1
|
Irfan M, Nasir F, Naveed M, Javed S, Yousaf Z, Shafiq S, Munir H. Unlocking the potential of plant gums: Bioinformatics-driven insights into green synthesis and applications of metal-based nanoparticles. Int J Biol Macromol 2025; 308:142584. [PMID: 40154705 DOI: 10.1016/j.ijbiomac.2025.142584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Plant gums (PGs) are naturally occurring heteropolysaccharides that exude from different plants, typically from their stems, bark, and seeds. They are non-toxic, biodegradable, biocompatible, and cost-effective. PGs are commonly used as emulsifiers, stabilizers, and thickeners in the pharmaceutical, food, and cosmetics industries. Chemically, they are composed of complex sugars, with minor components including proteins, minerals, and flavonoids. Owing to their diverse phytochemical profiles, they have been comprehensively studied over the last couple of decades as reducing, capping, and stabilizing agents for the synthesis of metallic nanoparticles (NPs). Researchers have synthesized various eco-friendly metallic NPs from PGs for potential applications in environmental, industrial, and pharmaceutical domains. This review thoroughly covers the synthesis, characterization techniques, and diverse applications of PG-based metallic NPs. For the first time, using advanced informatics tools like PubChem, ChemSpider, and SwissADME, this study provides novel insights into the molecular interactions and stabilization of PG-based NPs. The review also analyzes the diverse composition of PGs and explores the unique reducing and capping potential of their phytochemicals in the green synthesis of metallic NPs. It also examines the potential drawbacks and proposes possible solutions related to PG-based metallic NP synthesis, along with discussing the future prospects of these nanomaterials.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan.
| | - Farwa Nasir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Muhammad Naveed
- Department of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Sofia Javed
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Zainab Yousaf
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Sheeza Shafiq
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Hira Munir
- Department of Biochemistry, Govt. Women College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Mirmajidi H, Lee H, Nipu N, Thomas J, Gajdosechova Z, Kennedy D, Mennigen JA, Hemmer E. Nano-bio interactions of Gum Arabic-stabilized lanthanide-based upconverting nanoparticles: in vitro and in vivo study. J Mater Chem B 2024; 13:160-176. [PMID: 39539248 DOI: 10.1039/d4tb01579g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lanthanide-based nanoparticles (Ln-NPs) are highly valued for their unique optical and magnetic properties, making them useful in various scientific fields, including materials science and biomedicine. This study investigated the use of Gum Arabic (GA), a natural, non-toxic biopolymer, as capping agent for Ln-NPs to enhance their biocompatibility and chemical and colloidal stability. Specifically, Er3+/Yb3+ co-doped NaGdF4 Ln-NPs were modified with GA, followed by their characterization with respect to upconversion properties and in vitro as well as in vivo toxicity. Herein, widely used ligand-free and polyacrylic acid (PAA)-capped Ln-NPs were used as reference materials. Importantly, the GA-modified Ln-NPs exhibited superior stability in aqueous and biologically relevant media, as well as relatively lower cytotoxicity across multiple cell lines, including U-87 MG, HEPG2, and J774A.1. In vivo studies using zebrafish embryos confirmed the minimal toxicity of GA-capped Ln-NPs. Despite overall low non-specific cellular uptake, hyperspectral imaging and inductively coupled plasma mass spectrometry confirmed the colocalization of the Ln-NPs as a function of their surface chemistry in both cell models and zebrafish. The results suggest GA as an effective surface-stabilizing agent for Ln-NPs, paving the way for future functionalization with targeting agents.
