1
|
Toro-Urrego N, Luaces JP, Kobiec T, Udovin L, Bordet S, Otero-Losada M, Capani F. Raloxifene Protects Oxygen-Glucose-Deprived Astrocyte Cells Used to Mimic Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2024; 25:12121. [PMID: 39596189 PMCID: PMC11594051 DOI: 10.3390/ijms252212121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/23/2024] [Indexed: 11/28/2024] Open
Abstract
Perinatal asphyxia (PA) is a clinical condition characterized by oxygen supply suspension before, during, or immediately after birth, and it is an important risk factor for neurodevelopmental damage. Its estimated 1/1000 live births incidence in developed countries rises to 5-10-fold in developing countries. Schizophrenia, cerebral palsy, mental retardation, epilepsy, blindness, and others are among the highly disabling chronic pathologies associated with PA. However, so far, there is no effective therapy to neutralize or reduce PA-induced harm. Selective regulators of estrogen activity in tissues and selective estrogen receptor modulators like raloxifene have shown neuroprotective activity in different pathological scenarios. Their effect on PA is yet unknown. The purpose of this paper is to examine whether raloxifene showed neuroprotection in an oxygen-glucose deprivation/reoxygenation astrocyte cell model. To study this issue, T98G cells in culture were treated with a glucose-free DMEM medium and incubated at 37 °C in a hypoxia chamber with 1% O2 for 3, 6, 12, and 24 h. Cultures were supplemented with raloxifene 10, and 100 nM during both glucose and oxygen deprivation and reoxygenation periods. Raloxifene 100 nM and 10 nM improved cell survival-65.34% and 70.56%, respectively, compared with the control cell groups. Mitochondrial membrane potential was preserved by 58.9% 10 nM raloxifene and 81.57% 100 nM raloxifene cotreatment. Raloxifene co-treatment reduced superoxide production by 72.72% and peroxide production by 57%. Mitochondrial mass was preserved by 47.4%, 75.5%, and 89% in T98G cells exposed to 6-h oxygen-glucose deprivation followed by 3, 6, and 9 h of reoxygenation, respectively. Therefore, raloxifene improved cell survival and mitochondrial membrane potential and reduced lipid peroxidation and reactive oxygen species (ROS) production, suggesting a direct effect on mitochondria. In this study, raloxifene protected oxygen-glucose-deprived astrocyte cells, used to mimic hypoxic-ischemic brain injury. Two examiners performed the qualitative assessment in a double-blind fashion.
Collapse
Affiliation(s)
- Nicolás Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
| | - Juan P. Luaces
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
| | - Tamara Kobiec
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina
| | - Lucas Udovin
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
| | - Sofía Bordet
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, CAECIHS, UAI-CONICET, Buenos Aires C1270AAH, Argentina; (N.T.-U.); (J.P.L.); (T.K.); (L.U.); (S.B.)
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| |
Collapse
|
2
|
Murlanova K, Jouroukhin Y, Novototskaya-Vlasova K, Huseynov S, Pletnikova O, Morales MJ, Guan Y, Kamiya A, Bergles DE, Dietz DM, Pletnikov MV. Loss of Astrocytic µ Opioid Receptors Exacerbates Aversion Associated with Morphine Withdrawal in Mice: Role of Mitochondrial Respiration. Cells 2023; 12:1412. [PMID: 37408246 PMCID: PMC10216734 DOI: 10.3390/cells12101412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/19/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Astrocytes express mu/µ opioid receptors, but the function of these receptors remains poorly understood. We evaluated the effects of astrocyte-restricted knockout of µ opioid receptors on reward- and aversion-associated behaviors in mice chronically exposed to morphine. Specifically, one of the floxed alleles of the Oprm1 gene encoding µ opioid receptor 1 was selectively deleted from brain astrocytes in Oprm1 inducible conditional knockout (icKO) mice. These mice did not exhibit changes in locomotor activity, anxiety, or novel object recognition, or in their responses to the acute analgesic effects of morphine. Oprm1 icKO mice displayed increased locomotor activity in response to acute morphine administration but unaltered locomotor sensitization. Oprm1 icKO mice showed normal morphine-induced conditioned place preference but exhibited stronger conditioned place aversion associated with naloxone-precipitated morphine withdrawal. Notably, elevated conditioned place aversion lasted up to 6 weeks in Oprm1 icKO mice. Astrocytes isolated from the brains of Oprm1 icKO mice had unchanged levels of glycolysis but had elevated oxidative phosphorylation. The basal augmentation of oxidative phosphorylation in Oprm1 icKO mice was further exacerbated by naloxone-precipitated withdrawal from morphine and, similar to that for conditioned place aversion, was still present 6 weeks later. Our findings suggest that µ opioid receptors in astrocytes are linked to oxidative phosphorylation and they contribute to long-term changes associated with opioid withdrawal.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ksenia Novototskaya-Vlasova
