1
|
Kim Y, Alia A, Kurle-Tucholski P, Wiebeler C, Matysik J. Electronic Structures of Radical-Pair-Forming Cofactors in a Heliobacterial Reaction Center. Molecules 2024; 29:1021. [PMID: 38474533 DOI: 10.3390/molecules29051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic reaction centers (RCs) are membrane proteins converting photonic excitations into electric gradients. The heliobacterial RCs (HbRCs) are assumed to be the precursors of all known RCs, making them a compelling subject for investigating structural and functional relationships. A comprehensive picture of the electronic structure of the HbRCs is still missing. In this work, the combination of selective isotope labelling of 13C and 15N nuclei and the utilization of photo-CIDNP MAS NMR (photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance) allows for highly enhanced signals from the radical-pair-forming cofactors. The remarkable magnetic-field dependence of the solid-state photo-CIDNP effect allows for observation of positive signals of the electron donor cofactor at 4.7 T, which is interpreted in terms of a dominant contribution of the differential relaxation (DR) mechanism. Conversely, at 9.4 T, the emissive signals mainly originate from the electron acceptor, due to the strong activation of the three-spin mixing (TSM) mechanism. Consequently, we have utilized two-dimensional homonuclear photo-CIDNP MAS NMR at both 4.7 T and 9.4 T. These findings from experimental investigations are corroborated by calculations based on density functional theory (DFT). This allows us to present a comprehensive investigation of the electronic structure of the cofactors involved in electron transfer (ET).
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
2
|
Kurle-Tucholski P, Köhler L, Zhao Z, Link G, Wiebeler C, Matysik J. Stabilization of a flavoprotein for solid-state photo-CIDNP MAS NMR at room temperature by embedding in a glassy sugar matrix. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107497. [PMID: 37295281 DOI: 10.1016/j.jmr.2023.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Hyperpolarization via the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect can be detected in frozen solutions of electron transfer proteins generating a radical-pair upon illumination. The effect has been observed in various natural photosynthetic reaction centers and in light-oxygen-voltage (LOV) sensing domains incorporating a flavin mononucleotide (FMN) as chromophore. In LOV domains, where a highly conserved cysteine is mutated to a flavin to interrupt its natural photochemistry, a radical-pair is generated by electron transfer from a nearby tryptophan to the photoexcited triplet state of FMN. During the photocycle, both the LOV domain and the chromophore are photochemically degraded, e.g., by the formation of singlet oxygen. This limits the time for collection of hyperpolarized nuclear magnetic resonance (NMR) data. We show that embedding of the protein into a trehalose sugar glass matrix stabilizes the protein for 13C solid-state photo-CIDNP NMR experiments which can be conducted at room temperature in a powder sample. Additionally, this preparation allows for incorporation of high amounts of protein further boosting the intensity of the detected signals from FMN and tryptophan at natural abundance. Signal assignment is aided by quantum chemical calculations of absolute shieldings. The underlying mechanism for the surprising absorption-only signal pattern is not yet understood. Comparison to calculated isotropic hyperfine couplings imply that the enhancement is not due to the classical radical-pair mechanism (RPM). Analysis of the anisotropic hyperfine couplings associated with solid-state photo-CIDNP mechanisms also show no simple correlation, suggesting a more complex underlying mechanism.
Collapse
Affiliation(s)
- Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Ziyue Zhao
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Gerhard Link
- Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstraße 2, D-04103 Leipzig, Germany; Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
3
|
Janssen G, Eschenbach P, Kurle P, Bode B, Neugebauer J, de Groot H, Matysik J, Alia A. Analysis of the electronic structure of the primary electron donor of photosystem I of Spirodelaoligorrhiza by photochemically induced dynamic nuclear polarization (photo-CIDNP) solid-state nuclear magnetic resonance (NMR). MAGNETIC RESONANCE 2020; 1:261-274. [PMCID: PMC10655075 DOI: 10.5194/mr-1-261-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2024]
Abstract
The electron donor in photosystem I (PSI), the chlorophyll dimer P700, is studied by photochemically induced dynamic nuclear polarization (photo-CIDNP) magic angle spinning (MAS) nuclear magnetic resonance (NMR) on selectively 13 C and uniformly 15 N labeled PSI core preparations (PSI-100) obtained from the aquatic plant duckweed (Spirodela oligorrhiza ). Light-induced signals originate from the isotope-labeled nuclei of the cofactors involved in the spin-correlated radical pair forming upon light excitation. Signals are assigned to the two donor cofactors (Chl a and Chl a ') and the two acceptor cofactors (both Chl a ). Light-induced signals originating from both donor and acceptor cofactors demonstrate that electron transfer occurs through both branches of cofactors in the pseudo-C 2 symmetric reaction center (RC). The experimental results supported by quantum chemical calculations indicate that this functional symmetry occurs in PSI despite similarly sized chemical shift differences between the cofactors of PSI and the functionally asymmetric special pair donor of the bacterial RC of Rhodobacter sphaeroides . This contributes to converging evidence that local differences in time-averaged electronic ground-state properties, over the donor are of little importance for the functional symmetry breaking across photosynthetic RC species.
