1
|
Fujioka H, Urasaki E, Soejima Y, Harada H, Yamashita K. Combination of Single- and Paired-Pulse Somatosensory Evoked Potentials in Ischemic Monitoring: Preliminary Investigation in Carotid Endarterectomy. Cureus 2020; 12:e12206. [PMID: 33489615 PMCID: PMC7815265 DOI: 10.7759/cureus.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction Severe ischemia induces cerebral excitability imbalance before completion of infarct. To investigate the clinical availability of this imbalance with ischemic monitoring, paired-pulse somatosensory evoked potentials (SEPs) were performed in conjunction with conventional SEPs during carotid endarterectomy. Methods For carotid endarterectomy patients with hemodynamic deficits of the middle cerebral artery area (n = 34), the excitability imbalances (Q) were measured by paired-pulse SEPs, wherein the second response (A2) was divided by the first (A1; Q = A2/A1). Regional cerebral saturation (rSO2) was also measured. Occlusion was performed twice using shunting. Results Each carotid occlusion induced a significant decrease in mean A1 and rSO2, and an increase in mean Q values (p < 0.001), which returned to the baseline level after occlusion. While neuronal imbalances were mostly transient, persistently increased Q values were observed in four cases (11.8%), all indicating postoperative abnormalities in diffusion-weighted magnetic resonance imaging (100%). Meanwhile, A1 detected the postoperative abnormality in only one case (25%). Preoperative Q values at the time of surgery were significantly higher in symptomatic patients having the upper limb deficits than those without (p < 0.01), indicating persistent or permanent imbalances. Conclusion Paired-pulse SEPs reliably identified transient, persistent or permanent neuronal imbalances, depending on the ischemic severity. These preliminary results indicated that paired-pulse SEPs, in combination with conventional SEPs (A1), may offer better ischemic monitoring.
Collapse
Affiliation(s)
- Hiroshi Fujioka
- Neurosurgery, Nagasaki Yurino Hospital, Nagasaki, JPN.,Neurosurgery, Kanmon Medical Center, National Hospital Organization (NHO), Shimonoseki, JPN.,Neurosurgery, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Fukuoka, JPN
| | | | - Yoshiteru Soejima
- Neurosurgery, Kanmon Medical Center, National Hospital Organization (NHO), Shimonoseki, JPN
| | - Hideki Harada
- Anaesthesiology, Cognitive and Molecular Research Institute of Brain Diseases, Kurume University, Fukuoka, JPN
| | - Katsuhiro Yamashita
- Neurosurgery, Kanmon Medical Center, National Hospital Organization (NHO), Shimonoseki, JPN
| |
Collapse
|
2
|
Sun Y, Wang J, Liang SH, Ge J, Lu YC, Li JN, Chen YB, Luo DS, Li H, Li YQ. Involvement of the Ventrolateral Periaqueductal Gray Matter-Central Medial Thalamic Nucleus-Basolateral Amygdala Pathway in Neuropathic Pain Regulation of Rats. Front Neuroanat 2020; 14:32. [PMID: 32792913 PMCID: PMC7394700 DOI: 10.3389/fnana.2020.00032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/28/2020] [Indexed: 11/27/2022] Open
Abstract
The central medial nucleus (CM), a prominent cell group of the intralaminar nuclei (ILN) of the thalamus, and the ventrolateral periaqueductal gray matter (vlPAG) are two major components of the medial pain system. Whether vlPAG and CM are input sources of nociceptive information to the basolateral amygdala (BLA) and whether they are involved in neuropathic pain regulation remain unclear. Clarifying the hierarchical organization of these subcortical nuclei (vlPAG, CM, and BLA) can enhance our understanding on the neural circuits for pain regulation. Behavioral test results showed that a CM lesion made by kainic acid (KA) injection could effectively alleviate mechanical hyperalgesia 4, 6, and 8 days after spared nerve injury (SNI) surgery, with the symptoms returning after 10 days. Morphological studies revealed that: (1) the CM received afferents from vlPAG and sent efferents to BLA, indicating that an indirect vlPAG–CM–BLA pathway exists; (2) such CM–BLA projections were primarily excitatory glutamatergic neurons as revealed by fluorescence in situ hybridization; (3) the fibers originated from the CM-formed close contacts with both excitatory and inhibitory neurons in the BLA; and (4) BLA-projecting CM neurons expressed Fos induced by SNI and formed close contacts with fibers from vlPAG, suggesting that the vlPAG–CM–BLA indirect pathway was activated in neuropathic pain conditions. Finally, the vlPAG–CM–BLA indirect pathway was further confirmed using anterograde and monosynaptic virus tracing investigation. In summary, our present results provide behavioral and morphological evidence that the indirect vlPAG–CM–BLA pathway might be a novel pain pathway involved in neuropathic pain regulation.
Collapse
Affiliation(s)
- Yi Sun
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jian Wang
- Department of Cardiovascular Surgery, the General Hospital of Western Theater Command, Chengdu, China
| | - Shao-Hua Liang
- Department of Human Anatomy, Binzhou Medical University, Yantai, China
| | - Jun Ge
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Ya-Cheng Lu
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Yan-Bing Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dao-Shu Luo
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China.,Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, China.,Department of Human Anatomy, College of Basic Medicine, Dali University, Dali, China
| |
Collapse
|
3
|
Xiao D, Vanni MP, Mitelut CC, Chan AW, LeDue JM, Xie Y, Chen AC, Swindale NV, Murphy TH. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons. eLife 2017; 6. [PMID: 28160463 PMCID: PMC5328594 DOI: 10.7554/elife.19976] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI:http://dx.doi.org/10.7554/eLife.19976.001
Collapse
Affiliation(s)
- Dongsheng Xiao
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Matthieu P Vanni
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catalin C Mitelut
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Allen W Chan
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Jeffrey M LeDue
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Yicheng Xie
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Andrew Cn Chen
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Nicholas V Swindale
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Forward suppression in the auditory cortex is caused by the Ca(v)3.1 calcium channel-mediated switch from bursting to tonic firing at thalamocortical projections. J Neurosci 2014; 33:18940-50. [PMID: 24285899 DOI: 10.1523/jneurosci.3335-13.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brief sounds produce a period of suppressed responsiveness in the auditory cortex (ACx). This forward suppression can last for hundreds of milliseconds and might contribute to mechanisms of temporal separation of sounds and stimulus-specific adaptation. However, the mechanisms of forward suppression remain unknown. We used in vivo recordings of sound-evoked responses in the mouse ACx and whole-cell recordings, two-photon calcium imaging in presynaptic terminals, and two-photon glutamate uncaging in dendritic spines performed in brain slices to show that synaptic depression at thalamocortical (TC) projections contributes to forward suppression in the ACx. Paired-pulse synaptic depression at TC projections lasts for hundreds of milliseconds and is attributable to a switch between firing modes in thalamic neurons. Thalamic neurons respond to a brief depolarizing pulse with a burst of action potentials; however, within hundreds of milliseconds, the same pulse repeated again produces only a single action potential. This switch between firing modes depends on Ca(v)3.1 T-type calcium channels enriched in thalamic relay neurons. Pharmacologic inhibition or knockdown of Ca(v)3.1 T-type calcium channels in the auditory thalamus substantially reduces synaptic depression at TC projections and forward suppression in the ACx. These data suggest that Ca(v)3.1-dependent synaptic depression at TC projections contributes to mechanisms of forward suppression in the ACx.
