1
|
Zhao T, Li H, Zhang M, Xu Y, Zhang M, Chen L. Systematic evaluation of multifactorial causal associations for Alzheimer's disease and an interactive platform MRAD developed based on Mendelian randomization analysis. eLife 2024; 13:RP96224. [PMID: 39392298 PMCID: PMC11469671 DOI: 10.7554/elife.96224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.
Collapse
Affiliation(s)
- Tianyu Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin UniversityChangchunChina
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Neurology and Intracranial Hypertension & Cerebral Venous Disease Center National Health Commission of China, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | | | - Yang Xu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin UniversityChangchunChina
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin UniversityChangchunChina
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Wang J, Sun J, Wang H. Advances in Neuroinflammation. Brain Sci 2024; 14:965. [PMID: 39451979 PMCID: PMC11505811 DOI: 10.3390/brainsci14100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Recent research in neuroscience has shown significant advancements in relation to neuroinflammation, especially its role in neurological diseases, including neurodegenerative diseases [...].
Collapse
Affiliation(s)
- Junhui Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Thyropathy Hospital, Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727000, China
| | - Jing Sun
- Department of Pathology, Capital Medical University, Beijing 100069, China;
| | - Hongxing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| |
Collapse
|
3
|
Fryncel A, Madetko-Alster N, Krępa Z, Kuch M, Alster P. The Possible Associations between Tauopathies and Atherosclerosis, Diabetes Mellitus, Dyslipidemias, Metabolic Syndrome and Niemann-Pick Disease. Diagnostics (Basel) 2024; 14:1831. [PMID: 39202319 PMCID: PMC11354139 DOI: 10.3390/diagnostics14161831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Clinical evaluation and treatment of tauopathic syndromes remain a challenge. There is a growing interest in theories concerning their possible associations with metabolic diseases. The possible connection between those diseases might be linked with cerebrovascular dysfunction. The endothelial cell damage and impairment of the blood-brain barrier observed in atherosclerosis or diabetes may play a role in contributing to tauopathic syndrome development. Additionally, the inflammation evoked by pathological metabolic changes may also be involved in this process. Multiple cases indicate the coexistence of metabolic disorders and tauopathic syndromes. These findings suggest that modifying the evolution of metabolic and cerebrovascular diseases may impact the course of neurodegenerative diseases. Obtained data could indicate the possible benefits of introducing routine carotid artery sonography, revascularization operation or antihypertensive medications among patients at high risk for tauopathies. This review has identified this understudied area, which is currently associated with several diseases for which there is no treatment. Due to the pathomechanisms linking metabolic diseases and tauopathies, further investigation of this area of research, including cohort studies, is recommended and may provide new pharmacological perspectives for treatment.
Collapse
Affiliation(s)
- Aleksandra Fryncel
- Students’ Scientific Circle, Department of Neurology, Mazovian Brodno Hospital, Medical University of Warsaw, Ludwika Kondratowicza 8, 03-242 Warsaw, Poland
| | - Natalia Madetko-Alster
- Department of Neurology, Mazovian Brodno Hospital, Medical University of Warsaw, Ludwika Kondratowicza 8, 03-242 Warsaw, Poland; (N.M.-A.); (P.A.)
| | - Zuzanna Krępa
- Department of Cardiology, Hypertension and Internal Disease, Mazovian Brodno Hospital, Medical University of Warsaw, Ludwika Kondratowicza 8, 03-242 Warsaw, Poland; (Z.K.); (M.K.)
| | - Marek Kuch
- Department of Cardiology, Hypertension and Internal Disease, Mazovian Brodno Hospital, Medical University of Warsaw, Ludwika Kondratowicza 8, 03-242 Warsaw, Poland; (Z.K.); (M.K.)
| | - Piotr Alster
- Department of Neurology, Mazovian Brodno Hospital, Medical University of Warsaw, Ludwika Kondratowicza 8, 03-242 Warsaw, Poland; (N.M.-A.); (P.A.)
