1
|
Zaman W, Ayaz A, Park S. Nanomaterials in Agriculture: A Pathway to Enhanced Plant Growth and Abiotic Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2025; 14:716. [PMID: 40094659 PMCID: PMC11901503 DOI: 10.3390/plants14050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has emerged as a transformative field in agriculture, offering innovative solutions to enhance plant growth and resilience against abiotic stresses. This review explores the diverse applications of nanomaterials in agriculture, focusing on their role in promoting plant development and improving tolerance to drought, salinity, heavy metals, and temperature fluctuations. The method classifies nanomaterials commonly employed in plant sciences and examines their unique physicochemical properties that facilitate interactions with plants. Key mechanisms of nanomaterial uptake, transport, and influence on plants at the cellular and molecular levels are outlined, emphasizing their effects on nutrient absorption, photosynthetic efficiency, and overall biomass production. The molecular basis of stress tolerance is examined, highlighting nanomaterial-induced regulation of reactive oxygen species, antioxidant activity, gene expression, and hormonal balance. Furthermore, this review addresses the environmental and health implications of nanomaterials, emphasizing sustainable and eco-friendly approaches to mitigate potential risks. The integration of nanotechnology with precision agriculture and smart technologies promises to revolutionize agricultural practices. This review provides valuable insights into the future directions of nanomaterial R&D, paving the way for a more resilient and sustainable agricultural system.
Collapse
Affiliation(s)
- Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
2
|
Han Q, Wang C, Liu J, Wang C, Zhang H, Ni Q, Sun J, Wang Y, Sun B. Application of Nanozymes and its Progress in the Treatment of Ischemic Stroke. Transl Stroke Res 2024; 15:880-892. [PMID: 37555909 DOI: 10.1007/s12975-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Nanozymes are a new kind of material which has been applied since the beginning of this century, and its birth has promoted the development of chemistry, materials science, and biology. Nanozymes can be used as a substitute for natural enzyme and has a wide range of applications; therefore, it has attracted extensive attention from all sectors of the community, and the number of studies has constantly increasing. In this paper, we introduced the outstanding achievements in the field of nanozymes in recent years from the main function, the construction of nanozyme-based biosensors, and the treatment of ischemic stroke, and we also illustrated the internal mechanism and the catalytic principle. In the end, the obstacles and challenges in the future development of nanozymes were proposed.
Collapse
Affiliation(s)
- Qing Han
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Chengcheng Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jian Liu
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Cai Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Hongming Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Baoliang Sun
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
3
|
Abdullah KA, Tahir TF, Qader AF, Omer RA, Othman KA. Nanozymes: Classification and Analytical Applications - A Review. J Fluoresc 2024:10.1007/s10895-024-03930-3. [PMID: 39271600 DOI: 10.1007/s10895-024-03930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The recent discovery of a new class of nanomaterials called nanozymes, which have the action of enzymes and are thus of tremendous significance, has altered our understanding of these previously believed to be biologically inert nanomaterials. As a significant and exciting class of synthetic enzymes, nanozymes have distinct advantages over natural enzymes. They are less expensive, more stable, and easier to work with and store, making them a viable substitute. This practical advantage of nanozymes over natural enzymes reassures us about the potential of this new technology. Peroxidase-like nanozymes have been investigated for the purpose of creating adaptable biosensors via the use of molecularly imprinted polymers (MIPs) or particular bio recognition ligands, including enzymes, antibodies, and aptamers. This review delves into the distinctions between synthetic and natural enzymes, explaining their structures and analytical applications. It primarily focuses on carbon-based nanozymes, particularly those that contain both carbon and hydrogen, as well as metal-based nanozymes like Fe, Cu, and Au, along with their metal oxide (FeO, CuO), which have applications in many fields today. Analytical chemistry finds great use for nanozymes for sensing and other applications, particularly in comparison with other classical methods in terms of selectivity and sensitivity. Nanozymes, with their unique catalytic capabilities, have emerged as a crucial tool in the early diagnosis of COVID-19. Their application in nanozyme-based sensing and detection, particularly through colorimetric and fluorometric methods, has significantly advanced our ability to detect the virus at an early stage.
