1
|
Clark DN, Brown SV, Xu L, Lee RL, Ragusa JV, Xu Z, Milner JD, Filiano AJ. Prolonged STAT1 signaling in neurons causes hyperactive behavior. Brain Behav Immun 2025; 124:1-8. [PMID: 39542073 PMCID: PMC11745914 DOI: 10.1016/j.bbi.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
The interferon (IFN)-induced STAT1 signaling pathway is a canonical immune pathway that has also been implicated in regulating neuronal activity. The pathway is enriched in brains of individuals with autism spectrum disorder (ASD) and schizophrenia (SZ). Over-activation of the STAT1 pathway causes pathological transcriptional responses, however it is unclear how these responses might translate into behavioral phenotypes. We hypothesized that prolonged STAT1 signaling in neurons would be sufficient to cause behavioral deficits associated with neurodevelopmental disorders. In this study, we developed a novel mouse model with the clinical STAT1 gain-of-function mutation, T385M, in neurons. These mice were hyperactive and displayed neural hypoactivity with less neuron counts in the caudate putamen. Driving the STAT1 gain-of-function mutation exclusively in dopaminergic neurons, which project to the caudate putamen of the dorsal striatum, mimicked some hyperactive behaviors without a reduction of neurons. Moreover, we demonstrated that this phenotype is neuron specific, as mice with prolonged STAT1 signaling in all excitatory or inhibitory neurons or in microglia were not hyperactive. Overall, these findings suggest that STAT1 signaling in neurons is a crucial player in regulating striatal neuron activity and aspects of motor behavior.
Collapse
Affiliation(s)
- Danielle N Clark
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Shelby V Brown
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Rae-Ling Lee
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joey V Ragusa
- Department of Pathology, Duke University, Durham, NC, USA
| | - Zhenghao Xu
- Marcus Center for Cellular Cures, Duke University, Durham, NC, USA
| | - Joshua D Milner
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Anthony J Filiano
- Department of Integrative Immunobiology, Duke University, Durham, NC, USA; Marcus Center for Cellular Cures, Duke University, Durham, NC, USA; Department of Pathology, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Parlatini V, Bellato A, Murphy D, Cortese S. From neurons to brain networks, pharmacodynamics of stimulant medication for ADHD. Neurosci Biobehav Rev 2024; 164:105841. [PMID: 39098738 DOI: 10.1016/j.neubiorev.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulants represent the first line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD) and are among the most prescribed psychopharmacological treatments. Their mechanism of action at synaptic level has been extensively studied. However, it is less clear how their mechanism of action determines clinically observed benefits. To help bridge this gap, we provide a comprehensive review of stimulant effects, with an emphasis on nuclear medicine and magnetic resonance imaging (MRI) findings. There is evidence that stimulant-induced modulation of dopamine and norepinephrine neurotransmission optimizes engagement of task-related brain networks, increases perceived saliency, and reduces interference from the default mode network. An acute administration of stimulants may reduce brain alterations observed in untreated individuals in fronto-striato-parieto-cerebellar networks during tasks or at rest. Potential effects of prolonged treatment remain controversial. Overall, neuroimaging has fostered understanding on stimulant mechanism of action. However, studies are often limited by small samples, short or no follow-up, and methodological heterogeneity. Future studies should address age-related and longer-term effects, potential differences among stimulants, and predictors of treatment response.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Solent NHS Trust, Southampton, United Kingdom.