| |
Collapse
|
4
|
Fazelinejad H, Zahedi E, Khadivi M. Altering plasma lipids and liver enzyme activities via hippocampal injections of hen Lysozyme amyloid aggregates in an Alzheimer's disease mouse model: Insights into the therapeutic role of Bis (Indolyl) phenylmethane. Neurosci Lett 2024; 833:137825. [PMID: 38768939 DOI: 10.1016/j.neulet.2024.137825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a prevalent form of dementia in the elderly. There is currently no effective treatment available for this disease. Diagnosis of AD typically relies on clinical manifestations and specific biomarkers. The present study investigated the impact of inducing Alzheimer's disease (AD) in mice through the injection of lysozyme amyloids formed in the presence or absence of Bis (Indolyl) phenylmethane (BIPM) on alterations in plasma lipid profiles and liver enzyme activities. 24 adult Wistar rats were divided into control, Scopolamine, Lysozyme, BIPM groups and the blood samples were obtained from the groups for biochemical analysis. The findings of the study revealed significant changes in the plasma lipid profiles and liver enzyme markers of the Lysozyme group compared to the control group. The Lysozyme group exhibited elevated triglycerides (n = 6, P < 0.02) and LDL levels (n = 6, P < 0.02), reduced HDL (n = 6, P < 0.05) and cholesterol levels (n = 6, P < 0.02), and altered serum glutamic oxaloacetic transaminase (SGOT) level (n = 6, P < 0.05) compared to controls. While the level of serum glutamic pyruvic transaminase (SGPT) did not change significantly compared to the control. BIPM groups showed no significant changes in lipid or enzyme levels compared to controls. Overall, our research has shown that BIPM has the ability to modify the structure of HEWL aggregates, thereby improving the detrimental effects associated with AD caused by these aggregates. Analyzing lipid profiles and liver enzyme markers presents a promising avenue for targeted therapeutic approaches. These alterations observed in the plasma may potentially serve as candidate biomarkers for diagnosing this disease.
Collapse
Affiliation(s)
- Hassan Fazelinejad
- Research Core of Cognitive Sciences and Aging Studies, Research Center of Hakim Sabzevari, Hakim Sabzevari University, Sabzevar, Islamic Republic of Iran.
| | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mehdi Khadivi
- Department of Biology, Payam Noor University, 19395-4697, Tehran, Islamic Republic of Iran
| |
Collapse
|
5
|
Wang L, Yan J, Liu H, Zhao X, Song H, Yang J. Predicting the Rapid Progression of Mild Cognitive Impairment by Intestinal Flora and Blood Indicators through Machine Learning Method. NEURODEGENER DIS 2024; 23:43-52. [PMID: 38417411 DOI: 10.1159/000538023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/19/2024] [Indexed: 03/01/2024] Open
Abstract
INTRODUCTION The aim of the work was to establish a prediction model of mild cognitive impairment (MCI) progression based on intestinal flora by machine learning method. METHOD A total of 1,013 patients were recruited, in which 87 patients with MCI finished a two-year follow-up. To establish a prediction model, 61 patients were randomly divided into a training set and 26 patients were divided into a testing set. A total of 121 features including demographic characteristics, hematological indicators, and intestinal flora abundance were analyzed. RESULTS Of the 87 patients who finished a two-year follow-up, 44 presented rapid progression. Model 1 was established based on 121 features with the accuracy 85%, sensitivity 85%, and specificity 83%. Model 2 was based on the first fifteen features of model 1 (triglyceride, uric acid, alanine transaminase, F-Clostridiaceae, G-Megamonas, S-Megamonas, G-Shigella, G-Shigella, S-Shigella, average hemoglobin concentration, G-Alistipes, S-Collinsella, median cell count, average hemoglobin volume, low-density lipoprotein), with the accuracy 97%, sensitivity 92%, and specificity 100%. Model 3 was based on the first ten features of model 1, with the accuracy 97%, sensitivity 86%, and specificity 100%. Other models based on the demographic characteristics, hematological indicators, or intestinal flora abundance features presented lower sensitivity and specificity. CONCLUSION The 15 features (including intestinal flora abundance) could establish an effective model for predicting rapid MCI progression.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Jing Yan
- Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Huiqin Liu
- Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Xiaohui Zhao
- Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, China
- DICAT Biomedical Computation Centre, Vancouver, British Columbia, Canada
| | - Juan Yang
- Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
6
|
