1
|
Zdziennicka A, Jańczuk B. Adsorption and wetting properties of biosurfactants, Tritons and their mixtures in aqueous and water-ethanol environment. Adv Colloid Interface Sci 2025; 337:103379. [PMID: 39700969 DOI: 10.1016/j.cis.2024.103379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Adsorption of rhamnolipid (RL) and surfactin (SF) as well as their mixtures with Triton X-100 (TX100) and Triton X-165 (TX165) at the solution-air (S-A), PTFE (polytetrafluoroethylene)-S, PMMA (poly (methyl methacrylate))-S, Q (quartz)-S, PMMA-A, and Q-A as well as their wetting properties regarding the surface tension of the PTFE, PMMA and quartz and its components and parameters were discussed using the literature data. The mutual influence of biosurfactants and Tritons on the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces tensions was considered in terms of their adsorption at these interfaces for both aqueous and water-ethanol solutions of the biosurfactant mixtures with Tritons. For this purpose there were used different methods on the basis of which the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interface tensions can be predicted and/or described in the function of concentration and composition of the mixtures. Changes of these interface tensions as a function of concentration and composition of the mixtures were compared to those affected by individual mixture components. In turn, these changes of the interface tension were considered as regards properties of the biosurfactants, Tritons and ethanol layers adsorbed at the S-A, PMMA(quartz)-A and PTFE(PMMA, quartz)-S interfaces. Based on the changes of the contact angle of the aqueous and water-ethanol solutions of the biosurfactants and Tritons as well as biosurfactants mixtures with Tritons on PMMA and quartz as a function of mixture concentration and composition, the changes of the PMMA and quartz surface tension were analyzed using various approaches to the surface and interface tension. The thermodynamic functions change as a results of RL, SF, TX100, TX165, ET as well as the mixtures of RL and SF with Tritons adsorption at different interfaces were also analyzed based on the literature data. These considerations allow to describe and/or predict changes of the interface tension, contact angle of the mixtures as a function of their composition based on these properties of individual mixture components.
Collapse
Affiliation(s)
- Anna Zdziennicka
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
2
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Ahmad J, Marsidi N, Sheikh Abdullah SR, Hasan HA, Othman AR, Ismail N'I, Kurniawan SB. Integrating phytoremediation and mycoremediation with biosurfactant-producing fungi for hydrocarbon removal and the potential production of secondary resources. CHEMOSPHERE 2024; 349:140881. [PMID: 38048826 DOI: 10.1016/j.chemosphere.2023.140881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Treatment of petroleum-contaminated soil to a less toxic medium via physical and chemical treatment is too costly and requires posttreatment. This review focuses on the employment of phytoremediation and mycoremediation technologies in cleaning hydrocarbon-contaminated soil which is currently rare. It is considered environmentally beneficial and possibly cost-effective as it implements the synergistic interaction between plants and biosurfactant producing mycorrhiza to degrade hydrocarbon contaminants. This review also covers possible sources of hydrocarbon pollution in water and soil, toxicity effects, and current technologies for hydrocarbon removal and degradation. In addition to these problems, this review also discusses the challenges and opportunities of transforming the resultant treated sludge and treating plants into potential by-products for a higher quality of life for future generations.
Collapse
Affiliation(s)
- Jamilah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nuratiqah Marsidi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, Třeboň, 379 81, Czech Republic.
| |
Collapse
|
4
|
Miao Y, To MH, Siddiqui MA, Wang H, Lodens S, Chopra SS, Kaur G, Roelants SLKW, Lin CSK. Sustainable biosurfactant production from secondary feedstock-recent advances, process optimization and perspectives. Front Chem 2024; 12:1327113. [PMID: 38312346 PMCID: PMC10834756 DOI: 10.3389/fchem.2024.1327113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Biosurfactants have garnered increased attention lately due to their superiority of their properties over fossil-derived counterparts. While the cost of production remains a significant hurdle to surpass synthetic surfactants, biosurfactants have been anticipated to gain a larger market share in the coming decades. Among these, glycolipids, a type of low-molecular-weight biosurfactant, stand out for their efficacy in reducing surface and interfacial tension, which made them highly sought-after for various surfactant-related applications. Glycolipids are composed of hydrophilic carbohydrate moieties linked to hydrophobic fatty acid chains through ester bonds that mainly include rhamnolipids, trehalose lipids, sophorolipids, and mannosylerythritol lipids. This review highlights the current landscape of glycolipids and covers specific glycolipid productivity and the diverse range of products found in the global market. Applications such as bioremediation, food processing, petroleum refining, biomedical uses, and increasing agriculture output have been discussed. Additionally, the latest advancements in production cost reduction for glycolipid and the challenges of utilizing second-generation feedstocks for sustainable production are also thoroughly examined. Overall, this review proposes a balance between environmental advantages, economic viability, and societal benefits through the optimized integration of secondary feedstocks in biosurfactant production.
Collapse
Affiliation(s)
- Yahui Miao
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Ming Ho To
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Muhammad Ahmar Siddiqui
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
- Branch of Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, China
| | - Huaimin Wang
- McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, United States
| | - Sofie Lodens
- Bio Base Europe Pilot Plant, Ghent, Belgium
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON, Canada
| | - Sophie L K W Roelants
- Bio Base Europe Pilot Plant, Ghent, Belgium
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, China
| |
Collapse
|
5
|
Ma J, Zhuang Y, Wang Y, Zhu N, Wang T, Xiao H, Chen J. Update on new trend and progress of the mechanism of polycyclic aromatic hydrocarbon biodegradation by Rhodococcus, based on the new understanding of relevant theories: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93345-93362. [PMID: 37548784 DOI: 10.1007/s11356-023-28894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Rapid industrial and societal developments have led to substantial increases in the use and exploitation of petroleum, and petroleum hydrocarbon pollution has become a serious threat to human health and the environment. Polycyclic aromatic hydrocarbons (PAHs) are primary components of petroleum hydrocarbons. In recent years, microbial remediation of PAHs pollution has been regarded as the most promising and cost-effective treatment measure because of its low cost, robust efficacy, and lack of secondary pollution. Rhodococcus bacteria are regarded as one of main microorganisms that can effectively degrade PAHs because of their wide distribution, broad degradation spectrum, and network-like evolution of degradation gene clusters. In this review, we focus on the biological characteristics of Rhodococcus; current trends in PAHs degradation based on knowledge maps; and the cellular structural, biochemical, and enzymatic basis of degradation mechanisms, along with whole genome and transcriptional regulation. These research advances provide clues for the prospects of Rhodococcus-based applications in environmental protection.
Collapse
Affiliation(s)
- Jinglin Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yan Zhuang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ning Zhu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Ting Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Hongbin Xiao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
6
|
Current advances in the classification, production, properties and applications of microbial biosurfactants – A critical review. Adv Colloid Interface Sci 2022; 306:102718. [DOI: 10.1016/j.cis.2022.102718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
|