1
|
Mollon JD, Danilova MV, Zhuravlev AV. A possible mechanism of neural read-out from a molecular engram. Neurobiol Learn Mem 2023; 200:107748. [PMID: 36907505 DOI: 10.1016/j.nlm.2023.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
What is the physical basis of declarative memory? The predominant view holds that stored information is embedded in the structure of a neural net, that is, in the signs and weights of its synaptic connections. An alternative possibility is that storage and processing are separated, and that the engram is encoded chemically, most probably in the sequence of a nucleic acid. One deterrent to adoption of the latter hypothesis has been the difficulty of envisaging how neural actively could be converted to and from a molecular code. Our purpose here is limited to suggesting how a molecular sequence could be read out from nucleic acid to neural activity by means of nanopores.
Collapse
Affiliation(s)
- J D Mollon
- Department of Psychology, University of Cambridge, Downing St., Cambridge CB2 3EB, United Kingdom.
| | - M V Danilova
- Department of Psychology, University of Cambridge, Downing St., Cambridge CB2 3EB, United Kingdom; I.P. Pavlov Institute of Physiology, nab Makarova 6, 199034 St Petersburg, Russian Federation
| | - A V Zhuravlev
- I.P. Pavlov Institute of Physiology, nab Makarova 6, 199034 St Petersburg, Russian Federation
| |
Collapse
|
2
|
Giuditta A, Zucconi GG, Sadile A. Brain Metabolic DNA: A Long Story and Some Conclusions. Mol Neurobiol 2022; 60:228-234. [PMID: 36251232 DOI: 10.1007/s12035-022-03030-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
We have previously outlined the main properties of brain metabolic DNA (BMD) and its involvement in circadian oscillations, learning, and post-trial sleep. The presence of BMD in certain subcellular fractions and their behavior in cesium gradients have suggested that BMD originates from cytoplasmic reverse transcription and subsequently acquires a double-stranded configuration. More recently, it has been reported that some DNA sequences of cytoplasmic BMD in learning mice are different from that of the control animals. Furthermore, BMD is located in vicinity of the genes involved in different modifications of synaptic activity, suggesting that BMD may contribute to the brain's response to the changing environment. The present review outlines recent data with a special emphasis on reverse transcription of BMD that may recapitulate the molecular events at the time of the "RNA world" by activating mitochondrial telomerase and generating RNA templates from mitochondrial transcripts. The latter unexpected role of mitochondria is likely to promote a better understanding of mitochondrial contribution to cellular interactions and eukaryotic evolution. An initial step regards the role of human mitochondria in embryonic BMD synthesis, which is exclusively of maternal origin. In addition, mitochondrial transcripts involved in reverse transcription of BMD might possibly reveal unexpected features elucidating mitochondrial involvement in cancer events and neurodegenerative disorders.
Collapse
Affiliation(s)
- Antonio Giuditta
- Accademia Di Scienze Fisiche E Matematiche, Via Mezzocannone 8, 80134, Napoli, Italy.
| | | | - Adolfo Sadile
- Dept Experimental Medicine, Medical School, University Campania "L. Vanvitelli", Via S. Andrea delle Dame 7, 80138, Naples, Italy
| |
Collapse
|
3
|
Giuditta A, Grassi Zucconi G, Sadile A. Brain metabolic DNA: recent evidence for a mitochondrial connection. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0050/revneuro-2020-0050.xml. [PMID: 32866135 DOI: 10.1515/revneuro-2020-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/18/2020] [Indexed: 02/24/2024]
Abstract
This review highlights recent data concerning the synthesis of brain metabolic DNA (BMD) by cytoplasmic reverse transcription and the prompt acquisition of the double-stranded configuration that allows its partial transfer to nuclei. BMD prevails in the mitochondrial fraction and is present in presynaptic regions and astroglial processes where it undergoes a turnover lasting a few weeks. Additional data demonstrate that BMD sequences are modified by learning, thus indicating that the modified synaptic activity allowing proper brain responses is encoded in learning BMD. In addition, several converging observations regarding the origin of BMD strongly suggest that BMD is reverse transcribed by mitochondrial telomerase.
