1
|
Yang X, Ding S, Zhang J, Hu Z, Zhuang D, Wang F, Wu S, Chen C, Li H. The significance of machine learning in neonatal screening for inherited metabolic diseases. Front Pediatr 2024; 12:1366891. [PMID: 38577637 PMCID: PMC10993727 DOI: 10.3389/fped.2024.1366891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background Neonatal screening for inherited metabolic diseases (IMDs) has been revolutionized by tandem mass spectrometry (MS/MS). This study aimed to enhance neonatal screening for IMDs using machine learning (ML) techniques. Methods The study involved the analysis of a comprehensive dataset comprising 309,102 neonatal screening records collected in the Ningbo region, China. An advanced ML system model, encompassing nine distinct algorithms, was employed for the purpose of predicting the presence of 31 different IMDs. The model was compared with traditional cutoff schemes to assess its diagnostic efficacy. Additionally, 180 suspected positive cases underwent further evaluation. Results The ML system exhibited a significantly reduced positive rate, from 1.17% to 0.33%, compared to cutoff schemes in the initial screening, minimizing unnecessary recalls and associated stress. In suspected positive cases, the ML system identified 142 true positives with high sensitivity (93.42%) and improved specificity (78.57%) compared to the cutoff scheme. While false negatives emerged, particularly in heterozygous carriers, our study revealed the potential of the ML system to detect asymptomatic cases. Conclusion This research provides valuable insights into the potential of ML in pediatric medicine for IMD diagnosis through neonatal screening, emphasizing the need for accurate carrier detection and further research in this domain.
Collapse
Affiliation(s)
- Xiangchun Yang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo City, Zhejiang, China
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Shuxia Ding
- Department of Endocrinology, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Jianping Zhang
- Department of Endocrinology, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Zhuojie Hu
- Department of Children’s Healthcare Clinic, Women and Children’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Danyan Zhuang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo City, Zhejiang, China
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Fei Wang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo City, Zhejiang, China
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Shanshan Wu
- Paediatric Surgery Centre, Women and Children’s Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Changshui Chen
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo City, Zhejiang, China
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Lin Y, Lin C, Lin B, Zheng Z, Lin W, Chen Y, Chen D, Peng W. Newborn screening for fatty acid oxidation disorders in a southern Chinese population. Heliyon 2024; 10:e23671. [PMID: 38187300 PMCID: PMC10770602 DOI: 10.1016/j.heliyon.2023.e23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Background and aims Fatty acid oxidation disorders (FAODs) are a group of autosomal recessive metabolic diseases included in many newborn screening (NBS) programs, but the incidence and disease spectrum vary widely between ethnic groups. We aimed to elucidate the incidence, disease spectrum, and genetic features of FAODs in a southern Chinese population. Materials and methods The FAODs screening results of 643,606 newborns from 2014 to 2022 were analyzed. Results Ninety-two patients were eventually diagnosed with FAODs, of which 61 were PCD, 20 were MADD, 5 were SCADD, 4 were VLCADD, and 2 were CPT-IAD. The overall incidence of FAODs was 1:6996 (95 % CI: 1:5814-1:8772) newborns. All PCD patients had low C0 levels during NBS, while nine patients (14.8 %) had normal C0 levels during the recall review. All but one MADD patients had elevated C8, C10, and C12 levels during NBS, while eight patients (40 %) had normal acylcarnitine levels during the recall review. The most frequent SLC22A5 variant was c.760C > T (p.R254*) with an allele frequency of 29.51 %, followed by c.51C > G (p.F17L) (17.21 %) and c.1400C > G (p.S467C) (16.39 %). The most frequent ETFDH variant was c.250G > A (p.A84T) with an allelic frequency of 47.5 %, followed by c.524G > A (R175H) (12.5 %), c.998A > G (p.Y333C) (12.5 %), and c.1657T > C (p.Y553H) (7.5 %). Conclusion The prevalence, disease spectrum, and genetic characteristics of FAODs in a southern Chinese population were clarified. PCD was the most common FAOD, followed by MADD. Hotspot variants were found in SLC22A5 and ETFDH genes, while the remaining FAODs showed great molecular heterogeneity. Incorporating second-tier genetic screening is critical for FAODs.
