1
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
2
|
Emerging Trends in Nano-Driven Immunotherapy for Treatment of Cancer. Vaccines (Basel) 2023; 11:vaccines11020458. [PMID: 36851335 PMCID: PMC9968063 DOI: 10.3390/vaccines11020458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Despite advancements in the development of anticancer medications and therapies, cancer still has the greatest fatality rate due to a dismal prognosis. Traditional cancer therapies include chemotherapy, radiotherapy, and targeted therapy. The conventional treatments have a number of shortcomings, such as a lack of selectivity, non-specific cytotoxicity, suboptimal drug delivery to tumour locations, and multi-drug resistance, which results in a less potent/ineffective therapeutic outcome. Cancer immunotherapy is an emerging and promising strategy to elicit a pronounced immune response against cancer. Immunotherapy stimulates the immune system with cancer-specific antigens or immune checkpoint inhibitors to overcome the immune suppressive tumour microenvironment and kill the cancer cells. However, delivery of the antigen or immune checkpoint inhibitors and activation of the immune response need to circumvent the issues pertaining to short lifetimes and effect times, as well as adverse effects associated with off-targeting, suboptimal, or hyperactivation of the immune system. Additional challenges posed by the tumour suppressive microenvironment are less tumour immunogenicity and the inhibition of effector T cells. The evolution of nanotechnology in recent years has paved the way for improving treatment efficacy by facilitating site-specific and sustained delivery of the therapeutic moiety to elicit a robust immune response. The amenability of nanoparticles towards surface functionalization and tuneable physicochemical properties, size, shape, and surfaces charge have been successfully harnessed for immunotherapy, as well as combination therapy, against cancer. In this review, we have summarized the recent advancements made in choosing different nanomaterial combinations and their modifications made to enable their interaction with different molecular and cellular targets for efficient immunotherapy. This review also highlights recent trends in immunotherapy strategies to be used independently, as well as in combination, for the destruction of cancer cells, as well as prevent metastasis and recurrence.
Collapse
|
3
|
Alassaif FR, Alassaif ER, Kaushik AK, Dhanapal J. Enhanced Anti-Proliferative Effect of Carboplatin in Ovarian Cancer Cells Exploiting Chitosan-Poly (Lactic Glycolic Acid) Nanoparticles. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:74-82. [PMID: 35021983 DOI: 10.2174/1872210516666220111160341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The present article aimed to enhance the therapeutic efficacy of carboplatin (CP) using the formulation of chitosan-poly (lactic glycolic acid) nanoparticles (CS-PLGA NPs). METHODS Nanoparticles were synthesized by an ionic gelation method and were characterized for their morphology, particle size, and surface potential measurements by TEM and zeta sizer. This study was highlighted for the evaluation of drug entrapment, loading and in vitro drug release capabilities of the prepared nanoparticles by spectrophotometric analysis. The stability study was also conducted after 3 months for their particle size, zeta potential, drug loading and encapsulation efficiencies. Further, ovarian cancer cell line PEO1 was used to evaluate the toxicity and efficacy of nano-formulation by MTT assay. Additionally, the study was evaluated for apoptosis using flow cytometric analysis. RESULTS The CS-PLGA-CP NPs were uniform and spherical in shape. The particle size and zeta potential of CS-PLGA-CP NPs were measured to be 156 ±6.8 nm and +52 ±2.4 mV, respectively. High encapsulation (87.4 ± 4.5%) and controlled retention capacities confirmed the efficiency of the prepared nanoparticles in a time and dose-dependent manner. The cytotoxicity assay results also showed that CS-PLGA-CP NPs have a high efficiency on PEO1 cells compared to the free drug. The flow cytometric result showed 64.25% of the PEO1 cells were apoptotic, and 8.42% were necrotic when treated with CS-PLGA-CP NPs. CONCLUSION Chitosan-PLGA combinational polymeric nanoparticles were not only steady but also non-toxic. Our experiments revealed that the chitosan-PLGA nanoparticles could be used as a challenging vehicle candidate for drug delivery for the therapeutic treatment of ovarian cancer.