Collapse
Affiliation(s)
- Kurdo A Abdullah
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Tara F Tahir
- Department of Medical Microbiology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Aryan F Qader
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq.
| | - Rebaz A Omer
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, 44001, Iraq
| | - Khdir A Othman
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| |
Collapse
|
4
|
Farasati Far B, Maleki-Baladi R, Fathi-Karkan S, Babaei M, Sargazi S. Biomedical applications of cerium vanadate nanoparticles: a review. J Mater Chem B 2024; 12:609-636. [PMID: 38126443 DOI: 10.1039/d3tb01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cerium vanadate nanoparticles (CeVO4 NPs), which are members of the rare earth orthovanadate nanomaterial family, have generated considerable interest due to their diverse properties and prospective biomedical applications. The current study, which provides a comprehensive overview of the synthesis and characterization techniques for CeVO4 NPs, emphasizes the sonochemical method as an efficient and straightforward technique for producing CeVO4 NPs with tunable size and shape. This paper investigates the toxicity and biocompatibility of CeVO4 NPs, as well as their antioxidant and catalytic properties, which allow them to modify the redox state of biological systems and degrade organic pollutants. In addition, the most recent developments in the medicinal applications of CeVO4 NPs, such as cancer treatment, antibacterial activity, biosensing, and drug or gene delivery, are emphasized. In addition, the disadvantages of CeVO4 NPs, such as stability, aggregation, biodistribution, and biodegradation, are outlined, and several potential solutions are suggested. The research concludes with data and recommendations for developing and enhancing CeVO4 NPs in the biomedical industry.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Reza Maleki-Baladi
- Department of Animal Science, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
- Young Researchers and Elite Club, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
- Universal Scientific Education and Research Network (USERN), Bojnourd, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, 9417694735, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Jiang X, Liu W, Li Y, Zhu W, Liu H, Wen Y, Bai R, Luo X, Zhang G, Zhao Y. WO 3 nanosheets with peroxidase-like activity and carbon dots based ratiometric fluorescent strategy for xanthine oxidase activity sensing and inhibitor screening. Talanta 2024; 267:125129. [PMID: 37666084 DOI: 10.1016/j.talanta.2023.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The abnormal level of xanthine oxidase (XOD) often causes pathological changes, which are related to a series of diseases. Herein, a novel and sensitive ratiometric fluorescent sensing platform based on WO3 nanosheets and carbon dots (CDs) was constructed to detect XOD activity for the first time. Under the catalytic oxidation of xanthine by XOD, hydrogen peroxide (H2O2) was generated. In the presence of H2O2, WO3 nanosheets were able to catalyze the oxidation of o-phenylenediamine to generate 2,3-diaminophenazine (DAP) with a yellow fluorescence signal at 570 nm due to its great peroxidase-like activity. The oxidation product DAP was capable of quenching the fluorescence of CDs at 430 nm through the inner filter effect. Therefore, the fluorescence intensity ratio F570/F430 can be used for quantitative analysis of XOD activity. This assay displayed good linear relationships in the range of 0.005-0.05 U/L and 0.5-40 U/L with a detection limit of 0.002 U/L. In addition, this ratiometric fluorescent sensing platform was successfully applied to the determination of XOD in human serum samples and XOD inhibitor screening, demonstrating significant potential in disease diagnosis and drug-screening applications.