Xu H, Fu J, Mohammed Nazar RB, Yang J, Chen S, Huang Y, Bao T, Chen X. Investigation of the Relationship between Apolipoprotein E Alleles and Serum Lipids in Alzheimer's Disease: A Meta-Analysis. Brain Sci 2023; 13:1554. [PMID: 38002514 PMCID: PMC10670160 DOI: 10.3390/brainsci13111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Prior studies have yielded mixed findings concerning the association between apolipoprotein E(APOE)-ε4 and serum lipids in patients with Alzheimer's disease (AD) and healthy individuals. Some studies suggested a relationship between APOEε4 and serum lipids in patients with AD and healthy individuals, whereas others proposed that the APOEε4 allele affects lipids only in patients with AD. Our study aimed to investigate whether APOE alleles have a distinct impact on lipids in AD. We conducted a comprehensive search of the PubMed and Embase databases for all related studies that investigate APOE and serum lipids of AD from the inception to 30 May 2022. Elevated total cholesterol (TC) and low-density lipoprotein (LDL) levels were found in APOEε4 allele carriers compared with non-carriers. No significant differences were found for high-density lipoprotein (HDL) and triglyceride (TG) levels in APOEε4 allele carriers compared to non-carriers. Notably, elevated TC and LDL levels showed considerable heterogeneity between patients with AD and healthy controls. A network meta-analysis did not find a distinct effect of carrying one or two APOEε4 alleles on lipid profiles. Higher TC and LDL levels were found in APOEε4 allele carriers compared with non-carriers, and the difference was more significant in patients with AD than in healthy controls.
Collapse
Affiliation(s)
- Huaxue Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Risna Begam Mohammed Nazar
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Sihui Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| | - Yan Huang
- Management Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (T.B.)
| | - Ting Bao
- Management Center, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.H.); (T.B.)
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (H.X.); (J.F.); (R.B.M.N.); (J.Y.); (S.C.)
| |
Collapse
|
7
|
MacPherson KP, Eidson LN, Houser MC, Weiss BE, Gollihue JL, Herrick MK, de Sousa Rodrigues ME, Sniffen L, Weekman EM, Hamilton AM, Kelly SD, Oliver DL, Yang Y, Chang J, Sampson TR, Norris CM, Tansey MG. Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer's disease mouse model. Front Cell Neurosci 2023; 17:895017. [PMID: 37006470 PMCID: PMC10052573 DOI: 10.3389/fncel.2023.895017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/20/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: Increasing evidence indicates that neurodegenerative diseases, including Alzheimer's disease (AD), are a product of gene-by-environment interplay. The immune system is a major contributor mediating these interactions. Signaling between peripheral immune cells and those within the microvasculature and meninges of the central nervous system (CNS), at the blood-brain barrier, and in the gut likely plays an important role in AD. The cytokine tumor necrosis factor (TNF) is elevated in AD patients, regulates brain and gut barrier permeability, and is produced by central and peripheral immune cells. Our group previously reported that soluble TNF (sTNF) modulates cytokine and chemokine cascades that regulate peripheral immune cell traffic to the brain in young 5xFAD female mice, and in separate studies that a diet high in fat and sugar (HFHS) dysregulates signaling pathways that trigger sTNF-dependent immune and metabolic responses that can result in metabolic syndrome, which is a risk factor for AD. We hypothesized that sTNF is a key mediator of peripheral immune cell contributions to gene-by-environment interactions to AD-like pathology, metabolic dysfunction, and diet-induced gut dysbiosis. Methods: Female 5xFAD mice were subjected to HFHS diet for 2 months and then given XPro1595 to inhibit sTNF for the last month or saline vehicle. We quantified immune cell profiles by multi-color flow cytometry on cells isolated from brain and blood; metabolic, immune, and inflammatory mRNA and protein marker biochemical and immunhistological analyses, gut microbiome, and electrophysiology in brain slices were also performed. Results: Here, we show that selective inhibition of sTNF signaling via the biologic XPro1595 modulates the effects of an HFHS diet in 5xFAD mice on peripheral and central immune profiles including CNS-associated CD8+ T cells, the composition of gut microbiota, and long-term potentiation deficits. Discussion: Obesogenic diet induces immune and neuronal dysfunction in 5xFAD mice and sTNF inhibition mitigates its effects. A clinical trial in subjects at risk for AD due to genetic predisposition and underlying inflammation associated with peripheral inflammatory co-morbidities will be needed to investigate the extent to which these findings translate to the clinic.
