1
|
Prates I, Hutchinson MN, Singhal S, Moritz C, Rabosky DL. Notes from the taxonomic disaster zone: Evolutionary drivers of intractable species boundaries in an Australian lizard clade (Scincidae: Ctenotus). Mol Ecol 2024; 33:e17074. [PMID: 37461158 DOI: 10.1111/mec.17074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 10/18/2024]
Abstract
Genomic-scale datasets, sophisticated analytical techniques, and conceptual advances have disproportionately failed to resolve species boundaries in some groups relative to others. To understand the processes that underlie taxonomic intractability, we dissect the speciation history of an Australian lizard clade that arguably represents a "worst-case" scenario for species delimitation within vertebrates: the Ctenotus inornatus species group, a clade beset with decoupled genetic and phenotypic breaks, uncertain geographic ranges, and parallelism in purportedly diagnostic morphological characters. We sampled hundreds of localities to generate a genomic perspective on population divergence, structure, and admixture. Our results revealed rampant paraphyly of nominate taxa in the group, with lineages that are either morphologically cryptic or polytypic. Isolation-by-distance patterns reflect spatially continuous differentiation among certain pairs of putative species, yet genetic and geographic distances are decoupled in other pairs. Comparisons of mitochondrial and nuclear gene trees, tests of nuclear introgression, and historical demographic modelling identified gene flow between divergent candidate species. Levels of admixture are decoupled from phylogenetic relatedness; gene flow is often higher between sympatric species than between parapatric populations of the same species. Such idiosyncratic patterns of introgression contribute to species boundaries that are fuzzy while also varying in fuzziness. Our results suggest that "taxonomic disaster zones" like the C. inornatus species group result from spatial variation in the porosity of species boundaries and the resulting patterns of genetic and phenotypic variation. This study raises questions about the origin and persistence of hybridizing species and highlights the unique insights provided by taxa that have long eluded straightforward taxonomic categorization.
Collapse
Affiliation(s)
- Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sonal Singhal
- Department of Biology, California State University - Dominguez Hills, Carson, California, USA
| | - Craig Moritz
- Division of Ecology and Evolution and Centre for Biodiversity Analysis, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Picks in the Fabric of a Polyploidy Complex: Integrative Species Delimitation in the Tetraploid Leucanthemum Mill. (Compositae, Anthemideae) Representatives. BIOLOGY 2023; 12:biology12020288. [PMID: 36829565 PMCID: PMC9953438 DOI: 10.3390/biology12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Based on the results of a preceding species-delimitation analysis for the diploid representatives of the genus Leucanthemum (Compositae, Anthemideae), the present study aims at the elaboration of a specific and subspecific taxonomic treatment of the tetraploid members of the genus. Following an integrative taxonomic approach, species-level decisions on eight predefined morphotaxon hypotheses were based on genetic/genealogical, morphological, ecological, and geographical differentiation patterns. ddRADseq fingerprinting and SNP-based clustering revealed genetic integrity for six of the eight morphotaxa, with no clear differentiation patterns observed between the widespread L. ircutianum subsp. ircutianum and the N Spanish (Cordillera Cantábrica) L. cantabricum and the S French L. delarbrei subsp. delabrei (northern Massif Central) and L. meridionale (western Massif Central). The inclusion of differentiation patterns in morphological (leaf dissection and shape), ecological (climatological and edaphic niches), and geographical respects (pair-wise tests of sympatry vs. allopatry) together with the application of a procedural protocol for species-rank decisions (the 'Wettstein tesseract') led to the proposal of an acknowledgement of the eight predefined morphotaxon hypotheses as six species (two of them with two subspecies). Nomenclatural consequences following from these results are drawn and lead to the following new combinations: Leucanthemum delarbrei subsp. meridionale (Legrand) Oberpr., T.Ott & Vogt, comb. nov. and Leucanthemum ruscinonense (Jeanb. & Timb.-Lagr.) Oberpr., T.Ott & Vogt, comb. et stat. nov.