Collapse
|
5
|
Walters BJ, Hallengren JJ, Theile CS, Ploegh HL, Wilson SM, Dobrunz LE. A catalytic independent function of the deubiquitinating enzyme USP14 regulates hippocampal synaptic short-term plasticity and vesicle number. J Physiol 2013; 592:571-86. [PMID: 24218545 DOI: 10.1113/jphysiol.2013.266015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ubiquitin proteasome system is required for the rapid and precise control of protein abundance that is essential for synaptic function. USP14 is a proteasome-bound deubiquitinating enzyme that recycles ubiquitin and regulates synaptic short-term synaptic plasticity. We previously reported that loss of USP14 in ax(J) mice causes a deficit in paired pulse facilitation (PPF) at hippocampal synapses. Here we report that USP14 regulates synaptic function through a novel, deubiquitination-independent mechanism. Although PPF is usually inversely related to release probability, USP14 deficiency impairs PPF without altering basal release probability. Instead, the loss of USP14 causes a large reduction in the number of synaptic vesicles. Over-expression of a catalytically inactive form of USP14 rescues the PPF deficit and restores synaptic vesicle number, indicating that USP14 regulates presynaptic structure and function independently of its role in deubiquitination. Finally, the PPF deficit caused by loss of USP14 can be rescued by pharmacological inhibition of proteasome activity, suggesting that inappropriate protein degradation underlies the PPF impairment. Overall, we demonstrate a novel, deubiquitination-independent function for USP14 in influencing synaptic architecture and plasticity.
Collapse
Affiliation(s)
- Brandon J Walters
- 1825 University Blvd, SHEL 902, Birmingham, AL 35210, USA. ; S. M. Wilson: 1825 University Blvd, SHEL 914, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Wang J, Zhang X, Cao B, Liu J, Li Y. Facilitation of synaptic transmission in the anterior cingulate cortex in viscerally hypersensitive rats. Cereb Cortex 2013; 25:859-68. [PMID: 24108805 PMCID: PMC4379994 DOI: 10.1093/cercor/bht273] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Electrophysiological studies have shown the enhanced response of anterior cingulate cortex (ACC) to colorectal distension in viscerally hypersensitive (VH) rats, which can be observed up to 7 weeks following colonic anaphylaxis, independent of colon inflammation, suggesting a mechanism for learning and triggering of pain memories in the ACC neuronal circuitry. Activity-dependent plasticity in synaptic strength may serve as a key mechanism that reflects cortical plasticity. However, only a few reports have indicated the synaptic plasticity of ACC in vivo. In the present study, electrophysiological recording showed long-lasting potentiation of local field potential in the medial thalamus (MT)-ACC synapses in VH rats. Theta burst stimulation in the MT reliably induced long-term potentiation in the MT-ACC pathway in normal rats, but was occluded in the VH state. Further, repeated tetanization of MT increased ACC neuronal activity and visceral pain responses of normal rats, mimicking VH rats. In conclusion, we demonstrated for the first time that visceral hypersensitivity is associated with alterations of synaptic plasticity in the ACC. The ACC synaptic strengthening in chronic visceral pain may engage signal transduction pathways that are in common with those activated by electrical stimulation, and serves as an attractive cellular model of functional visceral pain.
Collapse
Affiliation(s)
- Jun Wang
- Neuroscience Laboratory, Department of Biology and Chemistry, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre, City University of Hong Kong, Shenzhen 518057, PR China
| | - Xu Zhang
- Neuroscience Laboratory, Department of Biology and Chemistry, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre, City University of Hong Kong, Shenzhen 518057, PR China
| | - Bing Cao
- Neuroscience Laboratory, Department of Biology and Chemistry, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre, City University of Hong Kong, Shenzhen 518057, PR China
| | - Jin Liu
- Neuroscience Laboratory, Department of Biology and Chemistry, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre, City University of Hong Kong, Shenzhen 518057, PR China
| | - Ying Li
- Neuroscience Laboratory, Department of Biology and Chemistry, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China Key Laboratory of Biochip Technology, Shenzhen Biotech and Health Centre, City University of Hong Kong, Shenzhen 518057, PR China
| |
Collapse
|
7
|
Abstract
During behavioral quiescence, the neocortex generates spontaneous slow oscillations, which may consist of up-states and down-states. Up-states are short epochs of persistent activity that resemble the activated neocortex during arousal and cognition. Neural activity in neocortical pathways can trigger up-states, but the variables that control their occurrence are poorly understood. We used thalamocortical slices from adult mice to explore the role of thalamocortical and intracortical synaptic cooperativity (the number of coincident afferents) in driving up-states. Cooperativity was adjusted by varying the intensity of electrical or blue-light stimuli in pathways that express channelrhodopsin-2. We found that optogenetics greatly improves the study of thalamocortical pathways in slices because it produces thalamocortical responses that resemble those observed in vivo. The results indicate that more synaptic cooperativity, caused by either thalamocortical or intracortical fast AMPA-receptor excitation, leads to more robust inhibition of up-states because it drives stronger feedforward inhibition. Conversely, during strong synaptic cooperativity that suppresses up-states, blocking fast excitation, and as a result the feedforward inhibition it drives, unmasks up-states entirely mediated by slow NMDA-receptor excitation. Regardless of the pathway's origin, cooperativity mediated by fast excitation is inversely related to the ability of excitatory synaptic pathways to trigger up-states in neocortex.