Collapse
Affiliation(s)
- Geertje J. Janssen
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, the Netherlands
| | - Patrick Eschenbach
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Universität Münster, 48149 Münster, Germany
| | - Patrick Kurle
- Institut für Analytische Chemie, Universität Leipzig,
04189 Leipzig, Germany
| | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, KY16 9ST St Andrews, Scotland
| | - Johannes Neugebauer
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Universität Münster, 48149 Münster, Germany
| | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, the Netherlands
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig,
04189 Leipzig, Germany
| | - Alia Alia
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, the Netherlands
- Institut für Medizinische Physik und Biophysik, Universität
Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Ding Y, Kiryutin AS, Zhao Z, Xu QZ, Zhao KH, Kurle P, Bannister S, Kottke T, Sagdeev RZ, Ivanov KL, Yurkovskaya AV, Matysik J. Tailored flavoproteins acting as light-driven spin machines pump nuclear hyperpolarization. Sci Rep 2020; 10:18658. [PMID: 33122681 PMCID: PMC7596710 DOI: 10.1038/s41598-020-75627-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022] Open
Abstract
The solid-state photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect generates non-Boltzmann nuclear spin magnetization, referred to as hyperpolarization, allowing for high gain of sensitivity in nuclear magnetic resonance (NMR). Well known to occur in photosynthetic reaction centers, the effect was also observed in a light-oxygen-voltage (LOV) domain of the blue-light receptor phototropin, in which the functional cysteine was removed to prevent photo-chemical reactions with the cofactor, a flavin mononucleotide (FMN). Upon illumination, the FMN abstracts an electron from a tryptophan to form a transient spin-correlated radical pair (SCRP) generating the photo-CIDNP effect. Here, we report on designed molecular spin-machines producing nuclear hyperpolarization upon illumination: a LOV domain of aureochrome1a from Phaeodactylum tricornutum, and a LOV domain named 4511 from Methylobacterium radiotolerans (Mr4511) which lacks an otherwise conserved tryptophan in its wild-type form. Insertion of the tryptophan at canonical and novel positions in Mr4511 yields photo-CIDNP effects observed by 15N and 1H liquid-state high-resolution NMR with a characteristic magnetic-field dependence indicating an involvement of anisotropic magnetic interactions and a slow-motion regime in the transient paramagnetic state. The heuristic biomimetic design opens new categories of experiments to analyze and apply the photo-CIDNP effect.
Collapse
Affiliation(s)
- Yonghong Ding
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Alexey S Kiryutin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Ziyue Zhao
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Qian-Zhao Xu
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Patrick Kurle
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Saskia Bannister
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Tilman Kottke
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Renad Z Sagdeev
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Ding Y, Kiryutin AS, Yurkovskaya AV, Sosnovsky DV, Sagdeev RZ, Bannister S, Kottke T, Kar RK, Schapiro I, Ivanov KL, Matysik J. Nuclear spin-hyperpolarization generated in a flavoprotein under illumination: experimental field-dependence and theoretical level crossing analysis. Sci Rep 2019; 9:18436. [PMID: 31804538 PMCID: PMC6895156 DOI: 10.1038/s41598-019-54671-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022] Open
Abstract
The solid-state photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect generates non-equilibrium nuclear spin polarization in frozen electron-transfer proteins upon illumination and radical-pair formation. The effect can be observed in various natural photosynthetic reaction center proteins using magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, and in a flavin-binding light-oxygen-voltage (LOV) domain of the blue-light receptor phototropin. In the latter system, a functionally instrumental cysteine has been mutated to interrupt the natural cysteine-involving photochemistry allowing for an electron transfer from a more distant tryptophan to the excited flavin mononucleotide chromophore. We explored the solid-state photo-CIDNP effect and its mechanisms in phototropin-LOV1-C57S from the green alga Chlamydomonas reinhardtii by using field-cycling solution NMR. We observed the 13C and, to our knowledge, for the first time, 15N photo-CIDNP signals from phototropin-LOV1-C57S. Additionally, the 1H photo-CIDNP signals of residual water in the deuterated buffer of the protein were detected. The relative strengths of the photo-CIDNP effect from the three types of nuclei, 1H, 13C and 15N were measured in dependence of the magnetic field, showing their maximum polarizations at different magnetic fields. Theoretical level crossing analysis demonstrates that anisotropic mechanisms play the dominant role at high magnetic fields.