Collapse
Affiliation(s)
- Antonio Giuditta
- Accademia di Scienze Fisiche e Matematiche, Via Mezzocannone 8, Naples, I-80134,Italy
| | | | - Adolfo Sadile
- Department of Experimental Medicine, L. Vanvitelli Medical School, University Campania, Via S. Andrea delle dame 7, Naples, I-80138,Italy
| |
Collapse
|
4
|
Giuditta A, Casalino J. Sequences of Reverse Transcribed Brain DNA Are Modified by Learning. Front Mol Neurosci 2020; 13:57. [PMID: 32410960 PMCID: PMC7199793 DOI: 10.3389/fnmol.2020.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Brain metabolic DNA (BMD) is continuously synthesized by reverse transcription in presynaptic synaptosomes and astroglia, and is partly transferred to nuclei after acquiring the double stranded configuration. Synthesis and turnover of BMD are markedly dependent on brain activity, as shown by circadian oscillations, environmental enrichment and impoverishment, and a variety of learning protocols. In rodents learning a two-way active avoidance task, BMD synthesis doubles, thus raising the possibility that sequences of learning BMD may differ from control BMD. The hypothesis has now been examined by sequencing cytoplasmic BMD. The present data indicate that most high-quality mapped BMD fragments hosting more than seven sequences are present in all mice. Three of them are exclusively present in learning BMD and four in control BMD. In addition, the annotated genes closest to them are mostly involved in modulating synaptic activity. The data support the conclusion that learning BMD sequences encode brain responses to the modified environment.
Collapse
Affiliation(s)
| | - Joyce Casalino
- Biology Department, Federico II University, Naples, Italy
| |
Collapse
|
5
|
Prisco M, Casalino J, Cefaliello C, Giuditta A. Brain Metabolic DNA Is Reverse Transcribed in Cytoplasm: Evidence by Immunofluorescence Analysis. Mol Neurobiol 2019; 56:6770-6776. [PMID: 30919215 DOI: 10.1007/s12035-019-1569-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
In a previous study (Mol Neurobiol 55:7476-7486, 2017), newly synthesized brain metabolic DNA (BMD) from rat subcellular fractions has been shown to behave as a DNA-RNA hybrid when analyzed in cesium gradients at early [3H] thymidine incorporation times but to assume the double-stranded configuration at later times. Conversely, BMD from purified nuclei displayed the dsDNA configuration even at early incorporation times. The results were interpreted to support the BMD origin by reverse transcription in the cytoplasm and its later acquisition of the double-stranded configuration before the partial transfer to the nuclei. This interpretation has now been confirmed by immunofluorescence analyses of newly synthesized BrdU-labeled BMD from the mouse brain that demonstrates its cytoplasmic localization and colocalization with DNA-RNA hybrids. In addition, BrdU-labeled BMD has been shown to colocalize with astroglial anti-GFAP antibodies and with presynaptic anti-synaptophysin antibodies.
Collapse
Affiliation(s)
- Marina Prisco
- Biology Department, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126, Naples, Italy
| | - Joyce Casalino
- Biology Department, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, 80126, Naples, Italy
| | - Carolina Cefaliello
- Department of Neurology, University of Massachusetts Medical School, Albert Sherman Center 6-1008, 368 Plantation St., Worcester, MA, 01605, USA
| | - Antonio Giuditta
- Accademia di Scienze Fisiche e Matematiche, Via Mezzocannone 8, 80134, Naples, Italy.