Collapse
|
8
|
Blundon JA, Zakharenko SS. Presynaptic gating of postsynaptic synaptic plasticity: a plasticity filter in the adult auditory cortex. Neuroscientist 2013; 19:465-78. [PMID: 23558179 DOI: 10.1177/1073858413482983] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory cortices can not only detect and analyze incoming sensory information but can also undergo plastic changes while learning behaviorally important sensory cues. This experience-dependent cortical plasticity is essential for shaping and modifying neuronal circuits to perform computations of multiple, previously unknown sensations, the adaptive process that is believed to underlie perceptual learning. Intensive efforts to identify the mechanisms of cortical plasticity have provided several important clues; however, the exact cellular sites and mechanisms within the intricate neuronal networks that underlie cortical plasticity have yet to be elucidated. In this review, we present several parallels between cortical plasticity in the auditory cortex and recently discovered mechanisms of synaptic plasticity gating at thalamocortical projections that provide the main input to sensory cortices. Striking similarities between the features and mechanisms of thalamocortical synaptic plasticity and those of experience-dependent cortical plasticity in the auditory cortex, especially in terms of regulation of an early critical period, point to thalamocortical projections as an important locus of plasticity in sensory cortices.
Collapse
Affiliation(s)
- Jay A Blundon
- Department of Development Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
9
|
Castro-Alamancos MA. Cortical up and activated states: implications for sensory information processing. Neuroscientist 2010; 15:625-34. [PMID: 19321459 DOI: 10.1177/1073858409333074] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The neocortex generates spontaneous slow oscillations that consist of up and down states during quiescence. Up states are short epochs of persistent activity that resemble the state of cortical activation during arousal and cognition. The excitability of cortical cells and synaptic networks is impacted by up states. This review describes the characteristics and putative functional role of up states and their similarity with activated states.
Collapse
Affiliation(s)
- Manuel A Castro-Alamancos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
| |
Collapse
|
10
|
Lefebvre V, Zheng Y, Martin C, Devonshire IM, Harris S, Mayhew JE. A Dynamic Causal Model of the Coupling Between Pulse Stimulation and Neural Activity. Neural Comput 2009; 21:2846-68. [DOI: 10.1162/neco.2009.07-08-820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price ( 2000 ), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005 ) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.
Collapse
Affiliation(s)
- Veronique Lefebvre
- Centre for Signal Processing in Neuroimaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Sheffield, South Yorkshire S102TN, U.K
| | - Ying Zheng
- Centre for Signal Processing in Neuroimaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Sheffield, South Yorkshire S102TN, U.K
| | - Chris Martin
- Centre for Signal Processing in Neuroimaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Sheffield, South Yorkshire S102TN, U.K
| | - Ian M. Devonshire
- Centre for Signal Processing in Neuroimaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Sheffield, South Yorkshire S102TN, U.K
| | - Samuel Harris
- Centre for Signal Processing in Neuroimaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Sheffield, South Yorkshire S102TN, U.K
| | - John E. Mayhew
- Centre for Signal Processing in Neuroimaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Sheffield, South Yorkshire S102TN, U.K
| |
Collapse
|
11
|
Shyu BC, Vogt BA. Short-term synaptic plasticity in the nociceptive thalamic-anterior cingulate pathway. Mol Pain 2009; 5:51. [PMID: 19732417 PMCID: PMC2745374 DOI: 10.1186/1744-8069-5-51] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 09/04/2009] [Indexed: 12/29/2022] Open
Abstract
Background Although the mechanisms of short- and long-term potentiation of nociceptive-evoked responses are well known in the spinal cord, including central sensitization, there has been a growing body of information on such events in the cerebral cortex. In view of the importance of anterior cingulate cortex (ACC) in chronic pain conditions, this review considers neuronal plasticities in the thalamocingulate pathway that may be the earliest changes associated with such syndromes. Results A single nociceptive electrical stimulus to the sciatic nerve induced a prominent sink current in the layer II/III of the ACC in vivo, while high frequency stimulation potentiated the response of this current. Paired-pulse facilitation by electrical stimulation of midline, mediodorsal and intralaminar thalamic nuclei (MITN) suggesting that the MITN projection to ACC mediates the nociceptive short-term plasticity. The short-term synaptic plasticities were evaluated for different inputs in vitro where the medial thalamic and contralateral corpus callosum afferents were compared. Stimulation of the mediodorsal afferent evoked a stronger short-term synaptic plasticity and effectively transferred the bursting thalamic activity to cingulate cortex that was not true for contralateral stimulation. This short-term enhancement of synaptic transmission was mediated by polysynaptic pathways and NMDA receptors. Layer II/III neurons of the ACC express a short-term plasticity that involves glutamate and presynaptic calcium influx and is an important mechanism of the short-term plasticity. Conclusion The potentiation of ACC neuronal activity induced by thalamic bursting suggest that short-term synaptic plasticities enable the processing of nociceptive information from the medial thalamus and this temporal response variability is particularly important in pain because temporal maintenance of the response supports cortical integration and memory formation related to noxious events. Moreover, these modifications of cingulate synapses appear to regulate afferent signals that may be important to the transition from acute to chronic pain conditions associated with persistent peripheral noxious stimulation. Enhanced and maintained nociceptive activities in cingulate cortex, therefore, can become adverse and it will be important to learn how to regulate such changes in thalamic firing patterns that transmit nociceptive information to ACC in early stages of chronic pain.
