1
|
Chu H, Wang H, Zhang Y, Li Z, Wang C, Dai D, Tang M. Inoculation With Ectomycorrhizal Fungi and Dark Septate Endophytes Contributes to the Resistance of Pinus spp. to Pine Wilt Disease. Front Microbiol 2021; 12:687304. [PMID: 34421845 PMCID: PMC8377431 DOI: 10.3389/fmicb.2021.687304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Pine wilt disease (PWD) is a deadly disease to pines (Pinus spp.) worldwide. The occurrence of PWD can reduce the relative abundance of root ectomycorrhizal fungi (ECMF) and dark septate endophytes (DSE). However, the effects of exogenous ECMF/DSE inoculation on the rhizosphere microbial community structure of Pinus tabulaeformis infected by pine wood nematode (PWN) is little known. Here, we tested how ECMF/DSE may improve resistance to PWD by quantifying microbial carbon biomass and soil enzymatic activity among different treatments at 6 and 9 months after PWN infection. Denaturing gradient gel electrophoresis (DGGE) was used to study the microbial community structure at 3, 6, and 9 months after PWN infection in the rhizosphere of P. tabulaeformis seedlings inoculated with ECMF/DSE. The results showed that exogenous ECMF/DSE inoculation reduced the disease severity caused by PWN infection. After PWN infection, the rhizosphere microbial carbon of seedlings inoculated with Amanita vaginata, Suillus bovinus, Gaeumannomyces cylindrosporus, and Paraphoma chrysanthemicola was 38.16, 49.67, 42.11, and 96.05% higher than that of the control group, respectively. Inoculation of ECMF/DSE inhibited the decrease of rhizosphere microbial biomass caused by PWN infection. The richness and diversity of P. tabulaeformis rhizosphere fungi at 9 months were reduced by PWN infection but partially recovered by the exogenous fungi (ECMF/DSE) inoculation except for P. chrysanthemicola, which indicates a role of ECMF/DSE in maintaining stability of the microbial community. Inoculation with ECMF/DSE increased the beneficial bacterial (Thauera sp., Mesorhizobium sp., etc.) and fungal groups (Tomentella ellisii, Wilcoxina mikolae, etc.) of in the rhizosphere. In summary, exogenous ECMF/DSE inoculation could increase P. tabulaeformis resistance to PWD probably by improving the rhizosphere microenvironment.
Collapse
Affiliation(s)
- Honglong Chu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.,College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, China.,College of Forestry, Northwest A&F University, Yangling, China
| | - Haihua Wang
- College of Forestry, Northwest A&F University, Yangling, China.,Department of Food Science and Technology, College of Agriculture and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yanan Zhang
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, China
| | - Zhumei Li
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, China
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Dongqin Dai
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Impact of rhizobial inoculation on Acacia senegal (L.) Willd. growth in greenhouse and soil functioning in relation to seed provenance and soil origin. World J Microbiol Biotechnol 2012; 28:2567-79. [PMID: 22806163 DOI: 10.1007/s11274-012-1066-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/19/2012] [Indexed: 11/27/2022]
Abstract
Rhizobial inoculation has a positive impact on plants growth; however, there is little information about its effect on soil microbial communities and their activity in the rhizosphere. It was therefore necessary to test the effect of inoculation of Acacia senegal (L.) Willd. seedlings with selected rhizobia on plant growth, structure and diversity of soil bacterial communities and soil functioning in relation to plant provenance and soil origin. In order to carry out this experiment, three A. senegal seeds provenance from Kenya, Niger, and Senegal were inoculated with selected rhizobial strains. They have been further grown during 4 months in greenhouse conditions in two non-disinfected soils, Dahra and Goudiry coming respectively from arid and semi-arid areas. The principal component analysis (ACP) showed an inoculation effect on plant growth, rhizospheric bacterial diversity and soil functioning. However, the performances of the rhizobial strains varied in relation to the seed provenance and the soil origin. The selected rhizobial strains, the A. senegal provenance and the soil origin have modified the structure and the diversity of soil bacterial communities as measured by principal component analysis/denaturing gradient gel electrophoresis analyses. It is interesting to note that bacterial communities of Dahra soil were highly structured according to A. senegal provenance, whereas they were structured in relation to rhizobial inoculation in Goudiry soil. Besides, the impact of inoculation on soil microbial activities measured by fluorescein diacetate analyses varied in relation to plant provenance and soil origin. Nevertheless, total microbial activity was about two times higher in Goudiry, arid soil than in Dahra, semi-arid soil. Our results suggest that the rhizobial inoculation is a suitable tool for improving plants growth and soil fertility. Yet, the impact is dependent on inoculants, plant provenance and soil origin. It will, therefore, be crucial to identify the appropriate rhizobial strains and plant provenance or species in relation to the soil type.