Collapse
Affiliation(s)
- Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Wanglisha Zhu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yulu Wen
- School of Science, Xihua University, Chengdu, 610039, China
| | - Ruyu Bai
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
6
|
Singh N, Sherin GR, Mugesh G. Antioxidant and Prooxidant Nanozymes: From Cellular Redox Regulation to Next-Generation Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202301232. [PMID: 37083312 DOI: 10.1002/anie.202301232] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/22/2023]
Abstract
Nanozymes, nanomaterials with enzyme-mimicking activity, have attracted tremendous interest in recent years owing to their ability to replace natural enzymes in various biomedical applications, such as biosensing, therapeutics, drug delivery, and bioimaging. In particular, the nanozymes capable of regulating the cellular redox status by mimicking the antioxidant enzymes in mammalian cells are of great therapeutic significance in oxidative-stress-mediated disorders. As the distinction of physiological oxidative stress (oxidative eustress) and pathological oxidative stress (oxidative distress) occurs at a fine borderline, it is a great challenge to design nanozymes that can differentially sense the two extremes in cells, tissues and organs and mediate appropriate redox chemical reactions. In this Review, we summarize the advances in the development of redox-active nanozymes and their biomedical applications. We primarily highlight the therapeutic significance of the antioxidant and prooxidant nanozymes in various disease model systems, such as cancer, neurodegeneration, and cardiovascular diseases. The future perspectives of this emerging area of research and the challenges associated with the biomedical applications of nanozymes are described.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Current address: Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 171 65, Solna, Sweden
| | - G R Sherin
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
7
|
Gülmez C. Glucose Tolerance, Antiprotease Activity and Total Oxidant/Antioxidant Capacity Studies of β-Glucosidase Hybrid Nanoflower for Industrial Applications. Chem Biodivers 2022; 19:e202200170. [PMID: 35675565 DOI: 10.1002/cbdv.202200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
β-Glycosidases, which catalyse the hydrolysis of glycoside bonds, have a wide spectrum of industrial applications. However, the reaction product glucose inhibits the activities of many β-glucosidases. Consequently, the reduced catalytic activities of the enzyme limit the industrial applications of the enzymes. For that reason, the studies dealing with maintaining the activities of the relevant enzymes at high glucose concentrations are a great interest among the researchers. In this context, herein, protein-inorganic hybrid nanoflowers were synthesized using β-glucosidase and copper ion by fast sonication method for 10 min. After characterization of synthesized nanoflowers, pH/temperature studies, glucose tolerance, anti-protease activity, recyclability and total antioxidant and total oxidative capacity levels were estimated. Accordingly, the optimum pHs of free β-glucosidase and hybrid nanoflower (β-GNF) were found to be 6 and 5, respectively, and the optimum temperature values for both hybrid nanoflowers and free enzyme were 40 °C. β-GNF exhibited better activity than free enzyme in low acidic and alkaline environment and at high temperature. The nanoflower retained nearly all (99 %) of its initial activity at all glucose concentrations (0.01, 0.05 and 0.1 mg/mL), especially at pH 5 and 6. Also, β-GNF maintained more than 90 % of initial activity at 0.01 and 0.05 mg/mL glucose at pH 4 and 7. It also displayed about 96 % high residual activity after proteinase K treatment for 3 h at 37 °C, while that of the free β-glucosidase was about 87 %. The reusability studies showed that β-GNF only lost ∼28 % of its initial activities at the end of five cycles. The hybrid nanoflowers at 5 mg/mL concentration exhibited the high total antioxidant capacity. In addition, low total oxidant capacity and oxidative stress index levels were recorded at the same concentration of the hybrid nanoflower. The findings of the present study revealed that β-GNFs may be evaluated as a candidate for various industrial applications due to its high glucose tolerance, anti-protease activity, reusability and resistance to low acidic/alkaline environment and high temperature.
Collapse
Affiliation(s)
- Canan Gülmez
- Department of Pharmacy Services, Tuzluca Vocational High School, Igdir University, 76000, Igdir, Türkiye
| |
Collapse
|
8
|
Bera A, Hasan MN, Pan N, Ghosh R, Alsantali RA, Altass HM, Obaid RJ, Ahmed SA, Pal SK. Implementation of surface functionalization of MnS nanoparticles for achieving novel optical properties and improving therapeutic potential. RSC Adv 2022; 12:20728-20734. [PMID: 35919133 PMCID: PMC9295011 DOI: 10.1039/d2ra01087a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/21/2022] [Indexed: 11/21/2022] Open
Abstract
The citrate capping of solubilized MnS nanoparticles in water produced photo-induced pH switching. Citrate-MnS shows remarkable ROS production at acidic and neutral pH in the dark, at pH 5 ROS production demonstrates bilirubin degradation and antimicrobial activity.
Collapse
Affiliation(s)
- Arpan Bera
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Md. Nur Hasan
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Nivedita Pan
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Ria Ghosh
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106, India
- Department of Biochemistry, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Reem A. Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hatem M. Altass
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Rami J. Obaid
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
9
|
|