Collapse
Affiliation(s)
- Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, Republic of China.
| | | |
Collapse
|
12
|
Rigas P, Castro-Alamancos MA. Impact of persistent cortical activity (up States) on intracortical and thalamocortical synaptic inputs. J Neurophysiol 2009; 102:119-31. [PMID: 19403750 DOI: 10.1152/jn.00126.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neocortex generates short epochs of persistent activity called up states, which are associated with changes in cellular and network excitability. Using somatosensory thalamocortical slices, we studied the impact of persistent cortical activity during spontaneous up states on intrinsic cellular excitability (input resistance) and on excitatory synaptic inputs of cortical cells. At the intrinsic excitability level, we found that the expected decrease in input resistance (high conductance) resulting from synaptic barrages during up states is counteracted by an increase in input resistance due to depolarization per se. The result is a variable but on average relatively small reduction in input resistance during up states. At the synaptic level, up states enhanced a late synaptic component of short-latency thalamocortical field potential responses but suppressed intracortical field potential responses. The thalamocortical enhancement did not reflect an increase in synaptic strength, as determined by measuring the evoked postsynaptic current, but instead an increase in evoked action potential (spike) probability due to depolarization during up states. In contrast, the intracortical suppression was associated with a reduction in synaptic strength, apparently driven by increased presynaptic intracortical activity during up states. In addition, intracortical suppression also reflected a reduction in evoked spike latency caused by depolarization and the abolishment of longer-latency spikes caused by stronger inhibitory drive during up states. In conclusion, depolarization during up states increases the success of excitatory synaptic inputs to reach firing. However, activity-dependent synaptic depression caused by increased presynaptic firing during up states and the enhancement of evoked inhibitory drive caused by depolarization suppress excitatory intracortical synaptic inputs.
Collapse
Affiliation(s)
- Pavlos Rigas
- Department of Neurobiology, Drexel University College of Medicine, 2900 Queen Ln., Philadelphia, PA 19129, USA
| | | |
Collapse
|
13
|
Linking the response properties of cells in auditory cortex with network architecture: cotuning versus lateral inhibition. J Neurosci 2008; 28:9151-63. [PMID: 18784296 DOI: 10.1523/jneurosci.1789-08.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The frequency-intensity receptive fields (RF) of neurons in primary auditory cortex (AI) are heterogeneous. Some neurons have V-shaped RFs, whereas others have enclosed ovoid RFs. Moreover, there is a wide range of temporal response profiles ranging from phasic to tonic firing. The mechanisms underlying this diversity of receptive field properties are yet unknown. Here we study the characteristics of thalamocortical (TC) and intracortical connectivity that give rise to the individual cell responses. Using a mouse auditory TC slice preparation, we found that the amplitude of synaptic responses in AI varies non-monotonically with the intensity of the stimulation in the medial geniculate nucleus (MGv). We constructed a network model of MGv and AI that was simulated using either rate model cells or in vitro neurons through an iterative procedure that used the recorded neural responses to reconstruct network activity. We compared the receptive fields and firing profiles obtained with networks configured to have either cotuned excitatory and inhibitory inputs or relatively broad, lateral inhibitory inputs. Each of these networks yielded distinct response properties consistent with those documented in vivo with natural stimuli. The cotuned network produced V-shaped RFs, phasic-tonic firing profiles, and predominantly monotonic rate-level functions. The lateral inhibitory network produced enclosed RFs with narrow frequency tuning, a variety of firing profiles, and robust non-monotonic rate-level functions. We conclude that both types of circuits must be present to account for the wide variety of responses observed in vivo.
Collapse
|
14
|
de la Rocha J, Parga N. Thalamocortical transformations of periodic stimuli: the effect of stimulus velocity and synaptic short-term depression in the vibrissa-barrel system. J Comput Neurosci 2008; 25:122-40. [PMID: 18236148 DOI: 10.1007/s10827-007-0068-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 11/26/2022]
Abstract
Recent works on the response of barrel neurons to periodic deflections of the rat vibrissae have shown that the stimulus velocity is encoded in the corti cal spike rate (Pinto et al., Journal of Neurophysiology, 83(3), 1158-1166, 2000; Arabzadeh et al., Journal of Neuroscience, 23(27), 9146-9154, 2003). Other studies have reported that repetitive pulse stimulation produces band-pass filtering of the barrel response rate centered around 7-10 Hz (Garabedian et al., Journal of Neurophysiology, 90, 1379-1391, 2003) whereas sinusoidal stimulation gives an increasing rate up to 350 Hz (Arabzadeh et al., Journal of Neuroscience, 23(27), 9146-9154, 2003). To explore the mechanisms underlying these results we propose a simple computational model consisting in an ensemble of cells in the ventro-posterior medial thalamic nucleus (VPm) encoding the stimulus velocity in the temporal profile of their response, connected to a single barrel cell through synapses showing short-term depression. With sinusoidal stimulation, encoding the velocity in VPm facilitates the response as the stimulus frequency increases and it causes the velocity to be encoded in the cortical rate in the frequency range 20-100 Hz. Synaptic depression does not suppress the response with sinusoidal stimulation but it produces a band-pass behavior using repetitive pulses. We also found that the passive properties of the cell membrane eventually suppress the response to sinusoidal stimulation at high frequencies, something not observed experimentally. We argue that network effects not included here must be important in sustaining the response at those frequencies.
Collapse
Affiliation(s)
- Jaime de la Rocha
- Dto. de Física Teórica, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | | |
Collapse
|
15
|
Lefebvre VA, Zheng Y, Devonshire IM, Martin CJ, Mayhew JEW. Investigating the coupling between stimulation and neural activity: a dynamic modeling approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2007; 2007:1105-1108. [PMID: 18002155 DOI: 10.1109/iembs.2007.4352489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The objective of the present study was to build a dynamic model relating changes in neural responses in rat barrel cortex to an electrical whisker stimulation pulse train of varying frequencies. This work is part of a formal mathematical system currently being developed, which links stimulation to the Blood Oxygen Level Dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) signal. Neural responses were measured in terms of local field potentials, which were then converted into current source density (CSD) data. Responses were found to be strongly suppressed immediately following the first stimulus pulse, before recovering to a steady state, which was maintained throughout the rest of the stimulation. The amplitude of this steady state decreases as the stimulation frequency increases. The model structure is based on the physiological pathway from the rat sensory organ to the cortex. Dynamic linear second order systems are used to model the excitatory as well as the suppressive components of the neural response. The interactions between components contain nonlinear modulations. The model was evaluated against CSD data from experiments with varying stimulation frequency (1-40 Hz), and shows a plausible fit. The model parameters obtained by optimization for different physiological conditions (anaesthetized or awake) were significantly different. Although this is a descriptive model, it may well have some physiological implications.