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Shovgi Huseynov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J. Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dwight E. Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Mikhail V. Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Wang L, Wang J, Shan Q, Shu H, Guo JM. Involvement of baroreflex deficiency in the age-related loss of estrogen efficacy against cerebral ischemia. Front Aging Neurosci 2023; 15:1167170. [PMID: 37205058 PMCID: PMC10186347 DOI: 10.3389/fnagi.2023.1167170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
For post-menopausal women, stroke is complicated by the variable effects of estrogen therapy and the age-related therapeutic consequences involved. Estrogen therapy has been shown to have an age-dimorphic effect, which is neuroprotective in young females, but non-neuroprotective, even neurotoxic in acyclic females. We hypothesized that arterial baroreflex (ABR) and its downstream acetylcholine-α7 nicotinic acetylcholine receptor (α7nAChR) anti-inflammatory pathways are involved in estrogen efficacy toward cerebral ischemic damage. Our data showed that estrogen supplements contributed to ABR improvement and neuroprotection in adult, not aged, ovariectomized (OVX) rats. In adult rats, OVX-induced estrogen deficiency aggravated middle cerebral artery occlusion (MCAO), which induced brain infarction and reduced ABR function, with decreased α7nAChR expression of the brain and exaggerated inflammation following MCAO; these effects were significantly prevented by supplementation with estrogen. ABR impairment by sinoaortic denervation partly attenuated the estrogen effect on baroreflex sensitivity (BRS) and ischemic damage in adult rats, as well as α7nAChR expression and inflammatory response. These data suggested that ABR and acetylcholine-α7nAChR anti-inflammatory pathways are involved in the neuroprotection of estrogen in adult OVX rats. In contrast, aged rats exhibited more severe ischemic damage and inflammatory response than adult rats, as well as poorer baroreflex function and lower α7nAChR expression. Estrogen supplements did not improve BRS or confer neuroprotection in aged rats without affecting brain α7nAChR and post-ischemic inflammation. Most importantly, ketanserin restored ABR function and significantly postponed the onset of stroke in aged female strokeprone spontaneously hypertensive rats, whereas estrogen treatment failed to delay the development of stroke. Our findings reveal that estrogen is protective against ischemic stroke (IS) in adult female rats and that ABR played a role in this beneficial action. Dysfunction of ABR and unresponsiveness to estrogen in aged female rats may contribute to a reduced estrogen efficacy against cerebral ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopedics, 960th Hospital of PLA, Jinan, Shandong, China
| | - Jia Wang
- Health Service Department, 960th Hospital of PLA, Jinan, Shandong, China
| | - Qing Shan
- Department of Clinical Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - He Shu
- Department of Clinical Pharmacy, 960th Hospital of PLA, Jinan, Shandong, China
| | - Jin-Min Guo
- Department of Clinical Pharmacy, 960th Hospital of PLA, Jinan, Shandong, China
- *Correspondence: Jin-Min Guo,
| |
Collapse
|
4
|
Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H, Zhang S, Qiu S, Li Y. Immune regulation based on sex differences in ischemic stroke pathology. Front Immunol 2023; 14:1087815. [PMID: 36793730 PMCID: PMC9923235 DOI: 10.3389/fimmu.2023.1087815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
Ischemic stroke is one of the world's leading causes of death and disability. It has been established that gender differences in stroke outcomes prevail, and the immune response after stroke is an important factor affecting patient outcomes. However, gender disparities lead to different immune metabolic tendencies closely related to immune regulation after stroke. The present review provides a comprehensive overview of the role and mechanism of immune regulation based on sex differences in ischemic stroke pathology.