Collapse
Affiliation(s)
- Fatima Redah Alassaif
- Department of Central Military Laboratory & Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Eman Redah Alassaif
- Department of Clinical Biochemistry, Dr. Sulaiman Alhabeb Hospital, Al-Khobar, Saudi Arabia
| | - Amit Kumar Kaushik
- Department of Zoology, Government College for Women Gohana, Haryana, India
| | | |
Collapse
|
4
|
Wu Y, Zhang Z, Wei Y, Qian Z, Wei X. Nanovaccines for cancer immunotherapy: Current knowledge and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Li WH, Su JY, Li YM. Rational Design of T-Cell- and B-Cell-Based Therapeutic Cancer Vaccines. Acc Chem Res 2022; 55:2660-2671. [PMID: 36048514 DOI: 10.1021/acs.accounts.2c00360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer vaccines provide an efficient strategy to enhance tumor-specific immune responses by redeploying immune systems. Despite the approval of the first cancer vaccine (Sipuleucel-T) by the U.S. Food and Drug Administration in 2010, most therapeutic cancer vaccines fail in clinical trials. Basically, tumor-specific immune responses rely on not only T-cell but also B-cell immunity, which indicates that cancer vaccines should leverage both arms of the adaptive immune system. For example, CD8+ T cells activated by antigen-presenting cells (APCs) recognize and directly kill tumor cells via peptide-bound major histocompatibility complex (pMHC). B cells recognize antigen with no need of pMHC and require CD4+ T cells for sufficient activation and antibody generation, enabling antibody-mediated nondirect killing on tumor cells. Considering the different mechanisms of T-cell and B-cell activation, the rational design of therapeutic cancer vaccines should consider several factors, including antigen selection and recognition, immune activation, vaccine delivery, and repeatable vaccination, which can be advanced by chemical strategies.In this Account, we summarize our recent contributions to the development of effective T-cell- and B-cell-based therapeutic cancer vaccines. For T-cell-based vaccines, we focus on adjuvants as the key component for controllable APC activation and T-cell priming. Not only synthetic molecular agonists of pattern recognition receptors (PRRs) but also adjuvant nanomaterials were explored to satisfy diversiform vaccine designs. For example, a type of natural cyclic dinucleotide (CDN) that was chemically modified with fluorination and ipsilateral phosphorothioation to activate the stimulator of interferon gene (STING) was found to mediate antitumor responses. It retains structural similarity to the parent CDN scaffold but possesses increased stability, cellular uptake, and immune activation for antitumor treatment. It also facilitates facile conjugation with other agonists, which not only enhances APC-targeting delivery but also balances cellular and humoral antitumor responses. We also explored the intrinsic properties of nanomaterials that allow them to serve as adjuvants. A black phosphorus nanosheet-based nanovaccine was constructed and found to strongly potentiate antigen-specific T-cell antitumor immune responses through multiple immune-potentiating properties, leading to a highly integrated nanomaterial-based adjuvant design. For B-cell-based vaccines, multicomponent and multivalent strategies were applied to improve the immunogenicity. A multicomponent linear vaccine conjugate coordinates helper T (Th) cells and APCs to proliferate and differentiates B cells for enhanced antitumor immunoglobulin G antibody responses. To further improve antigen recognition, clustered designs on a multivalent epitope were applied by generating various structures, including branched lysine-based peptides, natural multivalent scaffold molecules, and self-assembled nanofibers. We also engineered nano- and microvaccine systems to optimize systemic and localized vaccination. A multilayer-assembled nanovaccine successfully integrated antigens and multiple agonists to modulate APC activation. A DNA hydrogel contributed to the control of APC's immune behaviors, including cell recruitment, activation, and migration, and induced robust antitumor responses as an all-in-one designable platform. In this Account, by summarizing strategies for both T-cell- and B-cell-based vaccine design, we not only compare the differences but also address the intrinsic uniformity between such vaccine designs and further discuss the potential of a combined T-cell- and B-cell-based vaccine, which highlights the applicability and feasibility of chemical strategies.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China.,Beijing Institute for Brain Disorders, 10 Youanmenwai Xitoutiao, Fengtai District, Beijing 100069, China.,Center for Synthetic and Systems Biology, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| |