Collapse
Affiliation(s)
- Veronique A Lefebvre
- Signal Processing in Neuroimaging and Systems Neuroscience group, University of Sheffield, UK.
| | | | | | | | | |
Collapse
|
16
|
Melø TM, Sonnewald U, Touret M, Nehlig A. Cortical glutamate metabolism is enhanced in a genetic model of absence epilepsy. J Cereb Blood Flow Metab 2006; 26:1496-506. [PMID: 16538229 DOI: 10.1038/sj.jcbfm.9600300] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disturbances in GABAergic and glutamatergic neurotransmission in the thalamocortical loop are involved in absence seizures. Here, we examined potential disturbances in metabolism and interactions between neurons and glia in 5-month-old genetic absence epilepsy rats from Strasbourg (GAERS) and nonepileptic rats (NER). Animals received [1-(13)C]glucose and [1,2-(13)C]acetate, the preferential substrates of neurons and astrocytes, respectively. Extracts from cerebral cortex, thalamus, and hippocampus were analyzed by (13)C nuclear magnetic resonance spectroscopy. Most changes were detected in the cortex. Pyruvate metabolism was enhanced as evidenced by increases of lactate, and labeled and unlabeled alanine. Neuronal mitochondrial metabolism was also enhanced as detected by elevated amounts of N-acetylaspartate and nicotinamide adenine dinucleotide as well as increased incorporation of label from [2-(13)C]acetyl CoA into glutamate, glutamine, and aspartate. Likewise, mitochondrial metabolism in astrocytes was increased. Changes in thalamus were restricted to increased concentration and labeling of glutamine. Changes in the hippocampus were similar to those in the cortex. This increase in glutamate-glutamine metabolism in cortical neurons and astrocytes accompanied by a decreased gamma aminobyturic acid level may lead to impaired thalamic filter function. Hence, reduced sensory input to cortex could allow the occurrence of spike-and-wave discharges in the thalamocortical loop. Increased glutamatergic output from the cortex to hippocampus may be the underlying cause of improved learning in GAERS.
Collapse
Affiliation(s)
- Torun M Melø
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | |
Collapse
|
17
|
Jia F, Wei H, Li X, Xie X, Zhou Y. Short-term synaptic plasticity in the rat geniculo-cortical pathway during development in vivo. Neurosci Lett 2006; 398:73-7. [PMID: 16406670 DOI: 10.1016/j.neulet.2005.12.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 12/19/2005] [Indexed: 11/24/2022]
Abstract
The critical period for visual system development in rats normally peaks at postnatal three weeks and ends at postnatal five weeks. However, the change of short-term synaptic plasticity during this period has rarely been investigated. In the present study, we compared the short-term plasticity of visual cortical responses to lateral geniculate nucleus stimulation in rats at different development stages (P20, P30 and adult) in vivo. The results show that paired-pulse depression (PPD) and frequency-dependent depression of evoked field potentials (FP) are present in P20 rats and increase in magnitude with development. The time course of this maturation of synaptic depression parallels that of the visual critical period. The weak synaptic depression observed in juvenile rats may be important in enhancing excitatory neurotransmission at a time when synapses are immature; this could endow immature synapses with wide integrative capabilities. In contrast, suppressive temporal interactions could provide an important substrate for neuronal processing of visual information in the mature cortex.
Collapse
Affiliation(s)
- Fan Jia
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | | | | | |
Collapse
|
18
|
Hirata A, Castro-Alamancos MA. Relief of synaptic depression produces long-term enhancement in thalamocortical networks. J Neurophysiol 2005; 95:2479-91. [PMID: 16381803 DOI: 10.1152/jn.01145.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thalamocortical synapses may be able to undergo activity-dependent long-term changes in efficacy, such as long-term potentiation. Indeed, studies conducted in vivo have found that theta-burst stimulation (TBS) of the thalamus induces a long-term enhancement (LTE) of field potential responses evoked in the neocortex of adult rodents. Because the thalamus and neocortex form a complex interconnected network that is highly active in vivo, it is possible that a change in thalamic excitability would be reflected in the neocortex. To test this possibility, we recorded from barrel neocortex and applied TBS to the thalamic radiation while the somatosensory thalamus was inactivated with muscimol. Thalamocortical LTE was absent when the thalamus was inactivated, suggesting that changes in thalamic excitability are involved. Single-unit recordings from thalamocortical cells revealed that TBS causes a significant reduction in the spontaneous firing rate of thalamocortical cells. Reducing the spontaneous firing of thalamocortical cells directly enhances the efficacy of the thalamocortical pathway because it relieves the tonic depression of the thalamocortical connection caused by thalamocortical activity. Because these changes in thalamic excitability are triggered by corticothalamic activity, this may be a useful top-down mechanism to regulate afferent sensory input to the neocortex during behavior as a function of experience.
Collapse
Affiliation(s)
- Akio Hirata
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | |
Collapse
|
19
|
Silberberg G, Grillner S, LeBeau FEN, Maex R, Markram H. Synaptic pathways in neural microcircuits. Trends Neurosci 2005; 28:541-51. [PMID: 16122815 DOI: 10.1016/j.tins.2005.08.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/29/2005] [Accepted: 08/10/2005] [Indexed: 11/21/2022]
Abstract
The functions performed by different neural microcircuits depend on the anatomical and physiological properties of the various synaptic pathways connecting neurons. Neural microcircuits across various species and brain regions are similar in terms of their repertoire of neurotransmitters, their synaptic kinetics, their short-term and long-term plasticity, and the target-specificity of their synaptic connections. However, microcircuits can be fundamentally different in terms of the precise recurrent design used to achieve a specific functionality. In this review, which is part of the TINS Microcircuits Special Feature, we compare the connectivity designs in spinal, hippocampal, neocortical and cerebellar microcircuits, and discuss the different computational challenges that each microcircuit faces.