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| |
Collapse
|
3
|
Husain SF, Chiang SK, Vasu AA, Goh CP, McIntyre RS, Tang TB, Tran BX, Dang THT, Nguyen TT, Ho RC, Ho CS. Functional Near-Infrared Spectroscopy of English-Speaking Adults With Attention-Deficit/Hyperactivity Disorder During a Verbal Fluency Task. J Atten Disord 2023; 27:1448-1459. [PMID: 37341192 DOI: 10.1177/10870547231180111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Functional near-infrared spectroscopy (fNIRS) provides direct and quantitative assessment of cortical hemodynamic response. It has been used to identify neurophysiological alterations in medication-naïve adults with attention-deficit/hyperactivity disorder (ADHD). Hence, this study aimed to distinguish both medication-naïve and medicated adults with ADHD from healthy controls (HC). METHOD 75 HCs, 75 medication-naïve, and 45 medicated patients took part in this study. fNIRS signals during a verbal fluency task (VFT) were acquired using a 52-channel system and relative oxy-hemoglobin changes in the prefrontal cortex were quantified. RESULTS Prefrontal cortex hemodynamic response was lower in patients than HCs (p ≤ ≤.001). Medication-naïve and medicated patients did not differ in hemodynamic response or symptom severity (p > .05). fNIRS measurements were not associated with any clinical variables (p > .05). 75.8% patients and 76% HCs were correctly classified using hemodynamic response. CONCLUSION fNIRS may be a potential diagnostic tool for adult ADHD. These findings need to be replicated in larger validation studies.
Collapse
Affiliation(s)
| | | | | | | | - Roger S McIntyre
- University Health Network, Toronto, ON, Canada
- University of Toronto, ON, Canada
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Tong Boon Tang
- University Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Bach X Tran
- Hanoi Medical University, Dong Da, Vietnam
- Johns Hopkins University, Baltimore, MD, USA
| | - Trang H T Dang
- Institute of Health Economics and Technology, Hanoi, Vietnam
| | - Tham T Nguyen
- Duy Tan University, Da Nang, Vietnam
- Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Roger C Ho
- National University of Singapore, Singapore
| | - Cyrus S Ho
- National University of Singapore, Singapore
| |
Collapse
|
4
|
Fang Z, Shen G, Amin N, Lou C, Wang C, Fang M. Effects of Neuroinflammation and Autophagy on the Structure of the Blood-Brain Barrier in ADHD Model. Neuroscience 2023; 530:17-25. [PMID: 37625689 DOI: 10.1016/j.neuroscience.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Spontaneously hypertensive rats (SHR) are the most common animal model used to study attention deficit hyperactivity disorder (ADHD). The purpose of this study was to look at the impact of neuroinflammation and autophagy on blood-brain barrier function in the prefrontal cortex and hippocampus of ADHD rats. The rats were separated into three groups: juvenile SHR (6 weeks), mature SHR (12 weeks), and comparable age WKY groups. An open-field test was used to assess rats' ability to move on their own. Immunofluorescence was used to detect the Iba1-immunopositive microglia, ZO-1 and TNF-α. Meanwhile, the expression of p62, Beclin-1, LC3B, and MMP9, MMP2, TNF-α, ZO-1, and occludin were detected by Western blot. The results have shown that Iba1-immunopositive microglia and TNF-α protein in the brain of SHR rats were significantly increased. Moreover, autophagy of cells and the level of MMP2 and MPP9 in the prefrontal cortex and hippocampus increased in SHR rats. In addition, the expression of ZO-1 and occludin was decreased in SHR rats. To sum up, the increase of neuroinflammation and excessive autophagy were essential factors for the damage of blood-brain barrier structure and function.
Collapse
Affiliation(s)
- Zhanglu Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guanghong Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Zoology, Faculty of Science, Aswan University, Egypt
| | - Chengjian Lou
- Department of Neurosurgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322022, China
| | - Changxing Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Marong Fang
- Institute of System Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
5
|
Yamashita M, Kagitani-Shimono K, Hirano Y, Hamatani S, Nishitani S, Yao A, Kurata S, Kosaka H, Jung M, Yoshida T, Sasaki T, Matsumoto K, Kato Y, Nakanishi M, Tachibana M, Mohri I, Tsuchiya KJ, Tsujikawa T, Okazawa H, Shimizu E, Taniike M, Tomoda A, Mizuno Y. Child Developmental MRI (CDM) project: protocol for a multi-centre, cross-sectional study on elucidating the pathophysiology of attention-deficit/hyperactivity disorder and autism spectrum disorder through a multi-dimensional approach. BMJ Open 2023; 13:e070157. [PMID: 37355265 PMCID: PMC10314540 DOI: 10.1136/bmjopen-2022-070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
INTRODUCTION Neuroimaging studies on attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) have demonstrated differences in extensive brain structure, activity and network. However, there remains heterogeneity and inconsistency across these findings, presumably because of the diversity of the disorders themselves, small sample sizes, and site and parameter differences in MRI scanners, and their overall pathogenesis remains unclear. To address these gaps in the literature, we will apply the travelling-subject approach to correct site differences in MRI scanners and clarify brain structure and network characteristics of children with ADHD and ASD using large samples collected in a multi-centre collaboration. In addition, we will investigate the relationship between these characteristics and genetic, epigenetic, biochemical markers, and behavioural and psychological measures. METHODS AND ANALYSIS We will collect resting-state functional MRI (fMRI) and T1-weighted and diffusion-weighted MRI data from 15 healthy adults as travelling subjects and 300 children (ADHD, n=100; ASD, n=100; and typical development, n=100) with multi-dimensional assessments. We will also apply data from more than 1000 samples acquired in our previous neuroimaging studies on ADHD and ASD. ETHICS AND DISSEMINATION The study protocol has been approved by the Research Ethics Committee of the University of Fukui Hospital (approval no: 20220601). Our study findings will be submitted to scientific peer-reviewed journals and conferences.