Collapse
Affiliation(s)
- Yonghong Ding
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany
| | - Alexey S Kiryutin
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Denis V Sosnovsky
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Renad Z Sagdeev
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Saskia Bannister
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Rajiv K Kar
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, Institutskaya, 3а, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Nitschke P, Lokesh N, Gschwind RM. Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:86-134. [PMID: 31779887 DOI: 10.1016/j.pnmrs.2019.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, photochemical and photocatalytic applications have developed into one of the dominant research fields in chemistry. However, mechanistic investigations to sustain this enormous progress are still relatively sparse and in high demand by the photochemistry community. UV/Vis spectroscopy and EPR spectroscopy have been the main spectroscopic tools to study the mechanisms of photoreactions due to their higher time resolution and sensitivity. On the other hand, application of NMR in photosystems has been mainly restricted to photo-CIDNP, since the initial photoexcitation was thought to be the single key to understand photoinduced reactions. In 2015 the Gschwind group showcased the possibility that different reaction pathways could occur from the same photoexcited state depending on the reaction conditions by using in situ LED illumination NMR. This was the starting point to push the active participation of NMR in photosystems to its full potential, including reaction profiling, structure determination of intermediates, downstream mechanistic studies, dark pathways, intermediate sequencing with CEST etc. Following this, multiple studies using in situ illumination NMR have been reported focusing on mechanistic investigations in photocatalysis, photoswitches, and polymerizations. The recent increased popularity of this technique can be attributed to the simplicity of the experimental setup and the availability of low cost, high power LEDs. Here, we review the development of experimental design, applications and new concepts of illuminated NMR. In the first part, we describe the development of different designs of NMR illumination apparatus, illuminating from the bottom/side/top/inside, and discuss their pros and cons for specific applications. Furthermore, we address LASERs and LEDs as different light sources as well as special cases such as UVNMR(-illumination), FlowNMR, NMR on a Chip etc. To complete the discussion on experimental apparatus, the advantages and disadvantages of in situ LED illumination NMR versus ex situ illumination NMR are described. The second part of this review discusses different facets of applications of inside illumination experiments. It highlights newly revealed mechanistic and structural information and ideas in the fields of photocatalyis, photoswitches and photopolymerization. Finally, we present new concepts and methods based on the combination of NMR and illumination such as sensitivity enhancement, chemical pump probes, experimental access to transition state combinations and NMR actinometry. Overall this review presents NMR spectroscopy as a complementary tool to UV/Vis spectroscopy in mechanistic and structural investigations of photochemical processes. The review is presented in a way that is intended to assist the photochemistry and photocatalysis community in adopting and understanding this astonishingly powerful in situ LED illumination NMR method for their investigations on a daily basis.
Collapse
Affiliation(s)
- Philipp Nitschke
- Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | - Ruth M Gschwind
- Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
7
|
Studying hydrogen bonding and dynamics of the acetylate groups of the Special Pair of Rhodobacter sphaeroides WT. Sci Rep 2019; 9:10528. [PMID: 31324886 PMCID: PMC6642110 DOI: 10.1038/s41598-019-46903-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022] Open
Abstract
Although the cofactors in the bacterial reaction centre of Rhodobacter sphaeroides wild type (WT) are arranged almost symmetrically in two branches, the light-induced electron transfer occurs selectively in one branch. As origin of this functional symmetry break, a hydrogen bond between the acetyl group of PL in the primary donor and His-L168 has been discussed. In this study, we investigate the existence and rigidity of this hydrogen bond with solid-state photo-CIDNP MAS NMR methods offering information on the local electronic structure due to highly sensitive and selective NMR experiments. On the time scale of the experiment, the hydrogen bond between PL and His-L168 appears to be stable and not to be affected by illumination confirming a structural asymmetry within the Special Pair.