Collapse
Affiliation(s)
- Pingping Niu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Liqin Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yonggang Zhang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Binghao Wang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| |
Collapse
|
5
|
Murlanova K, Jouroukhin Y, Huseynov S, Pletnikova O, Morales MJ, Guan Y, Baraban JM, Bergles DE, Pletnikov MV. Deficient mitochondrial respiration in astrocytes impairs trace fear conditioning and increases naloxone-precipitated aversion in morphine-dependent mice. Glia 2022; 70:1289-1300. [PMID: 35275429 PMCID: PMC9773362 DOI: 10.1002/glia.24169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are abundant in the fine processes of astrocytes, however, potential roles for astrocyte mitochondria remain poorly understood. In the present study, we performed a systematic examination of the effects of abnormal oxidative phosphorylation in astrocytes on several mouse behaviors. Impaired astrocyte oxidative phosphorylation was produced by astrocyte-specific deletion of the nuclear mitochondrial gene, Cox10, that encodes an accessory protein of complex IV, the protoheme:heme-O-farnesyl transferase. As expected, conditional deletion of the Cox10 gene in mice (cKO mice) significantly reduced expression of COX10 and Cytochrome c oxidase subunit I (MTCO1) of Complex IV, resulting in decreased oxidative phosphorylation without significantly affecting glycolysis. No effects of the deletion were observed on locomotor activity, anxiety-like behavior, nociception, or spontaneous alternation. Cox10 cKO female mice exhibited mildly impaired novel object recognition, while Cox10 cKO male mice were moderately deficient in trace fear conditioning. No group-related changes were observed in conditional place preference (CPP) that assessed effects of morphine on reward. In contrast to CPP, Cox10 cKO mice demonstrated significantly increased aversive behaviors produced by naloxone-precipitated withdrawal following chronic exposure to morphine, that is, jumping and avoidance behavior as assessed by conditional place aversion (CPA). Our study suggests that astrocyte oxidative phosphorylation may contribute to behaviors associated with greater cognitive load and/or aversive and stressful conditions.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Shovgi Huseynov
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA,Molecular Basis of Integrative Activity, Academician Abdulla Garayev Institute of Physiology, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
| | - Olga Pletnikova
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine; State University of New York at Buffalo, Buffalo, New York, USA,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J. Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Neurological Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay M. Baraban
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dwight E. Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mikhail V. Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine, State University of New York at Buffalo, Buffalo, New York, USA,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Tang T, Hu L, Liu Y, Fu X, Li J, Yan F, Cao S, Chen G. Sex-Associated Differences in Neurovascular Dysfunction During Ischemic Stroke. Front Mol Neurosci 2022; 15:860959. [PMID: 35431804 PMCID: PMC9012443 DOI: 10.3389/fnmol.2022.860959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/28/2022] Open
Abstract
Neurovascular units (NVUs) are basic functional units in the central nervous system and include neurons, astrocytes and vascular compartments. Ischemic stroke triggers not only neuronal damage, but also dissonance of intercellular crosstalk within the NVU. Stroke is sexually dimorphic, but the sex-associated differences involved in stroke-induced neurovascular dysfunction are studied in a limited extend. Preclinical studies have found that in rodent models of stroke, females have less neuronal loss, stronger repairing potential of astrocytes and more stable vascular conjunction; these properties are highly related to the cerebroprotective effects of female hormones. However, in humans, these research findings may be applicable only to premenopausal stroke patients. Women who have had a stroke usually have poorer outcomes compared to men, and because stoke is age-related, hormone replacement therapy for postmenopausal women may exacerbate stroke symptoms, which contradicts the findings of most preclinical studies. This stark contrast between clinical and laboratory findings suggests that understanding of neurovascular differences between the sexes is limited. Actually, apart from gonadal hormones, differences in neuroinflammation as well as genetics and epigenetics promote the sexual dimorphism of NVU functions. In this review, we summarize the confirmed sex-associated differences in NVUs during ischemic stroke and the possible contributing mechanisms. We also describe the gap between clinical and preclinical studies in terms of sexual dimorphism.
Collapse
Affiliation(s)
- Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Department of Ultrasonography, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Shenglong Cao,
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Gao Chen,
| |
Collapse
|
7
|
Dong C, Wen S, Zhao S, Sun S, Zhao S, Dong W, Han P, Chen Q, Gong T, Chen W, Liu W, Liu X. Salidroside Inhibits Reactive Astrogliosis and Glial Scar Formation in Late Cerebral Ischemia via the Akt/GSK-3β Pathway. Neurochem Res 2021; 46:755-769. [PMID: 33389472 DOI: 10.1007/s11064-020-03207-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia leads to reactive astrogliosis and glial scar formation. Glial scarring can impede functional restoration during the recovery phase of stroke. Salidroside has been shown to have neuroprotective effects after ischemic stroke, but its impact on long-term neurological recovery, especially whether it regulates reactive astrogliosis and glial scar formation, is unclear. In this study, male adult C57/BL6 mice were subjected to transient cerebral ischemia injury followed by intravenous salidroside treatment. Primary astrocytes were treated with lipopolysaccharide (LPS) or conditioned medium from cultured primary neurons subjected to oxygen-glucose deprivation (CM-OGD). Salidroside significantly improved long-term functional outcomes following ischemic stroke in the rotarod and corner tests. It also reduced brain glial scar volume and decreased expression of the glial scar marker, glial fibrillary acidic protein (GFAP) and inhibited astrocyte proliferation. In primary astrocyte cultures, salidroside protected astrocytes from CM-OGD injury-induced reactive astroglial proliferation, increasing the percentage of cells in G0/G1 phase and reducing the S populations. The inhibitory effect of salidroside on the cell cycle was related to downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4) mRNA expression and increased p27Kip1 mRNA expression. Similar results were found in the LPS-stimulated injury model in astroglial cultures. Western blot analysis demonstrated that salidroside attenuated the CM-OGD-induced upregulation of phosphorylated Akt and glycogen synthase kinase 3β (GSK-3β). Taken together, these results suggested that salidroside can inhibit reactive astrocyte proliferation, ameliorate glial scar formation and improve long-term recovery, probably through its effects on the Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Chengya Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Shaohong Wen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Shunying Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Si Sun
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, People's Republic of China
| | - Shangfeng Zhao
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, People's Republic of China
| | - Wen Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Pingxin Han
- Department of Biomedicine, Beijing City University, Beijing, 100094, People's Republic of China
| | - Qingfang Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Ting Gong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
- Department of Biomedicine, Beijing City University, Beijing, 100094, People's Republic of China
| | - Wentao Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Wenqian Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.