Collapse
Affiliation(s)
- Yiming Lin
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Chunmei Lin
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Bangbang Lin
- Administrative office, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Zhenzhu Zheng
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Weihua Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Yanru Chen
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Dongmei Chen
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| | - Weilin Peng
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province, 362000, China
| |
Collapse
|
3
|
Bisschoff M, Smuts I, Dercksen M, Schoonen M, Vorster BC, van der Watt G, Spencer C, Naidu K, Henning F, Meldau S, McFarland R, Taylor RW, Patel K, Fassad MR, Vandrovcova J, Wanders RJA, van der Westhuizen FH. Clinical, biochemical, and genetic spectrum of MADD in a South African cohort: an ICGNMD study. Orphanet J Rare Dis 2024; 19:15. [PMID: 38221620 PMCID: PMC10789041 DOI: 10.1186/s13023-023-03014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder resulting from pathogenic variants in three distinct genes, with most of the variants occurring in the electron transfer flavoprotein-ubiquinone oxidoreductase gene (ETFDH). Recent evidence of potential founder variants for MADD in the South African (SA) population, initiated this extensive investigation. As part of the International Centre for Genomic Medicine in Neuromuscular Diseases study, we recruited a cohort of patients diagnosed with MADD from academic medical centres across SA over a three-year period. The aim was to extensively profile the clinical, biochemical, and genomic characteristics of MADD in this understudied population. METHODS Clinical evaluations and whole exome sequencing were conducted on each patient. Metabolic profiling was performed before and after treatment, where possible. The recessive inheritance and phase of the variants were established via segregation analyses using Sanger sequencing. Lastly, the haplotype and allele frequencies were determined for the two main variants in the four largest SA populations. RESULTS Twelve unrelated families (ten of White SA and two of mixed ethnicity) with clinically heterogeneous presentations in 14 affected individuals were observed, and five pathogenic ETFDH variants were identified. Based on disease severity and treatment response, three distinct groups emerged. The most severe and fatal presentations were associated with the homozygous c.[1067G > A];c.[1067G > A] and compound heterozygous c.[976G > C];c.[1067G > A] genotypes, causing MADD types I and I/II, respectively. These, along with three less severe compound heterozygous genotypes (c.[1067G > A];c.[1448C > T], c.[740G > T];c.[1448C > T], and c.[287dupA*];c.[1448C > T]), resulting in MADD types II/III, presented before the age of five years, depending on the time and maintenance of intervention. By contrast, the homozygous c.[1448C > T];c.[1448C > T] genotype, which causes MADD type III, presented later in life. Except for the type I, I/II and II cases, urinary metabolic markers for MADD improved/normalised following treatment with riboflavin and L-carnitine. Furthermore, genetic analyses of the most frequent variants (c.[1067G > A] and c.[1448C > T]) revealed a shared haplotype in the region of ETFDH, with SA population-specific allele frequencies of < 0.00067-0.00084%. CONCLUSIONS This study reveals the first extensive genotype-phenotype profile of a MADD patient cohort from the diverse and understudied SA population. The pathogenic variants and associated variable phenotypes were characterised, which will enable early screening, genetic counselling, and patient-specific treatment of MADD in this population.