Collapse
|
8
|
Zill JC, Kansy M, Goss R, Alia A, Wilhelm C, Matysik J. 15N photo-CIDNP MAS NMR on both photosystems and magnetic field-dependent 13C photo-CIDNP MAS NMR in photosystem II of the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2019; 140:151-171. [PMID: 30194671 DOI: 10.1007/s11120-018-0578-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/24/2018] [Indexed: 05/14/2023]
Abstract
Diatoms contribute about 20-25% to the global marine productivity and are successful autotrophic players in all aquatic ecosystems, which raises the question whether this performance is caused by differences in their photosynthetic apparatus. Photo-CIDNP MAS NMR presents a unique tool to obtain insights into the reaction centres of photosystems (PS), by selective enhancement of NMR signals from both, the electron donor and the primary electron acceptor molecules. Here, we present the first observation of the solid-state photo-CIDNP effect in the pennate diatoms. In comparison to plant PSs, similar spectral patterns have been observed for PS I at 9.4 T and PS II at 4.7 T in the PSs of Phaeodactylum tricornutum. Studies at different magnetic fields reveal a surprising sign change of the 13C photo-CIDNP MAS NMR signals indicating an alternative arrangement of cofactors which allows to quench the Chl a donor triplet state in contrast to the situation in plant PS II. This unusual quenching mechanism is related to a carotenoid molecule in close vicinity to the Chl a donor. In addition to the photo-CIDNP MAS NMR signals arising from the donor and the primary electron acceptor cofactors, a complete set of signals of the imidazole ring ligating to the magnesium of Chl a can be observed.
Collapse
Affiliation(s)
- Jeremias C Zill
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Marcel Kansy
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Reimund Goss
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - A Alia
- Leiden Institute of Chemistry, University of Leiden, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|
9
|
Bielytskyi P, Gräsing D, Zahn S, Mote KR, Alia A, Madhu PK, Matysik J. Assignment of NMR resonances of protons covalently bound to photochemically active cofactors in photosynthetic reaction centers by 13C- 1H photo-CIDNP MAS-J-HMQC experiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:64-76. [PMID: 30529893 DOI: 10.1016/j.jmr.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Modified versions of through-bond heteronuclear correlation (HETCOR) experiments are presented to take advantage of the light-induced hyperpolarization that occurs on 13C nuclei due to the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Such 13C-1H photo-CIDNP MAS-J-HMQC and photo-CIDNP MAS-J-HSQC experiments are applied to acquire the 2D 13C-1H correlation spectra of selectively 13C-labeled photochemically active cofactors in the frozen quinone-blocked photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wild-type (WT). Resulting spectra contain no correlation peaks arising from the protein backbone, which greatly simplifies the assignment of aliphatic region. Based on the photo-CIDNP MAS-J-HMQC NMR experiment, we obtained assignment of selective 1H NMR resonances of the cofactors involved in the electron transfer process in the RC and compared them with values theoretically predicted by density functional theory (DFT) calculation as well as with the chemical shifts obtained from monomeric cofactors in the solution. We also compared proton chemical shifts obtained by photo-CIDNP MAS-J-HMQC experiment under continuous illumination with the ones obtained in dark by classical cross-polarization (CP) HETCOR. We expect that the proposed approach will become a method of choice for obtaining 1H chemical shift maps of the active cofactors in photosynthetic RCs and will aid the interpretation of heteronuclear spin-torch experiments.
Collapse
Affiliation(s)
- Pavlo Bielytskyi
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, the Netherlands; Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
10
|
Bielytskyi P, Gräsing D, Mote KR, Sai Sankar Gupta KB, Vega S, Madhu PK, Alia A, Matysik J. 13C → 1H transfer of light-induced hyperpolarization allows for selective detection of protons in frozen photosynthetic reaction center. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 293:82-91. [PMID: 29909081 DOI: 10.1016/j.jmr.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/14/2023]
Abstract
In the present study, we exploit the light-induced hyperpolarization occurring on 13C nuclei due to the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect to boost the NMR signal intensity of selected protons via inverse cross-polarization. Such hyperpolarization transfer is implemented into 1H-detected two-dimensional 13C-1H correlation magic-angle-spinning (MAS) NMR experiment to study protons in frozen photosynthetic reaction centers (RCs). As a first trial, the performance of such an experiment is tested on selectively 13C labeled RCs from the purple bacteria of Rhodobacter sphaeroides. We observed response from the protons belonging to the photochemically active cofactors in their native protein environment. Such an approach is a potential heteronuclear spin-torch experiment which could be complementary to the classical heteronuclear correlation (HETCOR) experiments for mapping proton chemical shifts of photosynthetic cofactors and to understand the role of the proton pool around the electron donors in the electron transfer process occurring during photosynthesis.