Collapse
Affiliation(s)
- Kathryn P. MacPherson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Lori N. Eidson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Madelyn C. Houser
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Blaine E. Weiss
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jenna L. Gollihue
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mary K. Herrick
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, FL, United States
| | - Maria Elizabeth de Sousa Rodrigues
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Lindsey Sniffen
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Erica M. Weekman
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Adam M. Hamilton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean D. Kelly
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Danielle L. Oliver
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yuan Yang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy R. Sampson
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Malú Gámez Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, The University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
8
|
27-Hydroxycholesterol-Induced Dysregulation of Cholesterol Metabolism Impairs Learning and Memory Ability in ApoE ε4 Transgenic Mice. Int J Mol Sci 2022; 23:ijms231911639. [PMID: 36232940 PMCID: PMC9569856 DOI: 10.3390/ijms231911639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulated brain cholesterol metabolism is one of the characteristics of Alzheimer’s disease (AD). 27-Hydroxycholesterol (27-OHC) is a cholesterol metabolite that plays an essential role in regulating cholesterol metabolism and it is suggested that it contributes to AD-related cognitive deficits. However, the link between 27-OHC and cholesterol homeostasis, and how this relationship relates to AD pathogenesis, remain elusive. Here, 12-month-old ApoE ε4 transgenic mice were injected with saline, 27-OHC, 27-OHC synthetase inhibitor (anastrozole, ANS), and 27-OHC+ANS for 21 consecutive days. C57BL/6J mice injected with saline were used as wild-type controls. The indicators of cholesterol metabolism, synaptic structure, amyloid β 1-42 (Aβ1-42), and learning and memory abilities were measured. Compared with the wild-type mice, ApoE ε4 mice had poor memory and dysregulated cholesterol metabolism. Additionally, damaged brain tissue and synaptic structure, cognitive decline, and higher Aβ1-42 levels were observed in the 27-OHC group. Moreover, cholesterol transport proteins such as ATP-binding cassette transporter A1 (ABCA1), apolipoprotein E (ApoE), low-density lipoprotein receptor (LDLR), and low-density lipoprotein receptor-related protein1 (LRP1) were up-regulated in the cortex after the 27-OHC treatment. The levels of cholesterol metabolism-related indicators in the hippocampus were not consistent with those in the cortex. Additionally, higher serum apolipoprotein A1 (ApoA1) levels and lower serum ApoE levels were observed in the 27-OHC group. Notably, ANS partially reversed the effects of 27-OHC. In conclusion, the altered cholesterol metabolism induced by 27-OHC was involved in Aβ1-42 deposition and abnormalities in both the brain tissue and synaptic structure, ultimately leading to memory loss in the ApoE ε4 transgenic mice.
Collapse
|
9
|
Nordestgaard LT, Christoffersen M, Frikke-Schmidt R. Shared Risk Factors between Dementia and Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2022; 23:9777. [PMID: 36077172 PMCID: PMC9456552 DOI: 10.3390/ijms23179777] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, and the prodromal phases of Alzheimer's disease can last for decades. Vascular dementia is the second most common form of dementia and is distinguished from Alzheimer's disease by evidence of previous stroke or hemorrhage and current cerebrovascular disease. A compiled group of vascular-related dementias (vascular dementia and unspecified dementia) is often referred to as non-Alzheimer dementia. Recent evidence indicates that preventing dementia by lifestyle interventions early in life with a focus on reducing cardiovascular risk factors is a promising strategy for reducing future risk. Approximately 40% of dementia cases is estimated to be preventable by targeting modifiable, primarily cardiovascular risk factors. The aim of this review is to describe the association between risk factors for atherosclerotic cardiovascular disease and the risk of Alzheimer's disease and non-Alzheimer dementia by providing an overview of the current evidence and to shed light on possible shared pathogenic pathways between dementia and cardiovascular disease. The included risk factors are body mass index (BMI); plasma triglyceride-, high-density lipoprotein (HDL) cholesterol-, low-density lipoprotein (LDL) cholesterol-, and total cholesterol concentrations; hypertension; diabetes; non-alcoholic fatty liver disease (NAFLD); physical inactivity; smoking; diet; the gut microbiome; and genetics. Furthermore, we aim to disentangle the difference between associations of risk factors in midlife as compared with in late life.
