1
|
Zhong Y, Zhang J, Fang L, Cheang UK. MOF-Modified Microrollers for Bioimaging and Sustained Antibiotic Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47163-47177. [PMID: 39196769 DOI: 10.1021/acsami.4c08535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Central nervous system (CNS) infections caused by neurosurgery or intrathecal injection of contaminated cerebrospinal fluid are a common and difficult complication. Drug-delivery microrobots are among the latest solutions proposed for antibacterial applications. However, there is a lack of research into developing microrobots with the ability to sustain antibody delivery while can move efficiently in the CNS. Here, biocompatible antibacterial metal-organic framework (MOF)-modified microrollers (MMRs) to combat CNS infections are proposed. The MMRs are iron-based metal-organic framework (NH2-MIL-101(Fe)) modified for enhanced adsorption and Fe/Al coated for magnetic actuation and biocompatibility. The MMRs have demonstrated a faster and unhindered magnetically actuated motion on the uneven biological tissue surface in an organ-on-a-chip that mimicked the CNS compared to it on smooth surface. CFD results consistently align with the experimental findings. The MMRs can be loaded with rhodamine 6G for bioimaging, allowing them to be imaged through sections of the main human tissues by fluorescence microscopy, or tetracycline hydrochloride for antibiotic delivery, allowing them to inhibit the growth of Staphylococcus aureus biofilms by sustained release of antibiotics for 9 days. This study provides a strategy to integrate high-capacity adsorption material with magnetically actuated locomotion for long-term targeted antibacterial applications in biological environments.
Collapse
Affiliation(s)
- Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junkai Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lijun Fang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Ren TL, Zhang XN, Hu JJ, Wen HR, Liu SJ, Peng Y. Stable terbium metal-organic framework with turn-on and blue-shift fluorescence sensing for acidic amino acids (L-aspartate and L-glutamine) and cations (Al 3+ and Ga 3+). Dalton Trans 2022; 51:14858-14864. [PMID: 36125074 DOI: 10.1039/d2dt02632e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A terbium-based metal-organic framework, namely {[Tb2(ADIP)(H2ADIP)(HCOOH)(H2O)2]·2DMF·2H2O}n (Tb-MOF, H4ADIP = 5,5'-(anthracene-9,10-diyl) diisophthalic acid), was synthesized and characterized. The single-crystal structure analysis shows that the Tb-MOF crystallizes in the C2/C space group in the monoclinic system and its asymmetric unit contains two TbIII ions, one ADIP4-, one H2ADIP2-, one coordinating formic acid and two coordination water molecules. Tb-MOF has a three-dimensional porous structure with a porosity of 41.5%. Tb-MOF is a highly selective and sensitive fluorescence turn-on and blue-shift sensor for L-aspartate (Asp), L-glutamine (Glu), Al3+ and Ga3+with detection limits of 0.25, 0.23, 0.069 and 0.079 μM, respectively. Experimental studies and theoretical calculations show that the sensing process is mainly attributed to the energy transfer and the absorbance caused enhancement (ACE) mechanism. Therefore, Tb-MOF is a good multi-response fluorescence sensor for acidic amino acids and Al3+, Ga3+cations.
