajá Bandeira
- Faculty of Medical Sciences, Graduate Program in Health Sciences: Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Beatriz D Schaan
- Faculty of Medical Sciences, Graduate Program in Health Sciences: Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Medical Science: Endocrinology, Universidade Federal do Rio Grande do Sul, Faculty of Medical Sciences, Porto Alegre, RS, Brazil
| | - Felipe Vogt Cureau
- Faculty of Medical Sciences, Graduate Program in Health Sciences: Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physical Education, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
3
|
Jakiel P, Gadzalska K, Juścińska E, Gorządek M, Płoszaj T, Skoczylas S, Borowiec M, Zmysłowska A. Identification of rare variants in candidate genes associated with monogenic diabetes in polish mody-x patients. J Diabetes Metab Disord 2024; 23:545-554. [PMID: 38932873 PMCID: PMC11196495 DOI: 10.1007/s40200-023-01312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/14/2023] [Indexed: 06/28/2024]
Abstract
Purpose Monogenic diabetes (MD) is caused by a mutation in a single gene and accounts for approximately 2.5-6% of all diabetes cases. Maturity-onset diabetes of the young (MODY) is the most common form of MD. To date, 14 different genes have been identified and associated with the presence of MODY phenotype. However, the number of potential candidate genes with relevance to beta cell function and glucose metabolism is increasing as more research is published. The aim of the study was to identify potentially causative variants in selected candidate genes in patients with a clinical diagnosis of MD. Methods Targeted Next-Generation Sequencing (tNGS) on Illumina NextSeq 550 platform involving Agilent SureSelectQXT Target Enrichment protocol for 994 patients with suspected MD was performed. In the next step, the sequencing data of 617 patients with no pathogenic variants in main MD-related genes were reanalysed for the presence of causative variants in six candidate genes (MTOR, TBC1D4, CACNA1E, MNX1, SLC19A2, KCNH6). The presence of the selected variants was confirmed by Sanger sequencing. Results Seven heterozygous possibly damaging variants were identified in four candidate genes (MTOR, TBC1D4, CACNA1E, MNX1). Five changes were assessed as novel variants, not previously described in available databases. None of the described variants were present among patients previously diagnosed with MODY diabetes due to causative, pathogenic variants in known MODY-related genes. Conclusions The results obtained seem to confirm the effectiveness of the NGS method in identifying potentially causative variants in novel candidate genes associated with MODY diabetes.
Collapse
Affiliation(s)
- Paulina Jakiel
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - K. Gadzalska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - E. Juścińska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - M. Gorządek
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - T. Płoszaj
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - S. Skoczylas
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - M. Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - A. Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Enders-Seidlitz H, Raile K, Gong M, Galler A, Kuehnen P, Wiegand S. Insulin Secretion Defect in Children and Adolescents with Obesity: Clinical and Molecular Genetic Characterization. J Diabetes Res 2024; 2024:5558634. [PMID: 38550917 PMCID: PMC10977255 DOI: 10.1155/2024/5558634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
Introduction Childhood obesity is increasing worldwide and presents as a global health issue due to multiple metabolic comorbidities. About 1% of adolescents with obesity develop type 2 diabetes (T2D); however, little is known about the genetic and pathophysiological background at young age. The objective of this study was to assess the prevalence of impaired glucose regulation (IGR) in a large cohort of children and adolescents with obesity and to characterize insulin sensitivity and insulin secretion. We also wanted to investigate adolescents with insulin secretion disorder more closely and analyze possible candidate genes of diabetes in a subcohort. Methods We included children and adolescents with obesity who completed an oral glucose tolerance test (OGTT, glucose + insulin) in the outpatient clinic. We calculated Matsuda index, the area under the curve (AUC (Ins/Glu)), and an oral disposition index (ISSI-2) to estimate insulin resistance and beta-cell function. We identified patients with IGR and low insulin secretion (maximum insulin during OGTT < 200 mU/l) and tested a subgroup using next generation sequencing to identify possible mutations in 103 candidate genes. Results The total group consisted of 903 children and adolescents with obesity. 4.5% showed impaired fasting glucose, 9.4% impaired glucose tolerance, and 1.2% T2D. Matsuda index and Total AUC (Ins/Glu) showed a hyperbolic relationship. Out of 39 patients with low insulin secretion, we performed genetic testing on 12 patients. We found five monogenetic defects (ABCC8 (n = 3), GCK (n = 1), and GLI2/PTF1A (n = 1)). Conclusion Using surrogate parameters of beta-cell function and insulin resistance can help identify patients with insulin secretion disorder. A prevalence of 40% mutations of known diabetes genes in the subgroup with low insulin secretion suggests that at least 1.7% of patients with adolescent obesity have monogenic diabetes. A successful molecular genetic diagnosis can help to improve individual therapy.