Collapse
Affiliation(s)
- Liv Tybjærg Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Mette Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Rudajev V, Novotny J. Cholesterol as a key player in amyloid β-mediated toxicity in Alzheimer’s disease. Front Mol Neurosci 2022; 15:937056. [PMID: 36090253 PMCID: PMC9453481 DOI: 10.3389/fnmol.2022.937056] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that is one of the most devastating and widespread diseases worldwide, mainly affecting the aging population. One of the key factors contributing to AD-related neurotoxicity is the production and aggregation of amyloid β (Aβ). Many studies have shown the ability of Aβ to bind to the cell membrane and disrupt its structure, leading to cell death. Because amyloid damage affects different parts of the brain differently, it seems likely that not only Aβ but also the nature of the membrane interface with which the amyloid interacts, helps determine the final neurotoxic effect. Because cholesterol is the dominant component of the plasma membrane, it plays an important role in Aβ-induced toxicity. Elevated cholesterol levels and their regulation by statins have been shown to be important factors influencing the progression of neurodegeneration. However, data from many studies have shown that cholesterol has both neuroprotective and aggravating effects in relation to the development of AD. In this review, we attempt to summarize recent findings on the role of cholesterol in Aβ toxicity mediated by membrane binding in the pathogenesis of AD and to consider it in the broader context of the lipid composition of cell membranes.
Collapse
|
11
|
Glasauer SMK, Goderie SK, Rauch JN, Guzman E, Audouard M, Bertucci T, Joy S, Rommelfanger E, Luna G, Keane-Rivera E, Lotz S, Borden S, Armando AM, Quehenberger O, Temple S, Kosik KS. Human tau mutations in cerebral organoids induce a progressive dyshomeostasis of cholesterol. Stem Cell Reports 2022; 17:2127-2140. [PMID: 35985329 PMCID: PMC9481908 DOI: 10.1016/j.stemcr.2022.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Mutations in the MAPT gene that encodes tau lead to frontotemporal dementia (FTD) with pathology evident in both cerebral neurons and glia. Human cerebral organoids (hCOs) from individuals harboring pathogenic tau mutations can reveal the earliest downstream effects on molecular pathways within a developmental context, generating interacting neurons and glia. We found that in hCOs carrying the V337M and R406W tau mutations, the cholesterol biosynthesis pathway in astrocytes was the top upregulated gene set compared with isogenic controls by single-cell RNA sequencing (scRNA-seq). The 15 upregulated genes included HMGCR, ACAT2, STARD4, LDLR, and SREBF2. This result was confirmed in a homozygous R406W mutant cell line by immunostaining and sterol measurements. Cholesterol abundance in the brain is tightly regulated by efflux and cholesterol biosynthetic enzyme levels in astrocytes, and dysregulation can cause aberrant phosphorylation of tau. Our findings suggest that cholesterol dyshomeostasis is an early event in the etiology of neurodegeneration caused by tau mutations. Cerebral organoid models of tauopathy caused by MAPT mutations Upregulated cholesterol and fatty acid biosynthesis genes in MAPT mutant astrocytes Elevation of cholesterol and its precursors in MAPT mutant cerebral organoids
Collapse
Affiliation(s)
- Stella M K Glasauer
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - Jennifer N Rauch
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elmer Guzman
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Morgane Audouard
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | - Shona Joy
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Emma Rommelfanger
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Gabriel Luna
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erica Keane-Rivera
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Steven Lotz
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Susan Borden
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Aaron M Armando
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
12
|
Fu J, Huang Y, Bao T, Ou R, Wei Q, Chen Y, Yang J, Chen X, Shang H. Effects of Sex on the Relationship Between Apolipoprotein E Gene and Serum Lipid Profiles in Alzheimer’s Disease. Front Aging Neurosci 2022; 14:844066. [PMID: 35707700 PMCID: PMC9190463 DOI: 10.3389/fnagi.2022.844066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sex is an important factor in studying the relationship between the APOE gene, lipid profiles, and AD. However, few studies have focused on the effect of sex on lipids in AD and normal controls with different APOE genes. Materials and Methods A total of 549 participants, including 298 AD patients and 251 body mass index (BMI)-matched healthy controls (HCs), were enrolled. Lipid profiles and APOE genes in both AD patients and HCs were determined. Results (1) TC and LDL were higher in AD patients than in HCs, only in APOEε4 carrying populations, but not in non-carrying populations. (2) TC and LDL were higher in APOEε4 allele carriers than in non-carriers, only in AD populations, but not in HCs. (3) The TC of APOEε2 carriers was lower than that of non-carriers in the male AD population, but not in the female AD population, female HCs, and male HCs. (4) The increased LDL level may increase the risk of AD in female people carrying APOEε4. Conclusion The TC and LDL levels of APOEε4 carriers were higher than those of non-carriers, and the effect was more significant in the female AD population. The TC levels in APOEε2 carriers were lower than those in non-carriers, which was more significant in the male AD population.