Collapse
|
3
|
Kassem II, Joshi P, Sigler V, Heckathorn S, Wang Q. Effect of elevated CO2 and drought on soil microbial communities associated with Andropogon gerardii. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1406-15. [PMID: 19017128 DOI: 10.1111/j.1744-7909.2008.00752.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our understanding of the effects of elevated atmospheric CO2, singly and in combination with other environmental changes,on plant-soil interactions is incomplete. Elevated CO2 effects on C4 plants, though smaller than on C3 species, are mediated mostly via decreased stomatal conductance and thus water loss. Therefore, we characterized the interactive effect of elevated CO2 and drought on soil microbial communities associated with a dominant C4 prairie grass, Andropogon gerardii Vitman. Elevated CO2 and drought both affected resources available to the soil microbial community. For example, elevated CO2 increased the soil C:N ratio and water content during drought, whereas drought alone decreased both. Drought significantly decreased soil microbial biomass. In contrast, elevated CO2 increased biomass while ameliorating biomass decreases that were induced under drought. Total and active direct bacterial counts and carbon substrate use (overall use and number of used sources) increased significantly under elevated CO2. Denaturing gradient gel electrophoresis analysis revealed that drought and elevated CO2, singly and combined, did not affect the soil bacteria community structure.We conclude that elevated CO2 alone increased bacterial abundance and microbial activity and carbon use, probably in response to increased root exudation. Elevated CO2 also limited drought-related impacts on microbial activity and biomass,which likely resulted from decreased plant water use under elevated CO2. These are among the first results showing that elevated CO2 and drought work in opposition to modulate plant-associated soil-bacteria responses, which should then influence soil resources and plant and ecosystem function.
Collapse
Affiliation(s)
- Issmat I Kassem
- Department of Environmental Sciences, University of Toledo, Ohio 43606, USA
| | | | | | | | | |
Collapse
|
4
|
González-Oreja JA, Rozas MA, Alkorta I, Garbisu C. Dendroremediation of heavy metal polluted soils. REVIEWS ON ENVIRONMENTAL HEALTH 2008; 23:223-234. [PMID: 19119687 DOI: 10.1515/reveh.2008.23.3.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Heavy metals are among the most common and harmful pollutants reaching the soil ecosystem all over the world. Phytoextraction is an effective, non-intrusive, inexpensive, aesthetically pleasing, socially accepted, highly promising phytotechnology for the remediation of soils polluted with heavy metals. To overcome the so-called 'Achilles' heel' of phytoextraction, namely, the long time needed for effective remediation, this phytotechnology should be combined with other profit-making activities such as forestry or bioenergy production. Dendroremediation, or the use of trees to clean up polluted soil and water, appears of great potential for metal phytoextraction, especially when using fast-growing tree species, for example, willows (Salix sp. pl.) and poplars (Populus sp. pl.). Most important, the ecologic and environmental risks of dispersing heavy metals into the ecosystems by dendroremediation strategies should be minimized by selecting the right tree species, properly managing/disposing the polluted plant material, or a combination of both options.
Collapse
Affiliation(s)
- J A González-Oreja
- NEIKER-Tecnalia, Basque Institute of Agricultural Research and Development, Derio, Spain
| | | | | | | |
Collapse
|