Collapse
Affiliation(s)
- Tai-Lin Ren
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Xiao-Nuan Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
3
|
You LX, Zhang L, Cao SY, Liu W, Xiong G, Van Deun R, He YK, Ding F, Dragutan V, Sun YG. Synthesis, structure and luminescence of 3D lanthanide metal-organic frameworks based on 1,3-bis(3,5-dicarboxyphenyl) imidazolium chloride. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Sayegh S, Tanos F, Nada A, Lesage G, Zaviska F, Petit E, Rouessac V, Iatsunskyi I, Coy E, Viter R, Damberga D, Weber M, Razzouk A, Stephan J, Bechelany M. Tunable TiO 2-BN-Pd nanofibers by combining electrospinning and atomic layer deposition to enhance photodegradation of acetaminophen. Dalton Trans 2022; 51:2674-2695. [PMID: 35088785 DOI: 10.1039/d1dt03715c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The demand for fresh and clean water sources is increasing globally, and there is a need to develop novel routes to eliminate micropollutants and other harmful species from water. Photocatalysis is a promising alternative green technology that has shown great performance in the degradation of persistent pollutants. Titanium dioxide is the most used catalyst owing to its attractive physico-chemical properties, but this semiconductor presents limitations in the photocatalysis process due to the high band gap and the fast recombination of the photogenerated carriers. Herein, a novel photocatalyst has been developed, based on titanium dioxide nanofibers (TiO2 NFs) synthesized by electrospinning. The TiO2 NFs were coated by atomic layer deposition (ALD) to grow boron nitride (BN) and palladium (Pd) on their surface. The UV-Vis spectroscopy measurements confirmed the increase of the band gap and the extension of the spectral response to the visible range. The obtained TiO2/BN/Pd nanofibers were then tested for photocatalysis, and showed a drastic increase of acetaminophen (ACT) degradation (>90%), compared to only 20% degradation obtained with pure TiO2 after 4 h of visible light irradiation. The high photocatalytic activity was attributed to the good dispersion of Pd NPs on TiO2-BN nanofibers, leading to a higher transfer of photoexcited hole carriers and a decrease of photogenerated electron-charge recombination. To confirm its reusability, recycling tests on the hybrid photocatalyst TiO2/BN/Pd have been performed, showing a good stability over 5 cycles under UV and visible light. In addition, toxicity tests as well as quenching tests were carried out to check the toxicity of the byproducts formed and to determine active species responsible for the degradation. The results presented in this work demonstrate the potential of TiO2/BN/Pd nanomaterials, and open new prospects for the preparation of tunable photocatalysts.
Collapse
Affiliation(s)
- Syreina Sayegh
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
- Laboratoire d'Analyses Chimiques, LAC - Lebanese University, Faculty of Sciences, Jdeidet 90656, Lebanon
| | - Fida Tanos
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
- Laboratoire d'Analyses Chimiques, LAC - Lebanese University, Faculty of Sciences, Jdeidet 90656, Lebanon
| | - Amr Nada
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - François Zaviska
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Eddy Petit
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Vincent Rouessac
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Roman Viter
- Institut of Atomic Physics and Spectroscopy, University of Latvia, Rainis Blvd., LV-1586, Riga, Latvia
- Center for Collective Use of Scientific Equipment, Sumy State University, 31, Sanatornaya st, 40018 Sumy, Ukraine
| | - Daina Damberga
- Institut of Atomic Physics and Spectroscopy, University of Latvia, Rainis Blvd., LV-1586, Riga, Latvia
| | - Matthieu Weber
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France
| | - Antonio Razzouk
- Laboratoire d'Analyses Chimiques, LAC - Lebanese University, Faculty of Sciences, Jdeidet 90656, Lebanon
| | - Juliette Stephan
- Laboratoire d'Analyses Chimiques, LAC - Lebanese University, Faculty of Sciences, Jdeidet 90656, Lebanon
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| |
Collapse
|
7
|
Sun Y, Du Q, Wang F, Dramou P, He H. Active metal single-sites based on metal–organic frameworks: construction and chemical prospects. NEW J CHEM 2021. [DOI: 10.1039/d0nj05029f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal single-point is a novel and potential design strategy that has been applied for the development of metal organic frameworks.
Collapse
Affiliation(s)
- Yiyang Sun
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Qiuzheng Du
- Department of Pharmacy
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Fangqi Wang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Pierre Dramou
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Hua He
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 211198
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education
| |
Collapse
|
8
|
Metzger KE, Moyer MM, Trewyn BG. Tandem Catalytic Systems Integrating Biocatalysts and Inorganic Catalysts Using Functionalized Porous Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kara E. Metzger
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Megan M. Moyer
- Department of Chemistry, The Citadel, Charleston, South Carolina 29409, United States
| | - Brian G. Trewyn
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|