Collapse
|
6
|
Argenziano M, Occhipinti S, Scomparin A, Angelini C, Novelli F, Soster M, Giovarelli M, Cavalli R. Exploring chitosan-shelled nanobubbles to improve HER2 + immunotherapy via dendritic cell targeting. Drug Deliv Transl Res 2022; 12:2007-2018. [PMID: 35672651 PMCID: PMC9172608 DOI: 10.1007/s13346-022-01185-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Immunotherapy is a valuable approach to cancer treatment as it is able to activate the immune system. However, the curative methods currently in clinical practice, including immune checkpoint inhibitors, present some limitations. Dendritic cell vaccination has been investigated as an immunotherapeutic strategy, and nanotechnology-based delivery systems have emerged as powerful tools for improving immunotherapy and vaccine development. A number of nanodelivery systems have therefore been proposed to promote cancer immunotherapy. This work aims to design a novel immunotherapy nanoplatform for the treatment of HER2 + breast cancer, and specially tailored chitosan-shelled nanobubbles (NBs) have been developed for the delivery of a DNA vaccine. The NBs have been functionalized with anti-CD1a antibodies to target dendritic cells (DCs). The NB formulations possess dimensions of approximately 300 nm and positive surface charge, and also show good physical stability up to 6 months under storage at 4 °C. In vitro characterization has confirmed that these NBs are capable of loading DNA with good encapsulation efficiency (82%). The antiCD1a-functionalized NBs are designed to target DCs, and demonstrated the ability to induce DC activation in both human and mouse cell models, and also elicited a specific immune response that was capable of slowing tumor growth in mice in vivo. These findings are the proof of concept that loading a tumor vaccine into DC-targeted chitosan nanobubbles may become an attractive nanotechnology approach for the future immunotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Marco Soster
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
7
|
Santana JPP, Marcato PD, Massaro TNC, Godoy NL, Anibal FDF, Borra RC. Efficacy of instillation of MB49 cells and thermoreversible polymeric gel in urothelial bladder carcinoma immunization. Lab Anim Res 2022; 38:11. [PMID: 35513853 PMCID: PMC9069826 DOI: 10.1186/s42826-022-00122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Activating the immune system for therapeutic benefit has long been a goal in immunology, especially in cancer treatment, but the low immunogenicity of antitumor vaccines remains a limiting factor in the fight against malignant neoplasms. The increase in the immunogenicity of weak antigens using biodegradable polymers, such as chitosan, has been observed in the field of cancer immunotherapy. However, the effects of the vaccine using a combination of tumor cells and a thermoreversible delivery system based on chitosan in bladder cancer models, mainly using the intravesical route to stimulate the antitumor immune response, are unknown. We propose to evaluate the efficacy of a polymeric gel matrix (TPG) formed by poloxamer 407 and chitosan, associated with MB49 cells, as an intravesical antitumor vaccine using a C57BL/6 murine model of bladder urothelial carcinoma. The effectiveness of immunization was analyzed with the formation of three experimental groups: Control, TPG and TPG + MB49. In the vaccination phase, the TPG + MB49 group underwent a traumatic injury to the bladder wall with immediate intravesical instillation of the vaccine compound containing MB49 cells embedded in TPG. The TPG group was subjected to the same procedures using the compound containing the gel diluted in medium, and the control group using only the medium. After 21 days, the animals were challenged with tumor induction.
Results In vitro tests showed loss of viability and inability to proliferate after exposure to TPG. In vivo tests showed that animals previously immunized with TPG + MB49 had higher cumulative survival, as well as significantly lower bladder weight and size in contrast to the other two groups that did not show a statistically different tumor evolution. In addition, the splenocytes of these animals also showed a higher rate of antitumor cytotoxicity in relation to the TPG and control groups.
Conclusions We can conclude that MB49 cells embedded in a polymeric thermoreversible gel matrix with chitosan used in the form of an intravesical vaccine are able to stimulate the immune response and affect the development of the bladder tumor in an orthotopic and syngeneic C57BL/6 murine model.