Collapse
|
3
|
Kitchener AC, Hoffmann M, Yamaguchi N, Breitenmoser-Würsten C, Wilting A. A system for designating taxonomic certainty in mammals and other taxa. Mamm Biol 2022. [DOI: 10.1007/s42991-021-00205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Mahmoudi A, Kryštufek B, Sludsky A, Schmid BV, DE Almeida AMP, Lei X, Ramasindrazana B, Bertherat E, Yeszhanov A, Stenseth NC, Mostafavi E. Plague reservoir species throughout the world. Integr Zool 2021; 16:820-833. [PMID: 33264458 DOI: 10.1111/1749-4877.12511] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plague has been known since ancient times as a re-emerging infectious disease, causing considerable socioeconomic burden in regional hotspots. To better understand the epidemiological cycle of the causative agent of the plague, its potential occurrence, and possible future dispersion, one must carefully consider the taxonomy, distribution, and ecological requirements of reservoir-species in relation either to natural or human-driven changes (e.g. climate change or urbanization). In recent years, the depth of knowledge on species taxonomy and species composition in different landscapes has undergone a dramatic expansion, driven by modern taxonomic methods such as synthetic surveys that take into consideration morphology, genetics, and the ecological setting of captured animals to establish their species identities. Here, we consider the recent taxonomic changes of the rodent species in known plague reservoirs and detail their distribution across the world, with a particular focus on those rodents considered to be keystone host species. A complete checklist of all known plague-infectable vertebrates living in plague foci is provided as a Supporting Information table.
Collapse
Affiliation(s)
- Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Iran
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Alexander Sludsky
- Russian Research Anti-Plague Institute «Microbe», Saratov, Russian Federation
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Xu Lei
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Eric Bertherat
- Department of Infectious Hazard Management, Health Emergencies Programme, WHO, Geneva, Switzerland
| | - Aidyn Yeszhanov
- M.Aikimbaev's National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran
| |
Collapse
|
5
|
Conix S, Garnett ST, Thiele KR, Christidis L, van Dijk PP, Bánki OS, Barik SK, Buckeridge JS, Costello MJ, Hobern D, Kirk PM, Lien A, Nikolaeva S, Pyle RL, Thomson SA, Zhang ZQ, Zachos FE. Towards a global list of accepted species III. Independence and stakeholder inclusion. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00496-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Thiele KR, Conix S, Pyle RL, Barik SK, Christidis L, Costello MJ, van Dijk PP, Kirk P, Lien A, Thomson SA, Zachos FE, Zhang ZQ, Garnett ST. Towards a global list of accepted species I. Why taxonomists sometimes disagree, and why this matters. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00495-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Steiner M, Huettmann F. Justification for a taxonomic conservation update of the rodent genus Tamiasciurus: addressing marginalization and mis-prioritization of research efforts and conservation laissez-faire for a sustainability outlook. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1857852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- M. Steiner
- Institute for Arctic Biology, Department of Conservation Ecology, EWHALE Lab, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - F. Huettmann
- Institute for Arctic Biology, Department of Conservation Ecology, EWHALE Lab, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
8
|
Padial JM, De la Riva I. A paradigm shift in our view of species drives current trends in biological classification. Biol Rev Camb Philos Soc 2020; 96:731-751. [PMID: 33368983 DOI: 10.1111/brv.12676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Discontent about changes in species classifications has grown in recent years. Many of these changes are seen as arbitrary, stemming from unjustified conceptual and methodological grounds, or leading to species that are less distinct than those recognised in the past. We argue that current trends in species classification are the result of a paradigm shift toward which systematics and population genetics have converged and that regards species as the phylogenetic lineages that form the branches of the Tree of Life. Species delimitation now consists of determining which populations belong to which individual phylogenetic lineage. This requires inferences on the process of lineage splitting and divergence, a process to which we have only partial access through incidental evidence and assumptions that are themselves subject to refutation. This approach is not free of problems, as horizontal gene transfer, introgression, hybridisation, incorrect assumptions, sampling and methodological biases can mislead inferences of phylogenetic lineages. Increasing precision is demanded through the identification of both sister relationships and processes blurring or mimicking phylogeny, which has triggered, on the one hand, the development of methods that explicitly address such processes and, on the other hand, an increase in geographical and character data sampling necessary to infer/test such processes. Although our resolving power has increased, our knowledge of sister relationships - what we designate as species resolution - remains poor for many taxa and areas, which biases species limits and perceptions about how divergent species are or ought to be. We attribute to this conceptual shift the demise of trinominal nomenclature we are witnessing with the rise of subspecies to species or their rejection altogether; subspecies are raised to species if they are found to correspond to phylogenetic lineages, while they are rejected as fabricated taxa if they reflect arbitrary partitions of continuous or non-hereditary variation. Conservation strategies, if based on taxa, should emphasise species and reduce the use of subspecies to avoid preserving arbitrary partitions of continuous variation; local variation is best preserved by focusing on biological processes generating ecosystem resilience and diversity rather than by formally naming diagnosable units of any kind. Since many binomials still designate complexes of species rather than individual species, many species have been discovered but not named, geographical sampling is sparse, gene lineages have been mistaken for species, plenty of species limits remain untested, and many groups and areas lack adequate species resolution, we cannot avoid frequent changes to classifications as we address these problems. Changes will not only affect neglected taxa or areas, but also popular ones and regions where taxonomic research remained dormant for decades and old classifications were taken for granted.