| |
Collapse
|
6
|
Cefaliello C, Prisco M, Crispino M, Giuditta A. DNA in Squid Synaptosomes. Mol Neurobiol 2018; 56:56-60. [PMID: 29675577 DOI: 10.1007/s12035-018-1071-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/09/2018] [Indexed: 11/26/2022]
Abstract
The synthesis of brain metabolic DNA (BMD) is modulated by learning and circadian oscillations and is not involved in cell division or DNA repair. Data from rats have highlighted its prevalent association with the mitochondrial fraction and its lack of identity with mtDNA. These features suggested that BMD could be localized in synaptosomes that are the major contaminants of brain mitochondrial fractions. The hypothesis has been examined by immunochemical analyses of the large synaptosomes of squid optic lobes that are readily prepared and identified. Optic lobe slices were incubated with 5-bromo-2-deoxyuridine (BrdU) and the isolated synaptosomal fraction was exposed to the green fluorescent anti-BrdU antibody. This procedure revealed that newly synthesized BrdU-labeled BMD is present in a significant percent of the large synaptosomes derived from the nerve terminals of retinal photoreceptor neurons and in synaptosomal bodies of smaller size. Synaptosomal BMD synthesis was strongly inhibited by actinomycin D. In addition, treatment of the synaptosomal fraction with Hoechst 33258, a blue fluorescent dye specific for dsDNA, indicated that native DNA was present in all synaptosomes. The possible role of synaptic BMD is briefly discussed.
Collapse
Affiliation(s)
- Carolina Cefaliello
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
- Department of Neurology, University of Massachusetts Medical School, Albert Sherman Center 6-1008, 368 Plantation St., Worcester, MA, 01605, USA
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Antonio Giuditta
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy.
- Accademia di Scienze Fisiche e Matematiche, Via Mezzocannone 8, 80134, Naples, Italy.
| |
Collapse
|
7
|
Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc 2018; 93:1649-1683. [PMID: 29654714 DOI: 10.1111/brv.12413] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
Since the detection of cell-free DNA (cfDNA) in human plasma in 1948, it has been investigated as a non-invasive screening tool for many diseases, especially solid tumours and foetal genetic abnormalities. However, to date our lack of knowledge regarding the origin and purpose of cfDNA in a physiological environment has limited its use to more obvious diagnostics, neglecting, for example, its potential utility in the identification of predisposition to disease, earlier detection of cancers, and lifestyle-induced epigenetic changes. Moreover, the concept or mechanism of cfDNA could also have potential therapeutic uses such as in immuno- or gene therapy. This review presents an extensive compilation of the putative origins of cfDNA and then contrasts the contributions of cellular breakdown processes with active mechanisms for the release of cfDNA into the extracellular environment. The involvement of cfDNA derived from both cellular breakdown and active release in lateral information transfer is also discussed. We hope to encourage researchers to adopt a more holistic view of cfDNA research, taking into account all the biological pathways in which cfDNA is involved, and to give serious consideration to the integration of in vitro and in vivo research. We also wish to encourage researchers not to limit their focus to the apoptotic or necrotic fraction of cfDNA, but to investigate the intercellular messaging capabilities of the actively released fraction of cfDNA and to study the role of cfDNA in pathogenesis.
Collapse
Affiliation(s)
- Janine Aucamp
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Abel J Bronkhorst
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Christoffel P S Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Piet J Pretorius
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| |
Collapse
|
8
|
Abstract
Brain metabolic DNA (BMD) is not involved in cell division or DNA repair but is modulated by memory acquisition, sleep processing, and circadian oscillations. Using routine methods of subcellular fractionation, newly synthesized BMD from male rats is shown to be localized in crude nuclear, mitochondrial, and microsomal fractions and in two fractions of purified nuclei. Sub-fractionation of the mitochondrial fraction indicates the prevalent localization of BMD in free mitochondria and to a lesser degree in synaptosomes and myelin. Cesium density profiles of homogenate, subcellular fractions, and purified nuclei obtained after incorporation periods from 30 min to 4 h indicate that BMD synthesis takes place by reverse transcription in cytoplasmic organelles. Following the acquisition of the double-stranded structure, BMD is transferred to nuclei. Kinetic analyses lasting several weeks highlight the massive BMD turnover in subcellular fractions and purified nuclei and its dependence on age. Data are in agreement with the role of BMD as a temporary information store of cell responses of potential use in comparable forthcoming experiences.
Collapse
|