Collapse
Affiliation(s)
- Masatoshi Yamashita
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiyuki Hirano
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
| | - Sayo Hamatani
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Shota Nishitani
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Akiko Yao
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
| | - Sawa Kurata
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Hirotaka Kosaka
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minyoung Jung
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Korea (the Republic of)
| | - Tokiko Yoshida
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
| | - Tsuyoshi Sasaki
- Department of Child Psychiatry and Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Yoko Kato
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mariko Nakanishi
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaya Tachibana
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ikuko Mohri
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenji J Tsuchiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Centre, University of Fukui, Fukui, Japan
| | - Eiji Shimizu
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Research Centre for Child Mental Development, Chiba University, Chiba, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Molecular Research Centre for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akemi Tomoda
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| | - Yoshifumi Mizuno
- Research Centre for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui, Japan
| |
Collapse
|
6
|
Nota MH, Nicolas S, O’Leary OF, Nolan YM. Outrunning a bad diet: interactions between exercise and a Western-style diet for adolescent mental health, metabolism and microbes. Neurosci Biobehav Rev 2023; 149:105147. [PMID: 36990371 DOI: 10.1016/j.neubiorev.2023.105147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Adolescence is a period of biological, psychological and social changes, and the peak time for the emergence of mental health problems. During this life stage, brain plasticity including hippocampal neurogenesis is increased, which is crucial for cognitive functions and regulation of emotional responses. The hippocampus is especially susceptible to environmental and lifestyle influences, mediated by changes in physiological systems, resulting in enhanced brain plasticity but also an elevated risk for developing mental health problems. Indeed, adolescence is accompanied by increased activation of the maturing hypothalamic-pituitary-adrenal axis, sensitivity to metabolic changes due to increased nutritional needs and hormonal changes, and gut microbiota maturation. Importantly, dietary habits and levels of physical activity significantly impact these systems. In this review, the interactions between exercise and Western-style diets, which are high in fat and sugar, on adolescent stress susceptibility, metabolism and the gut microbiota are explored. We provide an overview of current knowledge on implications of these interactions for hippocampal function and adolescent mental health, and speculate on potential mechanisms which require further investigation.
Collapse
|
7
|
Echogenicity and size of substantia nigra on transcranial sonography (TCS) in patients with attention-deficit/hyperactivity disorder and healthy children aged 6–12 years: a comparative study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-022-00579-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Background
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders. Children with ADHD may experience significant functional problems, such as academic concerns at school, poor interpersonal relationships and low self-esteem. Current models of ADHD suggest that it is associated with functional impairments in dopamine and norepinephrine systems. The substantia nigra in the midbrain produces the largest amount of dopamine in the brain. The present study was conducted using TCS to compare the size and echogenicity of substantia nigra between ADHD and healthy children.
Results
This cross-sectional, analytical study was conducted on 68 (34 ADHD and 34 healthy individuals) aged 6–12 years. Based on the results obtained, the hyper-echogenicity of SN in control and ADHD groups were 33.3% and 66.7% (P < 0.001) and hypo-echogenicity of thalamic nuclei were 55.2% and 44.8% (P < 0.05), respectively. Interestingly, the TCS results of healthy children with a positive family history of ADHD were similar to results for patients with the disorder.