| |
Collapse
|
8
|
Ding S, Chen Q, Chen H, Luo B, Li C, Wang L, Asakawa T. The Neuroprotective Role of Neuroserpin in Ischemic and Hemorrhagic Stroke. Curr Neuropharmacol 2021; 19:1367-1378. [PMID: 33032511 PMCID: PMC8719291 DOI: 10.2174/1570159x18666201008113052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
Tissue plasminogen activator (tPA) is commonly used to treat acute ischemic stroke within an appropriate therapeutic window. Its inhibitor, neuroserpin (NSP), is reported to exhibit neuroprotective effects on stroke. This review aims to summarize, from literature, the available evidence, potential mechanisms, and knowledge limitations regarding the neuroprotective role of NSP in stroke. All the available evidence indicates that the regulation of the inflammatory response may play a key role in the mechanisms of NSP, which involve all the constituents of the neuroimmune axis. The neuroinflammatory response triggered by stroke can be reversed by NSP, with complicated mechanisms such as maintenance and reconstruction of the structure and function of the blood-brain barrier (BBB), protection of the cells in the central nervous system, and suppression of cell death in both ischemic and hemorrhagic stroke. Moreover, available evidence strongly suggests a tPA-independent mechanism is involved in NSP. However, there are many important issues that are still unclear and need further investigation, such as the effects of NSP on hemorrhagic stroke, the role of the tPA-independent neuroprotective mechanisms, and the clinical application prospects of NSP. We believe our work will be helpful to further understand the neuroprotective role of NSP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tetsuya Asakawa
- Address correspondence to this author at the Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennanzhong Road 3025, Shenzhen, Guangdong Province, 518033, China; Tel: + 86-755-8398-2275; Fax: + 86-755-8398-0805; E-mail:
| |
Collapse
|
9
|
Tibolone Ameliorates the Lipotoxic Effect of Palmitic Acid in Normal Human Astrocytes. Neurotox Res 2020; 38:585-595. [DOI: 10.1007/s12640-020-00247-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
10
|
Sex Differences in Cognitive Impairment Induced by Cerebral Microhemorrhage. Transl Stroke Res 2020; 12:316-330. [PMID: 32440818 DOI: 10.1007/s12975-020-00820-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
It has been suggested that cerebral microhemorrhages (CMHs) could be involved in cognitive decline. However, little is known about the sex-dependency of this effect. Using a multimodal approach combining behavioral tests, in vivo imaging, biochemistry, and molecular biology, we studied the cortical and hippocampal impact of a CMH in male and female mice (C57BL/6J) 6 weeks post-induction using a collagenase-induced model. Our work shows for the first time that a single cortical CMH exerts sex-specific effects on cognition. It notably induced visuospatial memory impairment in males only. This sex difference might be explained by cortical changes secondary to the lesion. In fact, the CMH induced an upregulation of ERα mRNA only in the female cortex. Besides, in male mice, we observed an impairment of pathways associated to neuronal, glial, or vascular functions: decrease in the P-GSK3β/GSK3β ratio, in BDNF and VEGF levels, and in microvascular water mobility. The CMH also exerted spatial remote effects in the hippocampus by increasing the number of astrocytes in both sexes, increasing the mean area occupied by each astrocyte in males, and decreasing hippocampal BDNF in females suggesting a cortical-hippocampal network impairment. This work demonstrates that a CMH could directly affect cognition in a sex-specific manner and highlights the need to study both sexes in preclinical models.