Collapse
Affiliation(s)
- Hana Mirmajidi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Hyojin Lee
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Jith Thomas
- Bureau of Chemical Safety, Food and Nutrition Directorate, Health Products and Food Branch, Health Canada, 251 Sir Frederick Banting Driveway, Tunney's Pasture, Ottawa (ON) K1A 0K9, Canada
| | - Zuzana Gajdosechova
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa (ON) K1A 0R6, Canada
| | - David Kennedy
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa (ON) K1A 0R6, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| |
Collapse
|
3
|
Akhtar S, Zuhair F, Nawaz M, Khan FA. Green synthesis, characterization, morphological diversity, and colorectal cancer cytotoxicity of gold nanoparticles. RSC Adv 2024; 14:36576-36592. [PMID: 39553281 PMCID: PMC11565694 DOI: 10.1039/d4ra06340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
The synthesis of gold nanoparticles (AuNPs) via green methods is advantageous due to their economic viability, reduced environmental pollution, and safety towards human health. According to our best knowledge, there is limited documented research on synthesizing AuNPs using gum Arabic (GA) and cinnamon (CNM) and studying their anticancer activities against colorectal cancer cells. This study presents a simple approach to synthesizing AuNPs using GA and CNM, characterized by advanced analytical techniques, including UV-Vis and FTIR spectroscopies, SEM, EDS, TEM, SAED, Zeta sizer, and Zeta potential. The absorption spectra displayed characteristic bands between 520-530 nm, confirming the successful synthesis of AuNPs. TEM analysis revealed that AuNPs@GA exhibited a spherical shape, while AuNPs@CNM displayed diverse morphologies (e.g., spherical, hexagonal, and diamond shapes) with average sizes of approximately 12 nm and 17 nm, respectively. SEM/EDS data confirmed the presence of AuNPs alongside organic compounds such as carbon, oxygen, and phosphorus. The cytotoxic effects of these AuNPs were evaluated on colorectal cancer cells (HCT-116) and healthy cells (HEK-293) using an MTT assay. Notably, AuNPs@GA resulted in a 43.61% loss in cell viability at the dose of 5 μg mL-1, while AuNPs@CNM led to an impressive 80.33% loss. The calculated IC50 values were 9.14 μg mL-1 for AuNPs@GA and 11.76 μg mL-1 for AuNPs@CNM, highlighting the potential of these AuNPs as effective agents in colon cancer treatment. This study not only addresses the lack of research on GA and CNM in NP synthesis but also demonstrates their promising anticancer properties, paving the way for further exploration in cancer therapeutics.
Collapse
Affiliation(s)
- Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Fatimah Zuhair
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| |
Collapse
|
4
|
Dalavi PA, V. AJ, Thomas S, Prabhu A, Anil S, Seong GH, Venkatesan J. Microwave-Assisted Biosynthesized Gold Nanoparticles Using Saussurea obvallata: Biocompatibility and Antioxidant Activity Assessment. BIONANOSCIENCE 2022; 12:741-751. [DOI: 10.1007/s12668-022-00994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
5
|
Zinsaz P, Jafarizadeh-Malmiri H, Anarjan N, Nekoueifard A, Javadi A. Biogenic synthesis of gold nanoparticles using Artemia urumiana extract and five different thermal accelerated techniques: fabrication and characterization. Z NATURFORSCH C 2022; 77:395-402. [PMID: 35230753 DOI: 10.1515/znc-2021-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/15/2022]
Abstract
Artemia urumiana is bisexual population of the Lake Urmia of Iran. Its biomass was freeze dried and using its lyophilized powder, hydro-alcoholic extract was prepared and utilized in gold nanoparticles (Au NPs) synthesis. Six different Au NPs fabrication methods namely: microwave heating, hydrothermal, ultraviolet (UV) irradiation, ultrasonication, common heating using conventional heating, and self-assembling were utilized for Au NPs synthesis using A. urumiana extract. Gas chromatography analysis indicated that the prepared extract were contained numerous fatty acid methyl esters such as Hexadecanoic acid methyl ester. Results indicated that the formed NPs using heater and stirrer, and UV irradiation had minimum particle size of 25 and 94 nm, respectively. However, as compared to the formed Au NPs using heater and stirrer technique, UV irradiation fabricated Au NPs with high zeta potential value of -32.5 mV and small polydispersity value of 0.310. Results also demonstrated that the synthesized Au NPs using heater and stirrers, and UV irradiation had highest antioxidant activities of 13.7 and 11.9%, and bactericidal effects against Escherichia coli and Staphylococcus aurous bacteria strains, as compared to other fabricated Au NPs using other methods. There were insignificant (p > 0.05) differences between these two attributes of the formed Au NPs.