Collapse
Affiliation(s)
- Pavlo Bielytskyi
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | | | - Shimon Vega
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rechovot, Israel
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
11
|
Zill JC, He Z, Tank M, Ferlez BH, Canniffe DP, Lahav Y, Bellstedt P, Alia A, Schapiro I, Golbeck JH, Bryant DA, Matysik J. 15N photo-CIDNP MAS NMR analysis of reaction centers of Chloracidobacterium thermophilum. PHOTOSYNTHESIS RESEARCH 2018; 137:295-305. [PMID: 29603082 DOI: 10.1007/s11120-018-0504-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a' (Zn-BChl a') (Tsukatani et al. in J Biol Chem 287:5720-5732, 2012). Based upon experimental and quantum chemical 15N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a'. Chl a and 81-OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.
Collapse
Affiliation(s)
- Jeremias C Zill
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Zhihui He
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Bryan H Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yigal Lahav
- Fritz Haber Center of Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Migal-Galilee Research Institute, S. Industrial Zone, 12100, Kiryat Shmona, Israel
| | - Peter Bellstedt
- Institute of Organic and Macromolecular Chemistry, Friedrich-Schiller-Universität Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - A Alia
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany
- Leiden Institute of Chemistry, University of Leiden, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Igor Schapiro
- Fritz Haber Center of Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|
12
|
Gräsing D, Bielytskyi P, Céspedes-Camacho IF, Alia A, Marquardsen T, Engelke F, Matysik J. Field-cycling NMR with high-resolution detection under magic-angle spinning: determination of field-window for nuclear hyperpolarization in a photosynthetic reaction center. Sci Rep 2017; 7:12111. [PMID: 28935961 PMCID: PMC5608766 DOI: 10.1038/s41598-017-10413-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Several parameters in NMR depend on the magnetic field strength. Field-cycling NMR is an elegant way to explore the field dependence of these properties. The technique is well developed for solution state and in relaxometry. Here, a shuttle system with magic-angle spinning (MAS) detection is presented to allow for field-dependent studies on solids. The function of this system is demonstrated by exploring the magnetic field dependence of the solid-state photochemically induced nuclear polarization (photo-CIDNP) effect. The effect allows for strong nuclear spin-hyperpolarization in light-induced spin-correlated radical pairs (SCRPs) under solid-state conditions. To this end, 13C MAS NMR is applied to a photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wildtype (WT). For induction of the effect in the stray field of the magnet and its subsequent observation at 9.4 T under MAS NMR conditions, the sample is shuttled by the use of an aerodynamically driven sample transfer technique. In the RC, we observe the effect down to 0.25 T allowing to determine the window for the occurrence of the effect to be between about 0.2 and 20 T.
Collapse
Affiliation(s)
- Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103, Leipzig, Germany
| | - Pavlo Bielytskyi
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103, Leipzig, Germany
| | - Isaac F Céspedes-Camacho
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103, Leipzig, Germany.,Escuela de Química, Tecnológico de Costa Rica, Sede Central, 30101, Cartago, Costa Rica
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107, Leipzig, Germany.,Leiden Institute of Chemistry, 2333, Leiden, The Netherlands
| | | | - Frank Engelke
- Bruker BioSpin GmbH, Silberstreifen 4, D-76287, Rheinstetten, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103, Leipzig, Germany.
| |
Collapse
|
13
|
Najdanova M, Gräsing D, Alia A, Matysik J. Analysis of the Electronic Structure of the Special Pair of a Bacterial Photosynthetic Reaction Center by 13 C Photochemically Induced Dynamic Nuclear Polarization Magic-Angle Spinning NMR Using a Double-Quantum Axis. Photochem Photobiol 2017; 94:69-80. [PMID: 28746728 DOI: 10.1111/php.12812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 11/28/2022]
Abstract
The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) 13 C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on 13 C-13 C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state.
Collapse
Affiliation(s)
- Marija Najdanova
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Daniel Gräsing
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany.,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Buntkowsky G, Ivanov K, Vieth HM. From Free Radicals and Spin-Chemistry Over Spin-Dynamics and Hyperpolarization to Biology and Materials Science. Z PHYS CHEM 2017. [DOI: 10.1515/zpch-2016-5006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Gerd Buntkowsky
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Alarich-Weiss-Straße 4, Darmstadt 64287, Germany
| | - Konstantin Ivanov
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center, Institutskaya 3A, Novosibirsk 630090, Russia
- Freie Universität Berlin, Institut für Experimentalphysik, Arnimallee 14, Berlin 14195, Germany
| |
Collapse
|