Collapse
Affiliation(s)
| | | | - Maolian Gong
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | |
Collapse
|
5
|
Chen C, Piao Y, Sang Y. A synonymous KCNJ11 variant leading to MODY13: A case report and literature review. Mol Genet Metab Rep 2024; 38:101043. [PMID: 38226203 PMCID: PMC10788303 DOI: 10.1016/j.ymgmr.2023.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Background Maturity-onset diabetes of the young, type 13 (MODY13) is a specific subclass of monogenic diabetes mellitus that does not exhibit the typical clinical manifestations of diabetes, necessitating the use of genetic testing for accurate diagnosis. With the progression of monogenic diabetes and MODY, the number of reported MODY13 cases has reached a minimum of 22. Nevertheless, there remains a dearth of information regarding patients diagnosed with MODY13 presenting synonymous variants. Case presentation This study presents a description of the clinical and genetic features of a 9-year-old male patient diagnosed with MODY13. A noteworthy finding in this case was the occurrence of a "separation phenomenon" between C-peptide and insulin during the standard meal test. Whole exome sequencing (WES) identified a KCNJ11 c.843C > T (p.L281=) mutation in exon 1, which contradicted the previously reported phenotype. Following the onset of ketosis, the patient underwent insulin therapy for a duration of one month, during which the insulin dosage was gradually modified based on blood glucose levels. In order to maintain normoglycemia, he adhered to a diabetic dietary regimen and participated in 1-2 h of moderate exercise daily. Conclusion The study implies that patient with KCNJ11 variant shows a "separation phenomenon" between C-peptide and insulin in standard meal test. Our report also enriched the genotype and phenotype spectrums of MODY13 and highlighted the importance of genetic testing in patients without characteristic clinical symptoms of diabetes.
Collapse
Affiliation(s)
- Congli Chen
- Department of Pediatric Endocrinology, Genetic, and Metabolism, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Yurong Piao
- Department of Immunology, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Yanmei Sang
- Department of Pediatric Endocrinology, Genetic, and Metabolism, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
7
|
Santos Monteiro S, da Silva Santos T, Fonseca L, Assunção G, Lopes AM, Duarte DB, Soares AR, Laranjeira F, Ribeiro I, Pinto E, Rocha S, Barbosa Gouveia S, Vazquez-Mosquera ME, Oliveira MJ, Borges T, Cardoso MH. Maturity-onset diabetes of the young in a large Portuguese cohort. Acta Diabetol 2023; 60:83-91. [PMID: 36208343 DOI: 10.1007/s00592-022-01980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023]
Abstract
AIMS Monogenic forms of diabetes that develop with autosomal dominant inheritance are classically aggregated in the Maturity-Onset Diabetes of the Young (MODY) categories. Despite increasing awareness, its true prevalence remains largely underestimated. We describe a Portuguese cohort of individuals with suspected monogenic diabetes who were genetically evaluated for MODY-causing genes. METHODS This single-center retrospective cohort study enrolled patients with positive genetic testing for MODY between 2015 and 2021. Automatic sequencing and, in case of initial negative results, next-generation sequencing were performed. Their clinical and molecular characteristics were described. RESULTS Eighty individuals were included, 55 with likely pathogenic/pathogenic variants in one of the MODY genes and 25 MODY-positive family members, identified by cascade genetic testing. The median age at diabetes diagnosis was 23 years, with a median HbA1c of 6.5%. The most frequently mutated genes were identified in HNF1A (40%), GCK (34%) and HNF4A (13%), followed by PDX1, HNF1B, INS, KCNJ11 and APPL1. Thirty-six unique variants were found (29 missense and 7 frameshift variants), of which ten (28%) were novel. CONCLUSIONS Our data highlights the importance of genetic testing in the diagnosis of MODY and the establishment of its subtypes, leading to more personalized treatment and follow-up strategies.
Collapse
Affiliation(s)
- Sílvia Santos Monteiro
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal.