Collapse
|
11
|
Hönikl LS, Lämmer F, Gempt J, Meyer B, Schlegel J, Delbridge C. High expression of estrogen receptor alpha and aromatase in glial tumor cells is associated with gender-independent survival benefits in glioblastoma patients. J Neurooncol 2020; 147:567-575. [PMID: 32240464 PMCID: PMC7256026 DOI: 10.1007/s11060-020-03467-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/20/2020] [Indexed: 11/17/2022]
Abstract
Introduction Glioblastoma multiforme (GBM) is a highly malignant glial tumor, affecting men more often than women. The reason for this gender-specific predominance remains unclear, raising the question whether these effects are subject to hormonal control. The purpose of this study was to examine the expression of estrogen receptor alpha (ERα) and aromatase in human GBM tissue samples in relation to patient survival and furthermore to investigate the effect of standard chemotherapy in combination with estradiol treatment on glioblastoma tumor cell lines in vitro. Methods 60 tissue samples (31 male, 29 female) of GBM patients were analysed with immunohistochemistry for ERα and aromatase for survival analyses. The cell lines LN18 and LN229 were treated with 17β-estradiol (E2) in different dosing regimens and the cell viability was measured with MTT assay. After estradiol pre-treatment Temozolomide was added and tested again. Results High expression of ERα and aromatase in the GBM tissue samples was associated with significantly longer survival times of GBM patients, regardless of gender and body-mass-index. The treatment with high concentrations of estradiol resulted in lower tumor cell viability, compared to control. The cells significantly showed a stronger sensitivity against Temozolomid (TMZ) after estradiol pre-treatment. Conclusion ERα-expression of glial tumour cells seems to play an important prognostic role as a biomarker in GBM, as well as the expression of the enzyme Aromatase. The combined treatment of GBM with standard chemotherapy and estradiol may be beneficial to patient’s survival.
Collapse
Affiliation(s)
- Lisa Stefanie Hönikl
- Department of Neuropathology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany. .,Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Friederike Lämmer
- Department of Neuropathology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Claire Delbridge
- Department of Neuropathology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Sahab-Negah S, Hajali V, Moradi HR, Gorji A. The Impact of Estradiol on Neurogenesis and Cognitive Functions in Alzheimer's Disease. Cell Mol Neurobiol 2020; 40:283-299. [PMID: 31502112 PMCID: PMC11448899 DOI: 10.1007/s10571-019-00733-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is described as cognitive and memory impairments with a sex-related epidemiological profile, affecting two times more women than men. There is emerging evidence that alternations in the hippocampal neurogenesis occur at the early stage of AD. Therapies that may effectively slow, stop, or regenerate the dying neurons in AD are being extensively investigated in the last few decades, but none has yet been found to be effective. The regulation of endogenous neurogenesis is one of the main therapeutic targets for AD. Mounting evidence indicates that the neurosteroid estradiol (17β-estradiol) plays a supporting role in neurogenesis, neuronal activity, and synaptic plasticity of AD. This effect may provide preventive and/or therapeutic approaches for AD. In this article, we discuss the molecular mechanism of potential estradiol modulatory action on endogenous neurogenesis, synaptic plasticity, and cognitive function in AD.
Collapse
Affiliation(s)
- Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Vahid Hajali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Moradi
- Histology and Embryology Group, Basic Science Department, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, Münster, Germany.
| |
Collapse
|
13
|
Erickson EK, Blednov YA, Harris RA, Mayfield RD. Glial gene networks associated with alcohol dependence. Sci Rep 2019; 9:10949. [PMID: 31358844 PMCID: PMC6662804 DOI: 10.1038/s41598-019-47454-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol abuse alters the molecular structure and function of brain cells. Recent work suggests adaptations made by glial cells, such as astrocytes and microglia, regulate physiological and behavioral changes associated with addiction. Defining how alcohol dependence alters the transcriptome of different cell types is critical for developing the mechanistic hypotheses necessary for a nuanced understanding of cellular signaling in the alcohol-dependent brain. We performed RNA-sequencing on total homogenate and glial cell populations isolated from mouse prefrontal cortex (PFC) following chronic intermittent ethanol vapor exposure (CIE). Compared with total homogenate, we observed unique and robust gene expression changes in astrocytes and microglia in response to CIE. Gene co-expression network analysis revealed biological pathways and hub genes associated with CIE in astrocytes and microglia that may regulate alcohol-dependent phenotypes. Astrocyte identity and synaptic calcium signaling genes were enriched in alcohol-associated astrocyte networks, while TGF-β signaling and inflammatory response genes were disrupted by CIE treatment in microglia gene networks. Genes related to innate immune signaling, specifically interferon pathways, were consistently up-regulated across CIE-exposed astrocytes, microglia, and total homogenate PFC tissue. This study illuminates the cell-specific effects of chronic alcohol exposure and provides novel molecular targets for studying alcohol dependence.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA.
| | - Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA
| |
Collapse
|
14
|
Zhao X, Zhou K, Li Z, Nan W, Wang J, Xia Y, Zhang H. Knockdown of Ski decreased the reactive astrocytes proliferation in vitro induced by oxygen‐glucose deprivation/reoxygenation. J Cell Biochem 2018; 119:4548-4558. [DOI: 10.1002/jcb.26597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Xin Zhao
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Kai‐Sheng Zhou
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Zhong‐Hao Li
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Wei Nan
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Jing Wang
- Orthopaedics Key laboratory of Gansu ProvinceLanzhouPR China
| | - Ya‐Yi Xia
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
| | - Hai‐Hong Zhang
- The Second Clinical Medical College of Lanzhou UniversityLanzhouPR China
| |
Collapse
|
15
|
Cui N, Lu H, Li M, Yan Q. PTPN21 protects PC12 cell against oxygen-glucose deprivation by activating cdk5 through ERK1/2 signaling pathway. Eur J Pharmacol 2017; 814:226-231. [DOI: 10.1016/j.ejphar.2017.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/29/2022]
|
16
|
Characterization of aromatase expression in the spinal cord of an animal model of familial ALS. Brain Res Bull 2017; 132:180-189. [DOI: 10.1016/j.brainresbull.2017.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/23/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
|
17
|
Guo JM, Shu H, Wang L, Xu JJ, Niu XC, Zhang L. SIRT1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci Ther 2017; 23:360-369. [PMID: 28256111 DOI: 10.1111/cns.12686] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 01/22/2017] [Accepted: 02/07/2017] [Indexed: 01/06/2023] Open
Abstract
AIMS Stroke is a major cause of mortality and disability, especially for postmenopausal women. In view of the protective action of estrogen, hormone therapy remains the only effective way to limit this risk. The objective of this study was to investigate the efficiency and underlying mechanisms of estrogen neuroprotection. METHODS Subcutaneous injection of 17β-estradiol in rats after ovariectomy (OVX) was used to manipulate estrogen level and explore the effects of estrogen in cerebral ischemic damage both in vivo and in vitro. Silent mating type information regulation 2 homolog 1 (SIRT1) knockout mice and adenosine monophosphate (AMP)-activated kinase (AMPK) inhibitor Compound C were also used to investigate the underlying pathway of estrogen. RESULTS Estrogen deficiency induced by OVX aggravated brain infarction in experimentally induced cerebral ischemia rats, whereas estrogen pretreatment reduced ischemia-induced cerebral injuries. Neurons of estrogen deficiency models were susceptible to apoptosis under oxygen-glucose deprivation (OGD). In contrast, neurons with estrogen-supplemented serum exhibited restored resistance to cell apoptosis. In OGD neurons, estrogen promoted AMPK activation through estrogen receptor α, and neuroprotection of estrogen was prevented by AMPK inhibition. Estrogen increased SIRT1 expression and activation, and estrogen-induced AMPK activation disappeared in SIRT1 knockout neurons. Moreover, estrogen-induced neuroprotection was abolished in SIRT1 knockout mice and AMPK-inhibited rats. CONCLUSION Our data support that estrogen protects against ischemic stroke through preventing neuron death via the SIRT1-dependent AMPK pathway.
Collapse
Affiliation(s)
- Jin-Min Guo
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - He Shu
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Lei Wang
- Department of Orthopaedics, Jinan Military General Hospital, Jinan, Shandong, China
| | - Jian-Jiang Xu
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| | - Xue-Cai Niu
- Department of Radiotheropy, The Forth Hospital of Jinan City, Jinan, Shandong, China
| | - Li Zhang
- Department of Pharmacology, Jinan Military General Hospital, Jinan, Shandong, China
| |
Collapse
|
18
|
Becerra-Calixto A, Cardona-Gómez GP. Neuroprotection Induced by Transplanted CDK5 Knockdown Astrocytes in Global Cerebral Ischemic Rats. Mol Neurobiol 2016; 54:6681-6696. [PMID: 27744570 DOI: 10.1007/s12035-016-0162-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/23/2016] [Indexed: 11/29/2022]
Abstract
Cerebral ischemia is a cerebrovascular episode that generates a high incidence of death and physical and mental disabilities worldwide. Excitotoxicity, release of free radicals, and exacerbated immune response cause serious complications in motor and cognitive areas during both short and long time frames post-ischemia. CDK5 is a kinase that is widely involved in the functions of neurons and astrocytes, and its over-activation is implicated in neurodegenerative processes. In this study, we evaluated the brain parenchymal response to the transplantation of CDK5-knockdown astrocytes into the somatosensory cortex after ischemia in rats. Male Wistar rats were subjected to the two-vessel occlusion (2VO) model of global cerebral ischemia and immediately transplanted with shCDK5miR- or shSCRmiR-transduced astrocytes or with untransduced astrocytes (Control). Our findings showed that animals transplanted with shCDK5miR astrocytes recovered motor and neurological performance better than with those transplanted with WT or shSCRmiR astrocytes. Cell transplantation produced an overall prevention of neuronal loss, and CDK5-knockdown astrocytes significantly increased the immunoreactivity (IR) of endogenous GFAP in branches surrounding blood vessels, accompanied by the upregulation of PECAM-1 IR in the walls of vessels in the motor and somatosensory regions and by an increase in Ki67 IR in the subventricular zone (SVZ), partially associated with the production of BDNF. Together, our data suggest that transplantation of shCDK5miR astrocytes protects the neurovascular unit in ischemic rats, allowing the motor and neurological function recovery.