Conclusions
The echogenicity of Substantia nigra and thalamus nucleus among children and adolescents with ADHD is significantly higher from that in healthy children.
Collapse
|
8
|
Nikolaus S, Mamlins E, Antke C, Dabir M, Müller HW, Giesel FL. Boosted dopamine and blunted serotonin in Tourette syndrome - evidence from in vivo imaging studies. Rev Neurosci 2022; 33:859-876. [PMID: 35575756 DOI: 10.1515/revneuro-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
The precise cortical and subcortical mechanisms of Tourette syndrome (TS) are still not fully understood. In the present retrospective analysis, adolescent and adult medication-naïve patients showed increased DA transporter (DAT) binding in nucleus caudate (CAUD), putamen (PUT) and/or whole neostriatum (NSTR). D2 receptor (R) binding and DA release were not different from controls throughout the nigrostriatal and mesolimbocortical system. When patients were medication-free (either medication-naïve or under withdrawal), DAT was still increased in PUT, but not different from controls in CAUD, NSTR and ventral striatum (VSTR). SERT was unaltered in midbrain/pons (MP), but decreased in PUT, thalamus (THAL) and hypothalamus. D2R was unaltered throughout the nigrostriatal and mesolimbocortical system, while DA release was not different from controls in PUT, CAUD and NSTR, but elevated in VSTR. 5-HT2AR binding was unaltered in neocortex and cingulate. In acutely medicated adults, DAT was unaltered in PUT, but still increased in CAUD, whereas DA release remained unaltered throughout the nigrostriatal and mesolimbocortical system. When part of the patients was acutely medicated, vesicular monoamine transporter (VMAT2), DAT, SERT and DA synthesis were not different from controls in striatal regions, whereas D2R was decreased in NSTR, THAL, frontal cortex and limbic regions. Conversely, 5-HT2AR binding was unaltered in striatal regions and THAL, but increased in neocortical and limbic areas. It may be hypothesized that both the DA surplus and the 5-HT shortage in key regions of the nigrostriatal and mesolimbic system are relevant for the bouts of motor activity and the deficiencies in inpulse control.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Eduards Mamlins
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christina Antke
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Mardjan Dabir
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Yamamoto M, Inada T. Positron emission tomography studies in adult patients with attention-deficit/hyperactivity disorder. Jpn J Radiol 2022; 41:382-392. [PMID: 36480104 DOI: 10.1007/s11604-022-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, motor hyperactivity, impulsivity, and psychosocial as well as cognitive dysfunction. Although characteristic clinical manifestations have been described, no definitive biomarkers to diagnose ADHD have been established. In this review article, we summarize positron emission tomography (PET) studies conducted in adult patients with ADHD. We found that, although, disturbances of dopamine, serotonin, and norepinephrine functions have been implicated in ADHD, no characteristic findings have been identified from PET studies in patients with ADHD. Several previous PET studies on the central dopaminergic transmission-related ligands in patients with ADHD have shown altered binding of dopamine markers in the basal ganglia. However, no consistent results were observed in the binding characteristics for dopamine transporters and receptors. Findings from PET studies with ligands related to serotonin and norepinephrine pathways showed either unclear clinical significance or low replicability. Therefore, whether alterations of monoamine function may be involved in the pathophysiological mechanism remains to be clarified. The limitations of previous PET studies include their small sample sizes, focus on several kinds of existing ligands, and a questionable validity of the diagnosis (lack of biological diagnostic criteria). To determine the characteristic findings for diagnosing ADHD, further research is needed, and particularly, studies that evaluate new active ligands with specific binding to monoamine pathways should be undertaken.