Collapse
Affiliation(s)
- Paniz Zinsaz
- Department of Food Science and Technology, Mamaghan Branch, Islamic Azad University, Mamaghan, Iran
| | - Hoda Jafarizadeh-Malmiri
- Department of Food Engineering, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Navideh Anarjan
- Department of Food Hygiene, Tabriz Branch, Islamic Azad University, Tabriz, East Azarbaijan, Iran
| | - Ali Nekoueifard
- National Artemia Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Urmia, Iran
| | - Afshin Javadi
- Department of Food Hygiene, Tabriz Branch, Islamic Azad University, Tabriz, East Azarbaijan, Iran
| |
Collapse
|
6
|
Aldawsari HM, Singh S, Alhakamy NA, Bakhaidar RB, Halwani AA, Badr-Eldin SM. Gum Acacia Functionalized Colloidal Gold Nanoparticles of Letrozole as Biocompatible Drug Delivery Carrier for Treatment of Breast Cancer. Pharmaceutics 2021; 13:1554. [PMID: 34683847 PMCID: PMC8538880 DOI: 10.3390/pharmaceutics13101554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/03/2023] Open
Abstract
The most prevalent malignancy among postmenopausal women is breast cancer. It is one of the leading causes of cancer-related mortality among women. Letrozole (LTZ) is a clinically approved inhibitor for breast cancer in postmenopausal women. However, due to poor aqueous solubility, non-specific binding, unwanted toxicity, and poor blood circulation hampered its clinical applications. To maximize the pharmacological effects and minimize the side effects, inorganic nanoparticles are a good alternative. Due to excellent biocompatibility and minimum cytotoxicity, gold nanoparticles (AuNPs) offer distinct benefits over other metal nanoparticles. Emerging as attractive components, AuNPs and Gum acacia (GA) have been extensively studied as biologically safe nanomaterials for the treatment of cancers. This study reports the synthesis and characterization of GA stabilized gold nanoparticles (GA-AuNPs) of LTZ for breast cancer treatment. The observed particle size of optimized LTZ @ GA-AuNPs was 81.81 ± 4.24 nm in size, 0.286 ± 0.143 of polydispersity index (PDI) and -14.6 ± -0.73 mV zeta potential. The biologically synthesized LTZ @ GA-AuNPs also demonstrated dose-dependent cytotoxicity against the human breast cancer cell line MCF-7, with an inhibitory concentration (IC50) of 3.217 ± 0.247. We determined the hemolytic properties of the LTZ @ GA-AuNPs to evaluate the interaction between the nanoparticles and blood components. Results showed that there is no interaction between LTZ @ GA-AuNPs and blood. In conclusion, the findings indicate that LTZ @ GA-AuNPs has significant potential as a promising drug delivery carrier for treating breast cancer in postmenopausal women.
Collapse
Affiliation(s)
- Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sima Singh
- IES Institute of Pharmacy, IES University Campus, Bhopal 462044, India;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
| | - Abdulrahman A. Halwani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (R.B.B.); (A.A.H.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Tabrizi SM, Javadi A, Anarjan N, Mortazavi Tabrizi SJ, Mirzaei H. Astaxanthin–garlic oil nanoemulsions preparation using spontaneous microemulsification technique: optimization and their physico–chemical properties. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Garlic oil in water nanoemulsion was resulted through subcritical water method (temperature of 120 °C and pressure of 1.5 bar, for 2 h), using aponin, as emulsifier. Based on the prepared garlic oil nanoemulsion, astaxanthin–garlic oil nanoemulsions were prepared using spontaneous microemulsification technique. Response surface methodology was employed to evaluate the effects of independent variables namely, amount of garlic oil nanoemulsion (1–9 mL) and amount of provided astaxanthin powder (1–9 g) on particle size and polydispersity index (PDI) of the resulted nanoemulsions. Results of optimization indicated that well dispersed and spherical nanodroplets were formed in the nanoemulsions with minimum particle size (76 nm) and polydispersity index (PDI, 0.358) and maximum zeta potential value (−8.01 mV), using garlic oil nanoemulsion amount of 8.27 mL and 4.15 g of astaxanthin powder. Strong antioxidant activity (>100%) of the prepared astaxanthin–garlic oil nanoemulsion, using obtained optimum amounts of the components, could be related to the highest antioxidant activity of the colloidal astaxanthin (>100%) as compared to that of the garlic oil nanoemulsion (16.4%). However, higher bactericidal activity of the resulted nanoemulsion against Escherichia coli and Staphylococcus aureus, were related to the main sulfur bioactive components of the garlic oil in which their main functional groups were detected by Fourier transform-infrared spectroscopy.