Collapse
Affiliation(s)
- Gilad Silberberg
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
20
|
Wehr M, Zador AM. Synaptic Mechanisms of Forward Suppression in Rat Auditory Cortex. Neuron 2005; 47:437-45. [PMID: 16055066 DOI: 10.1016/j.neuron.2005.06.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/26/2005] [Accepted: 06/08/2005] [Indexed: 11/28/2022]
Abstract
In the auditory cortex, brief sounds elicit a powerful suppression of responsiveness that can persist for hundreds of milliseconds. This forward suppression (sometimes also called forward masking) has usually been attributed to synaptic (GABAergic) inhibition. Here we have used whole-cell recordings in vivo to assess the role of synaptic inhibition in forward suppression in auditory cortex. We measured the excitatory and inhibitory synaptic conductances elicited by pairs of brief sounds presented at intervals from tens to hundreds of milliseconds. We find that inhibitory conductances rarely last longer than 50-100 ms, whereas spike responses and synaptic inputs remain suppressed for hundreds of milliseconds. We conclude that postsynaptic inhibition contributes to forward suppression for only the first 50-100 ms after a stimulus and that intracortical contributions to long-lasting suppression must involve other mechanisms, such as synaptic depression.
Collapse
Affiliation(s)
- Michael Wehr
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
21
|
Young CE, Yang CR. Dopamine D1-like receptor modulates layer- and frequency-specific short-term synaptic plasticity in rat prefrontal cortical neurons. Eur J Neurosci 2005; 21:3310-20. [PMID: 16026469 DOI: 10.1111/j.1460-9568.2005.04161.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mesocortical dopamine (DA) input to the prefrontal cortex (PFC) is crucial for processing short-term working memory (STWM) to guide forthcoming behavior. Short-term plasticity-like post-tetanic potentiation (PTP, < 3 min) and short-term potentiation (STP, < 10 min) may underlie STWM. Using whole-cell voltage-clamp recordings, mixed glutamatergic excitatory postsynaptic currents (EPSCs) evoked by layer III or layer V stimulation (0.5 or 0.067 Hz) were recorded from layer V pyramidal neurons. With 0.5 Hz basal stimulation of layer III, brief tetani (2 x 50 Hz) induced a homosynaptic PTP (decayed: approximately 1 min). The D1-like antagonist SCH23390 (1 microm) increased the PTP amplitude and decay time without inducing changes to the tetanic response. The tetani may evoke endogenous DA release, which activates a presynaptic D1-like receptor to inhibit glutamate release to modulate PTP. With a slower (0.067 Hz) basal stimulation, the same tetani induced STP (lasting approximately 4 min, but only at 2x intensity only) that was insignificantly suppressed by SCH23390. With stimulation of layer-V-->V inputs at 0.5 Hz, layer V tetani yielded inconsisitent responses. However, at 0.067 Hz, tetani at double the intensity resulted in an STP (lasting approximately 6 min), but a long-term depression after SCH23390 application. Endogenous DA released by tetanic stimulation can interact with a D1-like receptor to induce STP in layer V-->V synapses that receive slower (0.067 Hz) frequency inputs, but suppresses PTP at layer III-->V synapses that receive higher (0.5 Hz) frequency inputs. This D1-like modulation of layer- and frequency-specific synaptic responses in the PFC may contribute to STWM processing.
Collapse
Affiliation(s)
- Clint E Young
- Drug Discovery, Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC, Canada V5G 4W8
| | | |
Collapse
|
22
|
Castro-Alamancos MA. Dynamics of sensory thalamocortical synaptic networks during information processing states. Prog Neurobiol 2005; 74:213-47. [PMID: 15556288 DOI: 10.1016/j.pneurobio.2004.09.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
The thalamocortical network consists of the pathways that interconnect the thalamus and neocortex, including thalamic sensory afferents, corticothalamic and thalamocortical pathways. These pathways are essential to acquire, analyze, store and retrieve sensory information. However, sensory information processing mostly occurs during behavioral arousal, when activity in thalamus and neocortex consists of an electrographic sign of low amplitude fast activity, known as activation, which is caused by several neuromodulator systems that project to the thalamocortical network. Logically, in order to understand how the thalamocortical network processes sensory information it is essential to study its response properties during states of activation. This paper reviews the temporal and spatial response properties of synaptic pathways in the whisker thalamocortical network of rodents during activated states as compared to quiescent (non-activated) states. The evidence shows that these pathways are differentially regulated via the effects of neuromodulators as behavioral contingencies demand. Thus, during activated states, the temporal and spatial response properties of pathways in the thalamocortical network are transformed to allow the processing of sensory information.
Collapse
Affiliation(s)
- Manuel A Castro-Alamancos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
23
|
Burst-induced synaptic depression and its modulation contribute to information transfer at Aplysia sensorimotor synapses: empirical and computational analyses. J Neurosci 2003. [PMID: 12968001 DOI: 10.1523/jneurosci.23-23-08392.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Plasticity of this synapse has been extensively studied, albeit primarily with individual action potentials elicited at low frequencies. Yet, the mechanosensory neurons fire high-frequency bursts in response to even moderate tactile stimuli delivered to the skin. In the present study, we extend this analysis to show that sensory neurons also fire bursts in the range of 1-60 Hz in response to electrical stimuli similar to those used in behavioral studies of sensitization. Intracellular stimulation of sensory neurons to fire a burst of action potentials at 10 Hz for 1 sec led to significant homosynaptic depression of postsynaptic responses. The depression was transient and fully recovered within 10 min. During the burst, the steady-state depressed phase of the postsynaptic response, which was only 20% of the initial EPSP of the burst, still contributed to firing the motor neuron. To explore the functional contribution of transient homosynaptic depression to the response of the motor neuron, computer simulations of the sensorimotor synapse with and without depression were compared. Depression allowed the motor neuron to produce graded responses over a wide range of presynaptic input strength. In addition, enhancement of synaptic transmission throughout a burst increased motor neuron output substantially more than did preferential enhancement of the initial phase of a burst. Thus, synaptic depression increased the dynamic range of the sensorimotor synapse and can, in principle, have a profound effect on information processing.