Collapse
Affiliation(s)
- Andrea Becerra-Calixto
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.
| |
Collapse
|
19
|
Chisholm NC, Sohrabji F. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol Dis 2016; 85:245-253. [PMID: 25843666 PMCID: PMC5636213 DOI: 10.1016/j.nbd.2015.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke occurs more often among the elderly, and within this demographic, women are at an increased risk for stroke and have poorer functional recovery than men. This is also well replicated in animal studies where aging females are shown to have more extensive brain tissue loss as compared to adult females. Astrocytes provide nutrients for neurons, regulate glutamate levels, and release neurotrophins and thus play a key role in the events that occur following ischemia. In addition, astrocytes express receptors for gonadal hormones and synthesize several neurosteroids suggesting that the sex differences in stroke outcome may be mediated through astrocytes. This review discusses key astrocytic responses to ischemia including, reactive gliosis, excitotoxicity, and neuroinflammation. In light of the age and sex differences in stroke outcomes, this review highlights how aging and gonadal hormones influence these responses. Lastly, astrocyte specific changes in gene expression and epigenetic modifications during aging and following ischemia are discussed as possible molecular mechanisms for impaired astrocytic functioning.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
20
|
Khaksari M, Hajializadeh Z, Shahrokhi N, Esmaeili-Mahani S. Changes in the gene expression of estrogen receptors involved in the protective effect of estrogen in rat's trumatic brain injury. Brain Res 2015; 1618:1-8. [PMID: 26003937 DOI: 10.1016/j.brainres.2015.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
It has been demonstrated that estradiol has neuroprotective effects after traumatic brain injury (TBI) in female rats. Since estrogen receptors have an important role in estradiol effects at the cellular level and the exact mechanism(s) of estradiol-induced neuroprotection has not yet been fully clarified, the present study was designed to determine the changes in the levels of estrogen receptors mRNAs and proteins involved in this phenomenon. All experiments were carried out on female Wistar rats. The brain edema and blood-brain-barrier (BBB) disruption were assessed. The TBI method was diffuse type and induced by the Marmarou method. Semiquantitative RT-PCR and immunoblotting were used to assess ERα and ERβ gene expression. The data showed that the level of brain water content was significantly increased in TBI group. The increased water content was significantly attenuated in estradiol-treated (1mg/kg) TBI rats. Disruption of BBB after TBI was significantly inhibited just by estradiol treatment. Estrogen-treated animals showed a significant increase in ERα mRNA (18%) and protein (35%) levels in the brain tissue. Furthermore, in the brain-injured rats the levels of ERβ mRNA were lower than those in control rats. Following estrogen treatment, the protein levels of ERβ were closed to those in control group. In conclusion, the data demonstrate that estrogen treatment can protect brain against traumatic brain injury. Estrogen treatment increases ER mRNA and protein levels which were coincident with its protective effects. It seems that such phenomenon participates in the induction of neuroprotective effects of estrogen. This article is part of a Special Issue entitled 1618.
Collapse
Affiliation(s)
- Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box 76135-133, Kerman, Iran.