Collapse
Affiliation(s)
- Maeri Yamamoto
- Department of Psychiatry, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya-Shi, Aichi, 466-8560, Japan
| | - Toshiya Inada
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya-Shi, Aichi, 466-8550, Japan.
| |
Collapse
|
10
|
Taylor MR, Carrasco K, Carrasco A, Basu A. Tobacco and ADHD: A Role of MAO-Inhibition in Nicotine Dependence and Alleviation of ADHD Symptoms. Front Neurosci 2022; 16:845646. [PMID: 35495050 PMCID: PMC9039335 DOI: 10.3389/fnins.2022.845646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a relatively commonly occurring neurodevelopmental disorder affecting approximately 5% of children and young people. The neurobiological mechanisms of ADHD are proposed to particularly center around increased dopamine receptor availability related to associated symptoms of reduced attention regulation and impulsivity. ADHD is also persistent across the lifespan and associated with a raft of impulsive and health-risk behaviors including substance abuse and smoking. Research highlighting the potentially significant levels of monoamine oxidase (MAO) inhibitory properties in tobacco smoke and e-cigarettes may provide a mechanism for increased tobacco smoke dependence among those with ADHD, in addition to the role of nicotine.AimThis scoping review aimed to establish evidence for the above neurobiological pathway between smoking and ADHD symptom-alleviation or “self-medication” with the inclusion of the mechanism of MAO-inhibitors indirect increasing dopamine in the brain.MethodologyScoping review methodologies were employed in this review selected to synthesize multiple sources of empirical research to identify current gaps in the knowledge base and identify key characteristics of research data related to a phenomenon. Databases searched included OVID MEDLINE(R), Embase, Cochrane, PsycINFO and SCOPUS limited to 2000 onward and empirically validated, peer-reviewed research.FindingsThere is support for the role of MAO-inhibition on greater reinforcement of smoking for individuals with ADHD through a greater impact on dopaminergic availability than nicotine; potentially moderating ADHD symptoms.ConclusionGreater support for a “self-medication” model of ADHD and smoking includes not only nicotine but also MAO-inhibitors as dopamine agonists contained in cigarettes and e-cigarettes.
Collapse
Affiliation(s)
- Mairin Rose Taylor
- School of Health Sciences, University of Canterbury, Christchurch, New Zealand
- *Correspondence: Mairin Rose Taylor,
| | - Kelly Carrasco
- School of Education, Victoria University of Wellington, Wellington, New Zealand
| | - Andres Carrasco
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Arindam Basu
- School of Health Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
11
|
Serum kynurenine metabolites might not be associated with risk factors of treatment-resistant schizophrenia. J Psychiatr Res 2022; 145:339-346. [PMID: 34776248 DOI: 10.1016/j.jpsychires.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND About a third of patients with schizophrenia do not respond adequately to currently available antipsychotics and thus experiences symptoms of greater severity, known as treatment-resistant schizophrenia (TRS). Some evidence suggests that the tryptophan (TRP) pathway (comprising 5-HT and kynurenine sub-pathways) has an important influence on response to antipsychotics. We therefore hypothesized that TRS is linked to metabolites of TRP pathway. METHODS We measured TRP metabolites in 54 patients with TRS and compared them to 49 age- and sex-matched patients who responded to antipsychotics (NTRS), and 62 healthy controls using liquid chromatography-tandem mass spectrometry. Psychopathology and clinical symptoms were assessed by means of schizophrenia positive and negative scales. Working memory abilities, cortical thickness and white matter diffusion tensor imaging fractional anisotropy were appraised in enrolled subjects by neurophysiological tests, as spatial span and digital sequencing tests, and 3T magnetic resonance imaging. RESULTS Patients with TRS had a significantly higher 5-HT/TRP ratio (p = 0.009) than patients with NTRS. However, the two groups did not differ in kynurenine-pathway metabolites or ratios. Additionally, 5-HT/TRP was positively correlated with disorganized symptoms in TRS (r = 0.59, p < 0.001), and negatively correlated with digit-sequencing test scores (r = -0.34, p = 0.02). These correlations were insignificant among patients with NTRS and healthy controls. In patients with TRS, 5-HT/TRP was strongly linked to the right supramarginal cortex (t = -3.2, p = 0.003), and in healthy controls, to the right transverse temporal (t = 3.40, p = 0.001), but significance disappeared after FDR correction. CONCLUSIONS Present results indicate that an upregulated 5-HT biosynthetic pathway can be associated to TRS, suggesting that targeting mechanisms of 5-HT conversion from tryptophan could shed light on the development of new pharmacological approaches of TRS.
Collapse
|