Collapse
|
24
|
Oldford E, Castro-Alamancos MA. Input-specific effects of acetylcholine on sensory and intracortical evoked responses in the "barrel cortex" in vivo. Neuroscience 2003; 117:769-78. [PMID: 12617980 DOI: 10.1016/s0306-4522(02)00663-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The somatosensory neocortex processes extrinsic information from the thalamus and intrinsic information from local circuits. We compared the effects of acetylcholine (Ach) on neocortical field potential responses evoked by stimulation of the whiskers and by local electrical stimulation in the upper layers of the neocortex vibrissae representation ("barrel cortex") of adult rats anesthetized with urethane. In the barrel cortex, the cholinergic system was manipulated using microdialysis by exogenous application of Ach, by increasing the endogenous levels of Ach with physostigmine and by applying specific cholinergic agonists. The results revealed that Ach selectively enhances the sensory response relative to the intracortical response. Thus, pathways in the barrel cortex are differentially regulated by cholinergic inputs.
Collapse
Affiliation(s)
- E Oldford
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Room WB210, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
25
|
Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 2002. [PMID: 12223566 DOI: 10.1523/jneurosci.22-18-08117.2002] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thalamic relay nuclei transmit basal ganglia output to the frontal cortex, forming the last link in corticobasal ganglia circuitry. The thalamus regulates cortical activity through differential laminar connections, providing not only feedback, but also initiating "feedforward" loops, via nonreciprocal projections, that influence higher cortical areas. This study examines the organization of thalamic connections with cortex from basal ganglia relay nuclei, including ventral anterior (VA), ventral lateral (VL), and mediodorsal (MD) nuclei, in the Macaque monkey. Anterograde and bidirectional tracer injections ([3H]-amino acids, dextran conjugates of Fluorescein, Lucifer Yellow or FluoroRuby, or wheat germ agglutinin) into discrete VA/VL, MD, and frontal cortical sites demonstrate specific thalamocortical connections. VL projections target caudal motor areas (primary, supplementary, and caudal premotor areas), whereas VA projections target more rostral premotor areas (including cingulate and presupplementary motor areas) and MD projects to dorsolateral and orbital prefrontal cortices. Thalamocortical projections innervate cortical layers I and III, and to a lesser extent, layer V. In motor areas layer I projections are more extensive than those to layer III (and V). The complex laminar organization of projections from specific thalamic sites suggests differential regulation of cortical function. Injections of bidirectional tracers into thalamic and frontal cortical sites also show that in comparison to thalamocortical projections, corticothalamic projections to VA-VL and MD are more widespread. These findings demonstrate both reciprocal and nonreciprocal components to the thalamo-cortico-thalamic relay. Together, these experiments indicate a dual role for VA-VL and MD nuclei: (1) to relay basal ganglia output within specific cortical circuits and (2) to mediate information flow between cortical circuits.
Collapse
|
26
|
Castro-Alamancos MA, Oldford E. Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses. J Physiol 2002; 541:319-31. [PMID: 12015438 PMCID: PMC2290309 DOI: 10.1113/jphysiol.2002.016857] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The thalamus serves as a gate that regulates the flow of sensory inputs to the neocortex, and this gate is controlled by neuromodulators from the brainstem reticular formation that are released during arousal. Here we show in rats that sensory-evoked responses were suppressed in the neocortex by activating the brainstem reticular formation and during natural arousal. Sensory suppression occurred at the thalamocortical connection and was a consequence of the activity-dependent depression of thalamocortical synapses caused by increased thalamocortical tonic firing during arousal. Thalamocortical suppression may serve as a mechanism to focus sensory inputs to their appropriate representations in neocortex, which is helpful for the spatial processing of sensory information.
Collapse
Affiliation(s)
- Manuel A Castro-Alamancos
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4.
| | | |
Collapse
|
27
|
Chung S, Li X, Nelson SB. Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 2002; 34:437-46. [PMID: 11988174 DOI: 10.1016/s0896-6273(02)00659-1] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In vivo whole-cell recordings revealed that during repeated stimulation, synaptic responses to deflection of facial whiskers rapidly adapt. Extracellular recordings in the somatosensory thalamus revealed that part of the adaptation occurs subcortically, but because cortical adaptation is stronger and recovers more slowly, cortical mechanisms must also contribute. Trains of sensory stimuli that produce profound sensory adaptation did not alter intrinsic membrane properties, including resting membrane potential, input resistance, and current-evoked firing. Synaptic input evoked via intracortical stimulation was also unchanged; however, synaptic input from the somatosensory thalamus was depressed by sensory stimulation, and this depression recovered with a time course matching that of the recovery of sensory responsiveness. These data strongly suggest that synaptic depression of thalamic input to the cortex contributes to the dynamic regulation of neuronal sensitivity during rapid changes in sensory input.
Collapse
Affiliation(s)
- Sooyoung Chung
- Department of Biology and, Volen Center for Complex Systems, Brandeis University, Mailstop 008, 415 South Street, Waltham, MA 02454, USA
| | | | | |
Collapse
|
28
|
Ahissar E, Sosnik R, Bagdasarian K, Haidarliu S. Temporal frequency of whisker movement. II. Laminar organization of cortical representations. J Neurophysiol 2001; 86:354-67. [PMID: 11431516 DOI: 10.1152/jn.2001.86.1.354] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Part of the information obtained by rodent whiskers is carried by the frequency of their movement. In the thalamus of anesthetized rats, the whisker frequency is represented by two different coding schemes: by amplitude and spike count (i.e., response amplitudes and spike counts decrease as a function of frequency) in the lemniscal thalamus and by latency and spike count (latencies increase and spike counts decrease as a function of frequency) in the paralemniscal thalamus (see accompanying paper). Here we investigated neuronal representations of the whisker frequency in the primary somatosensory ("barrel") cortex of the anesthetized rat, which receives its input from both the lemniscal and paralemniscal thalamic nuclei. Single and multi-units were recorded from layers 2/3, 4 (barrels only), 5a, and 5b during vibrissal stimulation. Typically, the input frequency was represented by amplitude and spike count in the barrels of layer 4 and in layer 5b (the "lemniscal layers") and by latency and spike count in layer 5a (the "paralemniscal layer"). Neurons of layer 2/3 displayed a mixture of the two coding schemes. When the pulse width of the stimulus was reduced from 50 to 20 ms, the latency coding in layers 5a and 2/3 was dramatically reduced, while the spike-count coding was not affected; in contrast, in layers 4 and 5b, the latencies remained constant, but the spike counts were reduced with 20-ms stimuli. The same effects were found in the paralemniscal and lemniscal thalamic nuclei, respectively (see accompanying paper). These results are consistent with the idea that thalamocortical loops of different pathways, although terminating within the same cortical columns, perform different computations in parallel. Furthermore, the mixture of coding schemes in layer 2/3 might reflect an integration of lemniscal and paralemniscal outputs.