| | - Zahra Hajializadeh
- Laboratory of Molecular Neurosciences, Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
21
|
Wang L, Zhang Y, Asakawa T, Li W, Han S, Li Q, Xiao B, Namba H, Lu C, Dong Q. Neuroprotective effect of neuroserpin in oxygen-glucose deprivation- and reoxygenation-treated rat astrocytes in vitro. PLoS One 2015; 10:e0123932. [PMID: 25874935 PMCID: PMC4395230 DOI: 10.1371/journal.pone.0123932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/09/2015] [Indexed: 01/08/2023] Open
Abstract
Neuroserpin (NSP) reportedly exerts neuroprotective effects in cerebral ischemic animal models and patients; however, the mechanism of protection is poorly understood. We thus attempted to confirm neuroprotective effects of NSP on astrocytes in the ischemic state and then explored the relative mechanisms. Astrocytes from neonatal rats were treated with oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/R). To confirm the neuroprotective effects of NSP, we measured the cell survival rate, relative lactate dehydrogenase (LDH) release; we also performed morphological methods, namely Hoechst 33342 staining and Annexin V assay. To explore the potential mechanisms of NSP, the release of nitric oxide (NO) and TNF-α related to NSP administration were measured by enzyme-linked immunosorbent assay. The proteins related to the NF-κB, ERK1/2, and PI3K/Akt pathways were investigated by Western blotting. To verify the cause-and-effect relationship between neuroprotection and the NF-κB pathway, a NF-κB pathway inhibitor sc3060 was employed to observe the effects of NSP-induced neuroprotection. We found that NSP significantly increased the cell survival rate and reduced LDH release in OGD/R-treated astrocytes. It also reduced NO/TNF-α release. Western blotting showed that the protein levels of p-IKKBα/β and P65 were upregulated by the OGD/R treatment and such effects were significantly inhibited by NSP administration. The NSP-induced inhibition could be significantly reversed by administration of the NF-κB pathway inhibitor sc3060, whereas, expressions of p-ERK1, p-ERK2, and p-AKT were upregulated by the OGD/R treatment; however, their levels were unchanged by NSP administration. Our results thus verified the neuroprotective effects of NSP in ischemic astrocytes. The potential mechanisms include inhibition of the release of NO/TNF-α and repression of the NF-κB signaling pathways. Our data also indicated that NSP has little influence on the MAPK and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurology, Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Japan
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Japan
| | - Wei Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sha Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinying Li
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Japan
| | - Chuanzhen Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Zeng KW, Liao LX, Zhao MB, Song FJ, Yu Q, Jiang Y, Tu PF. Protosappanin B protects PC12 cells against oxygen-glucose deprivation-induced neuronal death by maintaining mitochondrial homeostasis via induction of ubiquitin-dependent p53 protein degradation. Eur J Pharmacol 2015; 751:13-23. [PMID: 25657114 DOI: 10.1016/j.ejphar.2015.01.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 12/13/2022]
Abstract
Protosappanin B (PTB) is a bioactive dibenzoxocin derivative isolated from Caesalpinia sappan L. Here, we investigated the neuroprotective effects and the potential mechanisms of PTB on oxygen-glucose deprivation (OGD)-injured PC12 cells. Results showed that PTB significantly increased cell viability, inhibited cell apoptosis and up-regulated the expression of growth-associated protein 43 (a marker of neural outgrowth). Moreover, our study revealed that PTB effectively maintained mitochondrial homeostasis by up-regulation of mitochondrial membrane potential (MMP), inhibition of cytochrome c release from mitochondria and inactivation of mitochondrial caspase-9/3 apoptosis pathway. Further study showed that PTB significantly promoted cytoplasmic component degradation of p53 protein, a key negative regulator for mitochondrial function, resulting in a release of Bcl-2 from p53-Bcl-2 complex and an enhancing translocation of Bcl-2 to mitochondrial outer membrane. Finally, we found the degradation of p53 protein was induced by PTB via activation of a MDM2-dependent ubiquitination process. Taken together, our findings provided a new viewpoint of neuronal protection strategy for anoxia and ischemic injury with natural small molecular dibenzoxocin derivative by activating ubiquitin-dependent p53 protein degradation as well as increasing mitochondrial function.
Collapse
Affiliation(s)
- Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-Xi Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ming-Bo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fang-Jiao Song
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Qian Yu
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
23
|
|
24
|
Hao M, Li Y, Lin W, Xu Q, Shao N, Zhang Y, Kuang H. Estrogen prevents high-glucose-induced damage of retinal ganglion cells via mitochondrial pathway. Graefes Arch Clin Exp Ophthalmol 2014; 253:83-90. [PMID: 25216739 DOI: 10.1007/s00417-014-2771-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a leading cause of acquired blindness in adults. Previous research has shown that the apoptosis of retinal ganglion cells(RGCs) plays an important role in the initiation and development of diabetic retinopathy. The positive effect of estrogen on the nervous system is currently attracting increasing attention. In this study, we investigated whether17β-estradiolum (E2) has protective effects on RGCs in a high-glucose environment. METHODS The cell survival rates were measured by Cell Counting Kit-8, the apoptosis was detected by flow cytometry, the intracellular reactive oxygen species (ROS) levels were examined by immunofluorescence method, and the intracellular mitochondrial membrane potential was examined by confocal microscopy. The expression levels of cytochrome C, Bcl-2, and Bax were analyzed by Western blot method. The effect of estrogen receptor blocker tamoxifen on the RGCs was also evaluated. RESULTS It was found that E2 stabilizes the mitochondrial membrane potential, reduces intracellular ROS levels, up-regulates Bcl-2 expression, inhibits Bax expression, decreases the generation of cytochrome C, and finally reduces the apoptosis of RGC-5 cells in a high-glucose environment. These protective functions could be attributed to E2 receptors, which make E2 a prospective patent application candidate in the treatment of DR. Furthermore, when cells were pre-cultured with tamoxifen, we found that tamoxifen inhibited the shielding effects of E2. CONCLUSION E2 has a broad application prospect in the treatment of DR.
Collapse
Affiliation(s)
- Ming Hao
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, No. 23 Youzheng Street, NanGang District, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|