Collapse
Affiliation(s)
| | - Priscyla Daniely Marcato
- GNanoBio, School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Naiane Lima Godoy
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, Brazil
| | | | - Ricardo Carneiro Borra
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, Brazil
| |
Collapse
|
8
|
Abd El-Aziz WR, Ibrahim H, Elzorkany HE, Mohammed GM, Mikhael CA, Fathy NA, Elshoky HA. Evaluation of cell-mediated immunity of E.coli nanovaccines in chickens. J Immunol Methods 2022; 506:113280. [DOI: 10.1016/j.jim.2022.113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/14/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
9
|
Dmour I, Islam N. Recent advances on chitosan as an adjuvant for vaccine delivery. Int J Biol Macromol 2022; 200:498-519. [PMID: 34973993 DOI: 10.1016/j.ijbiomac.2021.12.129] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Chitosan (CS) is a natural polymer derived from chitin that has wide applications in drugs, vaccines, and antigen delivery. The distinctive mucoadhesive, biocompatibility, biodegradable, and less toxic properties of chitosan compared to the currently used vaccine adjuvants made it a promising candidate for use as an adjuvant/carrier in vaccine delivery. In addition, chitosan exhibits intrinsic immunomodulating properties making it a suitable adjuvant in preparing vaccines delivery systems. Nanoparticles (NPs) of chitosan and its derivatives loaded with antigen have been shown to induce cellular and humoral responses. Versatility in the physicochemical properties of chitosan can provide an excellent opportunity to engineer antigen-specific adjuvant/delivery systems. This review discusses the recent advances of chitosan and its derivatives as adjuvants in vaccine deliveryand the published literature in the last fifteen years. The impact of physicochemical properties of chitosan on vaccine formulation has been described in detail. Applications of chitosan and its derivatives, their physicochemical properties, and mechanisms in enhancing immune responses have been discussed. Finally, challenges and future aspects of chitosan use has been pointed out.
Collapse
Affiliation(s)
- Isra Dmour
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
10
|
MUC1 vaccines using β-cyclodextrin grafted chitosan (CS-g-CD) as carrier via host-guest interaction elicit robust immune responses. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Anderluh M, Berti F, Bzducha‐Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic‐Cincovic M, Marradi M, Ozil M, Polito L, Reina‐Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021; 288:4746-4772. [PMID: 33752265 PMCID: PMC8453523 DOI: 10.1111/febs.15830] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.
Collapse
Affiliation(s)
- Marko Anderluh
- Chair of Pharmaceutical ChemistryFaculty of PharmacyUniversity of LjubljanaSlovenia
| | | | - Anna Bzducha‐Wróbel
- Department of Biotechnology and Food MicrobiologyWarsaw University of Life Sciences‐SGGWPoland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Federica Compostella
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Katarzyna Durlik
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Xhenti Ferhati
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Rikard Holmdahl
- Division of Medical Inflammation ResearchDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Wieslaw Kaca
- Department of Microbiology and ParasitologyJan Kochanowski UniversityKielcePoland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo)University of MilanItaly
| | - Milena Marinovic‐Cincovic
- Vinča Institute of Nuclear Sciences ‐ National Institute of the Republic of SerbiaUniversity of BelgradeSerbia
| | - Marco Marradi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Musa Ozil
- Department of ChemistryFaculty of Arts and SciencesRecep Tayyip Erdogan University RizeTurkey
| | | | | | - Celso A. Reis
- I3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyInstituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortugal
| | - Robert Sackstein
- Department of Translational Medicinethe Translational Glycobiology InstituteHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIComplesso Universitario Monte Sant’AngeloNapoliItaly
| | - Urban Švajger
- Blood Transfusion Center of SloveniaLjubljanaSlovenia
| | - Ondřej Vaněk
- Department of BiochemistryFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology LaboratoryJosep Carreras Leukaemia Research InstituteBadalonaSpain
| | - Barbara Richichi
- Department of Chemistry ‘Ugo Schiff’University of FlorenceFlorenceItaly
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and ImmunologyCancer Center AmsterdamAmsterdam Infection and Immunity InstituteAmsterdam UMCVrije Universiteit AmsterdamNetherlands
| |
Collapse
|
13
|
Ren H, Li R, Chen Z, Li L, Wang H. Modification Methods and Applications of Self-Assembly Peptides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Thakur N, Thakur S, Chatterjee S, Das J, Sil PC. Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Front Chem 2020; 8:597806. [PMID: 33409265 PMCID: PMC7779678 DOI: 10.3389/fchem.2020.597806] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of many forms of cancer by stimulating body's own immune system. This therapy not only eradicates tumor cells by inducing strong anti-tumor immune response but also prevent their recurrence. The clinical cancer immunotherapy faces some insurmountable challenges including high immune-mediated toxicity, lack of effective and targeted delivery of cancer antigens to immune cells and off-target side effects. However, nanotechnology offers some solutions to overcome those limitations, and thus can potentiate the efficacy of immunotherapy. This review focuses on the advancement of nanoparticle-mediated delivery of immunostimulating agents for efficient cancer immunotherapy. Here we have outlined the use of the immunostimulatory nanoparticles as a smart carrier for effective delivery of cancer antigens and adjuvants, type of interactions between nanoparticles and the antigen/adjuvant as well as the factors controlling the interaction between nanoparticles and the receptors on antigen presenting cells. Besides, the role of nanoparticles in targeting/activating immune cells and modulating the immunosuppressive tumor microenvironment has also been discussed extensively. Finally, we have summarized some theranostic applications of the immunomodulatory nanomaterials in treating cancers based on the earlier published reports.