Collapse
Affiliation(s)
| | - Afshin Javadi
- Department of Food Hygiene , Tabriz Branch, Islamic Azad University , Tabriz , Iran
| | - Navideh Anarjan
- Department of Chemical Engineering , Tabriz Branch, Islamic Azad University , Tabriz , Iran
| | | | - Hamid Mirzaei
- Department of Food Hygiene , Tabriz Branch, Islamic Azad University , Tabriz , Iran
| |
Collapse
|
8
|
Siddique M, Khan NM, Saeed M, Ali S, Shah Z. Green synthesis of cobalt oxide nanoparticles using Citrus medica leaves extract: characterization and photo-catalytic activity. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2019-1583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The study deals with the green and eco-friendly synthesis and characterization of cobalt oxide nanoparticles using leaf extract of Citrus medica plant. The crystalline nature and functional groups analysis of cobalt oxide Nps was confirmed by X-ray diffraction and diffused reflectance infra-red spectroscopy respectively. The band gap of the Nps was calculated using Tauc plot. Scanning microscope analysis was carried out to get an insight to the structural morphology of the catalyst. The catalyst was found to be very active for the degradation of methyl orange dye using a very small amount of catalyst (0.006 g) using ultra violet radiation source. Approximately, 90% of the dye (Initial Conc. 10 mg L−1) was degraded in 60 min at natural pH (6.5). The dye degradation increased with increase in pH of the solution, due to the enhanced production of OH radicals, at higher pH values. Different experimental parameters like catalyst amount, agitation speed, initial pH of the solution, initial concentration of dye and recycling of the catalyst were varied to test the performance of the catalyst.
Collapse
Affiliation(s)
- Mohsin Siddique
- Depertment of Chemistry , Bacha Khan University , Charsadda , Khyber Pakhtunkhwa , Pakistan
| | - Noor Muhammad Khan
- Depertment of Chemistry , Bacha Khan University , Charsadda , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Saeed
- Depertment of Chemistry , Government College University , Faisalabad , Pakistan
| | - Sajid Ali
- Depertment of Chemistry , Bacha Khan University , Charsadda , Khyber Pakhtunkhwa , Pakistan
| | - Zarbad Shah
- Depertment of Chemistry , Bacha Khan University , Charsadda , Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
9
|
Formulation, Characterization and Biological Activity Screening of Sodium Alginate-Gum Arabic Nanoparticles Loaded with Curcumin. Molecules 2020; 25:molecules25092244. [PMID: 32397633 PMCID: PMC7249151 DOI: 10.3390/molecules25092244] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 01/22/2023] Open
Abstract
The approach of drug delivery systems emphasizes the use of nanoparticles as a vehicle, offering the optional property of delivering drugs as a single dose rather than in multiple doses. The current study aims to improve antioxidant and drug release properties of curcumin loaded gum Arabic-sodium alginate nanoparticles (Cur/ALG-GANPs). The Cur/ALG-GANPs were prepared using the ionotropic gelation technique and further subjected to physico-chemical characterization using attenuated total reflectance–Fourier transform infrared (ATR-FTIR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), size distribution, and transmission electron microscopy (TEM). The size of Cur/ALG-GANPs ranged between 10 ± 0.3 nm and 190 ± 0.1 nm and the zeta potential was –15 ± 0.2 mV. The antioxidant study of Cur/ALG-GANPs exhibited effective radical scavenging capacity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) at concentrations that ranged between 30 and 500µg/mL. Cytotoxicity was performed using MTT assay to measure their potential in inhibiting the cell growth and the result demonstrated a significant anticancer activity of Cur/ALG-GANPs against human liver cancer cells (HepG2) than in colon cancer (HT29), lung cancer (A549) and breast cancer (MCF7) cells. Thus, this study indicates that Cur/ALG-GANPs have promising anticancer properties that might aid in future cancer therapy.
Collapse
|
10
|
Faramarzi S, Anzabi Y, Jafarizadeh-Malmiri H. Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae-fabrication and characterization. Arch Microbiol 2020; 202:1203-1209. [PMID: 32077990 DOI: 10.1007/s00203-020-01831-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Selenium nanoparticles (Se NPs) were synthesized using Saccharomyces cerevisiae yeast. Influences of different amounts of sodium selenite (5.0, 10.0, 15.0, 20.0, and 25 µg) were evaluated on growth of yeast during incubation at 32 °C, during 4 days. UV-Vis spectroscopy results have shown that synthesized Se NPs had broad emission peak (λmax) in the wavelength around 350 nm which demonstrated that formation of Se NPs occurred in intracellular manner. Physico-chemical characteristics of the synthesized Se NPs using dynamic light scattering particle-size analyzer indicated that the fabricated Se NPs had particle size, polydispersity index, and zeta potential ranging from 75 to 709 nm, 0.189 to 0989, and -7.06 to -10.3 mV, respectively. Obtained results revealed that intracellular Se NPs with minimum particle size (75 nm), maximum zeta potential (-10.3 mV), and antioxidant activity (48.5%) were synthesized using minimum amount of selenium salt (5 µg). However, most uniform Se NPs were formed using maximum amount of selenium salt (25 µg). Results also indicated that by increasing amount of sodium selenite in the culture media, from 5.0 to 25 µg, antioxidant activity of the formed Se NPs decreased from 48.5 to 20.8, respectively.