Collapse
Affiliation(s)
- Jiajia Fu
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Huang
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Bao
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xueping Chen,
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Huifang Shang,
| |
Collapse
|
13
|
Godoy-Corchuelo JM, Fernández-Beltrán LC, Ali Z, Gil-Moreno MJ, López-Carbonero JI, Guerrero-Sola A, Larrad-Sainz A, Matias-Guiu J, Matias-Guiu JA, Cunningham TJ, Corrochano S. Lipid Metabolic Alterations in the ALS-FTD Spectrum of Disorders. Biomedicines 2022; 10:1105. [PMID: 35625841 PMCID: PMC9138405 DOI: 10.3390/biomedicines10051105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the study of the relation between alterations in systemic lipid metabolism and neurodegenerative disorders, in particular in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). In ALS these alterations are well described and evident not only with the progression of the disease but also years before diagnosis. Still, there are some discrepancies in findings relating to the causal nature of lipid metabolic alterations, partly due to the great clinical heterogeneity in ALS. ALS presentation is within a disorder spectrum with Frontotemporal Dementia (FTD), and many patients present mixed forms of ALS and FTD, thus increasing the variability. Lipid metabolic and other systemic metabolic alterations have not been well studied in FTD, or in ALS-FTD mixed forms, as has been in pure ALS. With the recent development in lipidomics and the integration with other -omics platforms, there is now emerging data that not only facilitates the identification of biomarkers but also enables understanding of the underlying pathological mechanisms. Here, we reviewed the recent literature to compile lipid metabolic alterations in ALS, FTD, and intermediate mixed forms, with a view to appraising key commonalities or differences within the spectrum.
Collapse
Affiliation(s)
- Juan Miguel Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Zeinab Ali
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
| | - María J. Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Juan I. López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Antonio Guerrero-Sola
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Angélica Larrad-Sainz
- Nutrition and Endocrinology Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain;
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Jordi A. Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Thomas J. Cunningham
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| |
Collapse
|
14
|
Dou Y, Liu S, Li Y, Wu H, Chen H, Ji Y. Plasma Cholesterol Levels as Potential Nutritional Biomarkers for Lewy Body Dementia. J Alzheimers Dis 2022; 86:779-786. [PMID: 35124646 DOI: 10.3233/jad-215295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relationship between cholesterol level and the risk of developing Alzheimer's disease has been well established, but the relationship between cholesterol level and Lewy body dementia (LBD) is still not well known. OBJECTIVE The aim of this case-control study was to explore the association between blood cholesterol levels and LBD in Chinese older adults. METHODS A total of 65 patients with LBD and 110 older adult controls were enrolled during the study period. The levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and fasting glucose were measured separately. The associations between LBD, blood cholesterol levels, and fasting glucose levels were assessed using multiple binary logistic regression analyses adjusted for multiple covariates. RESULTS Increased plasma LDL-C levels and lower HDL-C levels were independently associated with the risk of LBD in models adjusted for age, sex, education, alcohol use status, smoking status, and vascular disorders. Higher fasting glucose levels may be associated with the risk of LBD. CONCLUSION The results of this study suggest that elevated levels of LDL-C and reduced levels of HDL-C were associated with LBD development and therefore are potential nutritional risk factors for LBD. Adjusting diet and individualized and effective cholesterol-lowering therapy in high-risk adults may aid in the prevention or management of LBD.