Collapse
Affiliation(s)
- Neelam Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Saloni Thakur
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Joydeep Das
- Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, India
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
15
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
16
|
Alizadeh L, Zarebkohan A, Salehi R, Ajjoolabady A, Rahmati-Yamchi M. Chitosan-based nanotherapeutics for ovarian cancer treatment. J Drug Target 2019; 27:839-852. [DOI: 10.1080/1061186x.2018.1564923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leila Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ajjoolabady
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati-Yamchi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Mohebbi S, Nezhad MN, Zarrintaj P, Jafari SH, Gholizadeh SS, Saeb MR, Mozafari M. Chitosan in Biomedical Engineering: A Critical Review. Curr Stem Cell Res Ther 2019; 14:93-116. [PMID: 30207244 DOI: 10.2174/1574888x13666180912142028] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Biomedical engineering seeks to enhance the quality of life by developing advanced materials and technologies. Chitosan-based biomaterials have attracted significant attention because of having unique chemical structures with desired biocompatibility and biodegradability, which play different roles in membranes, sponges and scaffolds, along with promising biological properties such as biocompatibility, biodegradability and non-toxicity. Therefore, chitosan derivatives have been widely used in a vast variety of uses, chiefly pharmaceuticals and biomedical engineering. It is attempted here to draw a comprehensive overview of chitosan emerging applications in medicine, tissue engineering, drug delivery, gene therapy, cancer therapy, ophthalmology, dentistry, bio-imaging, bio-sensing and diagnosis. The use of Stem Cells (SCs) has given an interesting feature to the use of chitosan so that regenerative medicine and therapeutic methods have benefited from chitosan-based platforms. Plenty of the most recent discussions with stimulating ideas in this field are covered that could hopefully serve as hints for more developed works in biomedical engineering.
Collapse
Affiliation(s)
- Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, Iran
| | | | - Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saman Seyed Gholizadeh
- Department of Microbiology, College of Basic Science, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Mohammad Reza Saeb
- Departments of Resin and Additives, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Musetti S, Huang L. Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy. ACS NANO 2018; 12:11740-11755. [PMID: 30508378 DOI: 10.1021/acsnano.8b05893] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoscience has long been lauded as a method through which tumor-associated barriers could be overcome. As successful as cancer immunotherapy has been, limitations associated with the tumor microenvironment or side effects of systemic treatment have become more apparent. In this Review, we seek to lay out the therapeutic challenges associated with the tumor microenvironment and the ways in which nanoscience is being applied to remodel the tumor microenvironment and increase the susceptibility of many cancer types to immunotherapy. We detail the nanomedicines on the cutting edge of cancer immunotherapy and how their interactions with the tumor microenvironment make them more effective than systemically administered immunotherapies.
Collapse
Affiliation(s)
- Sara Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
19
|
Mazancová P, Némethová V, Treľová D, Kleščíková L, Lacík I, Rázga F. Dissociation of chitosan/tripolyphosphate complexes into separate components upon pH elevation. Carbohydr Polym 2018; 192:104-110. [DOI: 10.1016/j.carbpol.2018.03.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
|