Collapse
Affiliation(s)
- Michelle Bisschoff
- Focus area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Marli Dercksen
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Maryke Schoonen
- Focus area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Barend C Vorster
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - George van der Watt
- Division of Chemical Pathology, National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Careni Spencer
- Division of Human Genetics, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Kireshnee Naidu
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Franclo Henning
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Surita Meldau
- Division of Chemical Pathology, National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Krutik Patel
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jana Vandrovcova
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Incorporating second-tier genetic screening for multiple acyl-CoA dehydrogenase deficiency. Clin Chim Acta 2022; 537:181-187. [DOI: 10.1016/j.cca.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
5
|
Yamada K, Osawa Y, Kobayashi H, Bo R, Mushimoto Y, Hasegawa Y, Yamaguchi S, Taketani T. Clinical and molecular investigation of 37 Japanese patients with multiple acyl-CoA dehydrogenase deficiency: p.Y507D in ETFDH, a common Japanese variant, causes a mortal phenotype. Mol Genet Metab Rep 2022; 33:100940. [DOI: 10.1016/j.ymgmr.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
|
6
|
Yuan G, Zhang X, Chen T, Lin J. Case report: A novel c.1842_1845dup mutation of ETFDH in two Chinese siblings with multiple acyl-CoA dehydrogenase deficiency. Front Pediatr 2022; 10:1038440. [PMID: 36683804 PMCID: PMC9845722 DOI: 10.3389/fped.2022.1038440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
This article reports the characterization of two siblings diagnosed with late-onset multiple Acyl-CoA dehydrogenase deficiency (MADD) caused by mutations in electron transfer flavoprotein(ETF)-ubiquinone oxidoreductase (ETF-QO) (ETFDH) gene. Whole exome sequencing (WES) was performed in the proband's pedigree. Clinical phenotypes of Proband 1 (acidosis, hypoglycemia, hypotonia, muscle weakness, vomiting, hypoglycemia, hepatomegaly, glutaric acidemia, and glutaric aciduria) were consistent with symptoms of MADD caused by the ETFDH mutation. However, Proband 2 presented with only a short stature. The patients (exhibiting Probands 1 and 2) showed identical elevations of C6, C8, C10, C12, and C14:1. c.1842_1845 (exon13)dup, and c.250 (exon3) G > A of the ETFDH gene were compound heterozygous variants in both patients. The novel variant c.1842_1845dup was rated as likely pathogenic according to the American College of Medical Genetics and Genomics guidelines (ACMG). This is the first report on the c.1842_1845dup mutation of the ETFDH gene in patients with late-onset MADD, and the data described herein may help expand the mutation spectrum of ETFDH.
Collapse
Affiliation(s)
- Gaopin Yuan
- Department of Endocrinology, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Xiaohong Zhang
- Department of Endocrinology, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Tingli Chen
- Department of Endocrinology, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Jiansheng Lin
- Department of Laboratory Medicine, Quanzhou Women's and Children's Hospital, Quanzhou, China
| |
Collapse
|
7
|
Zhang W, Chen Y, Lin C, Peng W, Fu Q, Lin Y. Three Novel and One Potential Hotspot CPT1A Variants in Chinese Patients With Carnitine Palmitoyltransferase 1A Deficiency. Front Pediatr 2021; 9:771922. [PMID: 34869124 PMCID: PMC8633485 DOI: 10.3389/fped.2021.771922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Carnitine palmitoyltransferase 1A (CPT1A) deficiency is an inherited disorder of mitochondrial fatty acid β-oxidation that impairs fasting ketogenesis and gluconeogenesis in the liver. Few studies implementing newborn screening (NBS) for CPT1A deficiency in the Chinese population have been reported. This study aimed to determine the biochemical, clinical, and genetic characteristics of patients with CPT1A deficiency in China. A total of 204,777 newborns were screened using tandem mass spectrometry at Quanzhou Maternity and Children's Hospital between January 2017 and December 2018. Newborns with elevated C0 levels were recruited, and suspected patients were subjected to further genetic analysis. Additionally, all Chinese patients genetically diagnosed with CPT1A deficiency were reviewed and included in the study. Among the 204,777 screened newborns, two patients were diagnosed with CPT1A deficiency; thus, the estimated incidence in the selected population was 1:102,388. In addition to the two patients newly diagnosed with CPT1A deficiency, we included in our cohort 10 Chinese patients who were previously diagnosed. Five of these 12 patients were diagnosed via NBS. All patients exhibited elevated C0 and/or C0/(C16+C18) ratios. No clinical symptoms were observed in the five patients diagnosed via NBS, while all seven patients presented with clinical symptoms, including fever, cough, vomiting, diarrhea, and seizures. Eighteen distinct CPT1A variants were identified, 15 of which have been previously reported. The three novel variants were c.272T>C (p.L91P), c.734G>A (p.R245Q), and c.1336G>A (p.G446S). in silico analysis suggested that all three novel variants were potentially pathogenic. The most common variant was c.2201T>C (p.F734S), with an allelic frequency of 16.67% (4/24). Our findings demonstrated that NBS for CPT1A deficiency is beneficial. The three novel variants expand the mutational spectrum of CPT1A in the Chinese population, and c.2201T>C (p.F734S) may be a potential hotspot CPT1A mutation.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Neonatology, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Yanru Chen
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Chunmei Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Weilin Peng
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Qingliu Fu
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Yiming Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| |
Collapse
|