Collapse
Affiliation(s)
- Yuchao Dou
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Shuai Liu
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuqing Li
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Wu
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Hui Chen
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
15
|
Huang SY, Yang YX, Zhang YR, Kuo K, Li HQ, Shen XN, Chen SD, Chen KL, Dong Q, Tan L, Yu JT. Investigating Causal Relations Between Circulating Metabolites and Alzheimer's Disease: A Mendelian Randomization Study. J Alzheimers Dis 2022; 87:463-477. [PMID: 35275550 DOI: 10.3233/jad-220050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Metabolomics is a promising approach that can be used to understand pathophysiological pathways of Alzheimer's disease (AD). However, the causal relationships between metabolism and AD are poorly understood. OBJECTIVE We aimed to investigate the causal association between circulating metabolites and risk of AD through two-sample Mendelian randomization (MR) approach. METHODS Genetic associations with 123 circulating metabolic traits were utilized as exposures. Summary statistics data from International Genomics of Alzheimer's Project was used in primary analysis, including 21,982 AD cases and 41,944 controls. Validation was performed using family history of AD data from UK Biobank (27,696 cases of maternal AD, 14,338 cases of paternal AD, and 272,244 controls). We utilized inverse-variance weighted method as primary method. RESULTS We found significantly increased risks of developing AD per standard deviation increase in the levels of circulating ApoB (odd ratio[OR] = 3.18; 95% confidence interval[CI]: 1.52-6.66, p = 0.0022), glycoprotein acetyls (OR = 1.21; 95% CI: 1.05-1.39, p = 0.0093), total cholesterol (OR = 2.73; 95% CI: 1.41-5.30, p = 0.0030), and low-density lipoprotein (LDL) cholesterol (OR = 2.34; 95% CI: 1.53-3.57, p = 0.0001). Whereas glutamine (OR = 0.81; 95% CI: 0.71-0.92, p = 0.0011) were significantly associated with lower risk of AD. We also detected causal effects of several different composition of LDL fractions on increased AD risk, which has been verified in validation. However, we found no association between circulating high-density lipoprotein cholesterol and AD. CONCLUSION Our findings suggest causal effects of circulating glycoprotein acetyls, ApoB, LDL cholesterol, and serum total cholesterol on higher risk of AD, whereas glutamine showed the protective effect.
Collapse
Affiliation(s)
- Shu-Yi Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| | - Ke-Liang Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, China
| |
Collapse
|
16
|
Identification of Cathepsin D as a Plasma Biomarker for Alzheimer's Disease. Cells 2021; 10:cells10010138. [PMID: 33445607 PMCID: PMC7827175 DOI: 10.3390/cells10010138] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/17/2022] Open
Abstract
Although Alzheimer’s disease (AD) is the most common neurodegenerative disease, there are still no drugs available to treat or prevent AD effectively. Here, we examined changes in levels of selected proteins implicated in the pathogenesis of AD using plasma samples of control subjects and patients with cognition impairment. To precisely categorize the disease, fifty-six participants were examined with clinical cognitive tests, amyloid positron emission tomography (PET) scan, and white matter hyperintensities scored by magnetic resonance imaging. Plasma cathepsin D levels of the subjects were examined by immunoblotting and enzyme-linked immunosorbent assay (ELISA). Correlation of plasma cathepsin D levels with AD-related factors and clinical characteristics were examined by statistical analysis. By analyzing quantitative immunoblot and ELISA, we found that the plasma level of cathepsin D, a major lysosomal protease, was decreased in the group with amyloid plaque deposition at the brain compared to the control group. The level of plasma cathepsin D was negatively correlated with clinical dementia rating scale sum of boxes (CDR-SB) scores. In addition, our integrated multivariable logistic regression model suggests the high performance of plasma cathepsin D level for discriminating AD from non-AD. These results suggest that the plasma cathepsin D level could be developed as a diagnostic biomarker candidate for AD.
Collapse
|