Collapse
Affiliation(s)
- E Ahissar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
29
|
Ego-Stengel V, Shulz DE, Haidarliu S, Sosnik R, Ahissar E. Acetylcholine-dependent induction and expression of functional plasticity in the barrel cortex of the adult rat. J Neurophysiol 2001; 86:422-37. [PMID: 11431522 DOI: 10.1152/jn.2001.86.1.422] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The involvement of acetylcholine (ACh) in the induction of neuronal sensory plasticity is well documented. Recently we demonstrated in the somatosensory cortex of the anesthetized rat that ACh is also involved in the expression of neuronal plasticity. Pairing stimulation of the principal whisker at a fixed temporal frequency with ACh iontophoresis induced potentiations of response that required re-application of ACh to be expressed. Here we fully characterize this phenomenon and extend it to stimulation of adjacent whiskers. We show that these ACh-dependent potentiations are cumulative and reversible. When several sensori-cholinergic pairings were applied consecutively with stimulation of the principal whisker, the response at the paired frequency was further increased, demonstrating a cumulative process that could reach saturation levels. The potentiations were specific to the stimulus frequency: if the successive pairings were done at different frequencies, then the potentiation caused by the first pairing was depotentiated, whereas the response to the newly paired frequency was potentiated. During testing, the potentiation of response did not develop immediately on the presentation of the paired frequency during application of ACh: the analysis of the kinetics of the effect indicates that this process requires the sequential presentation of several trains of stimulation at the paired frequency to be expressed. We present evidence that a plasticity with similar characteristics can be induced for responses to stimulation of an adjacent whisker, suggesting that this potentiation could participate in receptive field spatial reorganizations. The spatial and temporal properties of the ACh-dependent plasticity presented here impose specific constraints on the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- V Ego-Stengel
- Unité de Neurosciences Intégratives et Computationnelles, Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
30
|
Naisberg Y, Modai I, Weizman A. The wired network as a learning paradigm for normal and abnormal brain neuronal communication. Med Hypotheses 2000; 55:133-6. [PMID: 10904429 DOI: 10.1054/mehy.1999.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The brain is a highly sophisticated assembly of neuronal networks for interaction with the internal and external environment. Fundamentally, the neuronal communication process is analogous structurally and functionally to the electrical (wire-mediated) network. In particular, both have coupled information-processing and conduction properties. We suggest that the electrical system can be used as a learning paradigm in brain research and clinical practice. Our model shows how the study of wire-mediated networks may be of benefit in tracing overt psychiatric manifestations to intrinsic biological faults in brain circuitry.
Collapse
Affiliation(s)
- Y Naisberg
- Sha'ar Menashe Mental Health Center, Mobile Post, Hefer, Israel
| | | | | |
Collapse
|
31
|
Mehler MF. Brain dystrophin, neurogenetics and mental retardation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:277-307. [PMID: 10751678 DOI: 10.1016/s0165-0173(99)00090-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) and the allelic disorder Becker muscular dystrophy (BMD) are common X-linked recessive neuromuscular disorders that are associated with a spectrum of genetically based developmental cognitive and behavioral disabilities. Seven promoters scattered throughout the huge DMD/BMD gene locus normally code for distinct isoforms of the gene product, dystrophin, that exhibit nervous system developmental, regional and cell-type specificity. Dystrophin is a complex plasmalemmal-cytoskeletal linker protein that possesses multiple functional domains, autosomal and X-linked homologs and associated binding proteins that form multiunit signaling complexes whose composition is unique to each cellular and developmental context. Through additional interactions with a variety of proteins of the extracellular matrix, plasma membrane, cytoskeleton and distinct intracellular compartments, brain dystrophin acquires the capability to participate in the modulatory actions of a large number of cellular signaling pathways. During neural development, dystrophin is expressed within the neural tube and selected areas of the embryonic and postnatal neuraxis, and may regulate distinct aspects of neurogenesis, neuronal migration and cellular differentiation. By contrast, in the mature brain, dystrophin is preferentially expressed by specific regional neuronal subpopulations within proximal somadendritic microdomains associated with synaptic terminal membranes. Increasing experimental evidence suggests that in adult life, dystrophin normally modulates synaptic terminal integrity, distinct forms of synaptic plasticity and regional cellular signal integration. At a systems level, dystrophin may regulate essential components of an integrated sensorimotor attentional network. Dystrophin deficiency in DMD/BMD patients and in the mdx mouse model appears to impair intracellular calcium homeostasis and to disrupt multiple protein-protein interactions that normally promote information transfer and signal integration from the extracellular environment to the nucleus within regulated microdomains. In DMD/BMD, the individual profiles of cognitive and behavioral deficits, mental retardation and other phenotypic variations appear to depend on complex profiles of transcriptional regulation associated with individual dystrophin mutations that result in the corresponding presence or absence of individual brain dystrophin isoforms that normally exhibit developmental, regional and cell-type-specific expression and functional regulation. This composite experimental model will allow fine-level mapping of cognitive-neurogenetic associations that encompass the interrelationships between molecular, cellular and systems levels of signal integration, and will further our understanding of complex gene-environmental interactions and the pathogenetic basis of developmental disorders associated with mental retardation.
Collapse
Affiliation(s)
- M F Mehler
- Departments of Neurology, Neuroscience and Psychiatry, the Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
32
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|