Collapse
Affiliation(s)
- José M Padial
- Department of Herpetology, American Museum of Natural History, Central Park West & 79th St., New York, NY, 10024, U.S.A.,Department of Biology, Bronx Community College, City University of New York, 2155 University Avenue, Bronx, NY, 10453, U.S.A
| | - Ignacio De la Riva
- Museo Nacional de Ciencias Naturales-CSIC, José Gutiérrez Abascal 2, Madrid, 28006, Spain
| |
Collapse
|
9
|
Cruz-Salazar B, Ruiz-Montoya L. Population genetics of the common opossum, Didelphis marsupialis (Marsupialia: Didelphimorphia: Didelphidae), in southeastern Mexico. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2020. [DOI: 10.1080/01650521.2020.1844971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Bárbara Cruz-Salazar
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma de Tlaxcala, Centro Tlaxcala de Biología de la Conducta, La Loma de Xicohténcatl, Mexico
| | - Lorena Ruiz-Montoya
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Mexico
| |
Collapse
|
10
|
Garnett ST, Thomson SA. Are the implications for conservation of a major taxonomic revision of the world’s birds’ simply serendipity? Anim Conserv 2020. [DOI: 10.1111/acv.12628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. T. Garnett
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwin Northern Territory Australia
| | - S. A. Thomson
- Chelonian Research InstituteOviedo FL USA
- Museu de Zoologia da Universidade de São PauloIpirangaSão Paulo SP Brazil
| |
Collapse
|
11
|
Abstract
Lists of species underpin many fields of human endeavour, but there are currently no universally accepted principles for deciding which biological species should be accepted when there are alternative taxonomic treatments (and, by extension, which scientific names should be applied to those species). As improvements in information technology make it easier to communicate, access, and aggregate biodiversity information, there is a need for a framework that helps taxonomists and the users of taxonomy decide which taxa and names should be used by society whilst continuing to encourage taxonomic research that leads to new species discoveries, new knowledge of species relationships, and the refinement of existing species concepts. Here, we present 10 principles that can underpin such a governance framework, namely (i) the species list must be based on science and free from nontaxonomic considerations and interference, (ii) governance of the species list must aim for community support and use, (iii) all decisions about list composition must be transparent, (iv) the governance of validated lists of species is separate from the governance of the names of taxa, (v) governance of lists of accepted species must not constrain academic freedom, (vi) the set of criteria considered sufficient to recognise species boundaries may appropriately vary between different taxonomic groups but should be consistent when possible, (vii) a global list must balance conflicting needs for currency and stability by having archived versions, (viii) contributors need appropriate recognition, (ix) list content should be traceable, and (x) a global listing process needs both to encompass global diversity and to accommodate local knowledge of that diversity. We conclude by outlining issues that must be resolved if such a system of taxonomic list governance and a unified list of accepted scientific names generated are to be universally adopted. Currently there are no rules on compiling lists of accepted names of species, meaning that many people use a variety of competing lists, which results in confusion and inefficiencies. This Perspective article provides principles for developing global lists of species that are needed if such lists are to be accepted by both taxonomists and users of taxonomy.
Collapse
|