| | - Tiago da Silva Santos
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Liliana Fonseca
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Guilherme Assunção
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Ana M Lopes
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Diana B Duarte
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Ana Rita Soares
- Division of Medical Genetics, Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Francisco Laranjeira
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinar Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar. Universidade do Porto, Porto, Portugal
| | - Isaura Ribeiro
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinar Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar. Universidade do Porto, Porto, Portugal
| | - Eugénia Pinto
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sónia Rocha
- Division of Genetic Biochemistry. Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sofia Barbosa Gouveia
- University Clinical Hospital of Santiago de Compostela. IDIS, CIBERER, MetabERN, 15701, Santiago de Compostela, Spain
| | | | - Maria João Oliveira
- Division of Pediatric Endocrinology. Department of Pediatrics. Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Teresa Borges
- Division of Pediatric Endocrinology. Department of Pediatrics. Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Maria Helena Cardoso
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| |
Collapse
|
8
|
Harrington F, Greenslade M, Colclough K, Paul R, Jefferies C, Murphy R. Monogenic diabetes in New Zealand - An audit based revision of the monogenic diabetes genetic testing pathway in New Zealand. Front Endocrinol (Lausanne) 2023; 14:1116880. [PMID: 37033247 PMCID: PMC10080040 DOI: 10.3389/fendo.2023.1116880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS To evaluate (a) the diagnostic yield of genetic testing for monogenic diabetes when using single gene and gene panel-based testing approaches in the New Zealand (NZ) population, (b) whether the MODY (Maturity Onset Diabetes of the Young) pre-test probability calculator can be used to guide referrals for testing in NZ, (c) the number of referrals for testing for Māori/Pacific ethnicities compared to NZ European, and (d) the volume of proband vs cascade tests being requested. METHODS A retrospective audit of 495 referrals, from NZ, for testing of monogenic diabetes genes was performed. Referrals sent to LabPlus (Auckland) laboratory for single gene testing or small multi-gene panel testing, or to the Exeter Genomics Laboratory, UK, for a large gene panel, received from January 2014 - December 2021 were included. Detection rates of single gene, small multi-gene and large gene panels (neonatal and non-neonatal), and cascade testing were analysed. Pre-test probability was calculated using the Exeter MODY probability calculator and ethnicity data was also collected. RESULTS The diagnostic detection rate varied across genes, from 32% in GCK, to 2% in HNF4A, with single gene or small gene panel testing averaging a 12% detection rate. Detection rate by type of panel was 9% for small gene panel, 23% for non-neonatal monogenic diabetes large gene panel and 40% for neonatal monogenic diabetes large gene panel. 45% (67/147) of patients aged 1-35 years at diabetes diagnosis scored <20% on MODY pre-test probability, of whom 3 had class 4/5 variants in HNF1A, HNF4A or HNF1B. Ethnicity data of those selected for genetic testing correlated with population diabetes prevalence for Māori (15% vs 16%), but Pacific People appeared under-represented (8% vs 14%). Only 1 in 6 probands generated a cascade test. CONCLUSIONS A new monogenic diabetes testing algorithm for NZ is proposed, which directs clinicians to choose a large gene panel in patients without syndromic features who score a pre-test MODY probability of above 20%.
Collapse
Affiliation(s)
- Francesca Harrington
- Diagnostic Genetics, Department of Pathology and Laboratory Medicine, Te Whatu Ora – Health New Zealand, Te Toka Tumai Auckland, Auckland, New Zealand
- *Correspondence: Francesca Harrington, ; Rinki Murphy,
| | - Mark Greenslade
- Diagnostic Genetics, Department of Pathology and Laboratory Medicine, Te Whatu Ora – Health New Zealand, Te Toka Tumai Auckland, Auckland, New Zealand
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Ryan Paul
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| | - Craig Jefferies
- Starship Children’s Health, Te Whatu Ora – Health New Zealand, Te Toka Tumai Auckland, Auckland, New Zealand
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland, New Zealand
- *Correspondence: Francesca Harrington, ; Rinki Murphy,
| |
Collapse
|
9
|
Yorifuji T, Watanabe Y, Kitayama K, Yamada Y, Higuchi S, Mori J, Kato M, Takahashi T, Okuda T, Aoyama T. Targeted gene panel analysis of Japanese patients with maturity-onset diabetes of the young-like diabetes mellitus: Roles of inactivating variants in the ABCC8 and insulin resistance genes. J Diabetes Investig 2022; 14:387-403. [PMID: 36504295 PMCID: PMC9951579 DOI: 10.1111/jdi.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS/INTRODUCTION To investigate the genetic background of Japanese patients with suspected maturity-onset diabetes of the young (MODY). MATERIALS AND METHODS On 340 proband patients referred from across Japan, genomic variants were analyzed using a targeted multigene panel analysis combined with the multiplex ligation probe amplification (MLPA) analysis, mitochondrial m.3243A > G analysis and methylation-specific polymerase chain reaction of the imprinted 6q24 locus. Pathogenic/likely pathogenic variants were listed according to the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology criteria. Additionally, variants with a population frequency <0.001 and Combined Annotation Dependent Depletion score >20 (CS >20) were listed as rare variants of uncertain significance-CS >20. RESULTS A total of 157 pathogenic/likely pathogenic variants and 44 rare variants of uncertain significance-CS >20 were identified. In the pathogenic/likely pathogenic variants, alterations in the GCK gene were the most common (82, 52.2%) followed by HNF1A (29, 18.5%), HNF4A (13, 8.3%) and HNF1B (13, 8.3%). One patient was a 29.5% mosaic with a truncating INSR variant. In the rare variants of uncertain significance-CS >20, 20 (45.5%) were in the genes coding for the adenosine triphosphate-sensitive potassium channel, KCNJ11 or ABCC8, and four were in the genes of the insulin-signaling pathway, INSR and PIK3R1. Four variants in ABCC8 were previously reported in patients with congenital hyperinsulinism, suggesting the inactivating nature of these variants, and at least two of our patients had a history of congenital hyperinsulinism evolving into diabetes. In two patients with INSR or PIK3R1 variants, insulin resistance was evident at diagnosis. CONCLUSIONS Causative genomic variants could be identified in at least 46.2% of clinically suspected MODY patients. ABCC8-MODY with inactivating variants could represent a distinct category of MODY. Genes of insulin resistance should be included in the sequencing panel for MODY.
Collapse
Affiliation(s)
- Tohru Yorifuji
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan,Department of Genetic MedicineOsaka City General HospitalOsakaJapan,Clinical Research CenterOsaka City General HospitalOsakaJapan,2nd Department of Internal MedicineDate Red Cross HospitalDate, HokkaidoJapan
| | - Yoh Watanabe
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Kana Kitayama
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Yuki Yamada
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Shinji Higuchi
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Jun Mori
- Division of Pediatric Endocrinology and MetabolismChildren's Medical Center, Osaka City General HospitalOsakaJapan
| | - Masaru Kato
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Toru Takahashi
- Department of Genetic MedicineOsaka City General HospitalOsakaJapan
| | - Tokuko Okuda
- Clinical Research CenterOsaka City General HospitalOsakaJapan
| | - Takane Aoyama
- Clinical Research CenterOsaka City General HospitalOsakaJapan
| |
Collapse
|
10
|
Doğan M, Eröz R, Bolu S, Yüce H, Gezdirici A, Arslanoğlu İ, Teralı K. Study of ten causal genes in Turkish patients with clinically suspected maturity-onset diabetes of the young (MODY) using a targeted next-generation sequencing panel. Mol Biol Rep 2022; 49:7483-7495. [PMID: 35733065 DOI: 10.1007/s11033-022-07552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY), which is the most common cause of monogenic diabetes, has an autosomal dominant pattern of inheritance and exhibits marked clinical and genetic heterogeneity. The aim of the current study was to investigate molecular defects in patients with clinically suspected MODY using a next-generation sequencing (NGS)-based targeted gene panel. METHODS Candidate patients with clinical suspicion of MODY and their parents were included in the study. Molecular genetic analyses were performed on genomic DNA by using NGS. A panel of ten MODY-causal genes involving GCK, HNF1A, HNF1B, HNF4A, ABCC8, CEL, INS, KCNJ11, NEUROD1, PDX1 was designed and subsequently implemented to screen 40 patients for genetic variants. RESULTS Ten different pathogenic or likely pathogenic variants were identified in MODY-suspected patients, with a diagnostic rate of 25%. Three variants of uncertain significance were also detected in the same screen. A novel pathogenic variant in the gene HNF1A (c.505_506delAA [p.Lys169AlafsTer18]) was described for the first time in this report. Intriguingly, we were able to detect variants associated with rare forms of MODY in our study population. CONCLUSIONS Our results suggest that in heterogenous diseases such as MODY, NGS analysis enables accurate identification of underlying molecular defects in a timely and cost-effective manner. Although MODY accounts for 2-5% of all diabetic cases, molecular genetic diagnosis of MODY is necessary for optimal long-term treatment and prognosis as well as for effective genetic counseling.
Collapse
Affiliation(s)
- Mustafa Doğan
- Department of Medical Genetics, Genetic Diseases Center, Basaksehir Cam and Sakura City Hospital, 34480, Istanbul, Turkey.
| | - Recep Eröz
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, 81620, Aksaray, Turkey
| | - Semih Bolu
- Department of Pediatric Endocrinology, Faculty of Medicine, Bolu Abant İzzet Baysal University, 14030, Bolu, Turkey
| | - Hüseyin Yüce
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, 81620, Aksaray, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Genetic Diseases Center, Basaksehir Cam and Sakura City Hospital, 34480, Istanbul, Turkey
| | - İlknur Arslanoğlu
- Department of Pediatrics Endocrinology, Faculty of Medicine, Duzce University, 81620, Duzce, Turkey
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, 99428, Kyrenia, Cyprus
| |
Collapse
|