Collapse
Affiliation(s)
- Sara Faramarzi
- Department of Microbiology, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Younes Anzabi
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, East Azarbaijan, Iran. .,Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | |
Collapse
|
11
|
Iravani S. Plant gums for sustainable and eco-friendly synthesis of nanoparticles: recent advances. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1719155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Biological approach in nanobiotechnology – screening of four food pathogenic bacteria extract ability in extracellular biosynthesis of gold nanoparticles. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00381-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Farshbaf-Sadigh A, Jafarizadeh-Malmiri H, Anarjan N, Najian Y. Preparation of Ginger Oil in Water Nanoemulsion Using Phase Inversion Composition Technique: Effects of Stirring and Water Addition Rates on their Physico-Chemical Properties and Stability. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2019-1427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ginger oil in water (O/W) nanoemulsions, were produced using phase inversion composition method and Tween 80, as emulsifier. Effects of processing parameters namely, stirring rate (100 to1000 rpm) and water addition rate (1–10 mL/min) were evaluated on the physico-chemical, morphological, antioxidant and antimicrobial properties of the prepared O/W nanoemulsions using response surface methodology (RSM). Results indicated that well dispersed and spherical ginger nanodroplets were formed in the nanoemulsions with minimum particle size (8.80 nm) and polydispersity index (PDI, 0.285) and maximum zeta potential value (−9.15 mV), using stirring rate and water addition rate of 736 rpm and 8.18 mL/min, respectively. Insignificant differences between predicted and experimental values of the response variables, indicated suitability of fitted models using RSM. Mean particle size of the prepared nanoemulsion using optimum conditions were changed from 8.81 ± 1 to 9.80 ± 1 nm, during 4 weeks of storage, which revealed high stability of the resulted ginger O/W nanoemulsion. High antioxidant activity (55.4%), bactericidal (against Streptococcus mutans) and fungicidal (against Aspergillus niger) activities of the prepared nanoemulsion could be related to the presence of gingerols and shogaols, a group of phenolic alkanones, in the ginger oil, which those were detected by gas chromatography method.
Collapse
Affiliation(s)
- Ashraf Farshbaf-Sadigh
- Faculty of Chemical Engineering , Sahand University of Technology , 51335-1996 Sahand, East Azarbaijan, Tabriz , Iran
| | - Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering , Sahand University of Technology , 51335-1996 Sahand, East Azarbaijan, Tabriz , Iran , Tel.: +98 4133459099, Fax: +98413-3444355, e-mail:
| | - Navideh Anarjan
- Faculty of Chemical Engineering , Tabriz Branch, Islamic Azad University , East Azarbaijan, Tabriz , Iran
- Research and Development Department , Najian Herbal Group , East Azarbaijan, Tabriz , Iran
| | - Yahya Najian
- Research and Development Department , Najian Herbal Group , East Azarbaijan, Tabriz , Iran
| |
Collapse
|
14
|
Microwave-Assisted Green Synthesis of Silver Nanoparticles Using Juglans regia Leaf Extract and Evaluation of Their Physico-Chemical and Antibacterial Properties. Antibiotics (Basel) 2018; 7:antibiotics7030068. [PMID: 30061517 PMCID: PMC6165499 DOI: 10.3390/antibiotics7030068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022] Open
Abstract
Silver nanoparticles (Ag NPs) were synthesized using Juglans regia (J. regia) leaf extract, as both reducing and stabilizing agents through microwave irradiation method. The effects of a 1% (w/v) amount of leaf extract (0.1⁻0.9 mL) and an amount of 1 mM AgNO₃ solution (15⁻25 mL) on the broad emission peak (λmax) and concentration of the synthesized Ag NPs solution were investigated using response surface methodology (RSM). Fourier transform infrared analysis indicated the main functional groups existing in the J. regia leaf extract. Dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy were used to characterize the synthesized Ag NPs. Fabricated Ag NPs with the mean particle size and polydispersity index and maximum concentration and zeta potential of 168 nm, 0.419, 135.16 ppm and -15.6 mV, respectively, were obtained using 0.1 mL of J. regia leaf extract and 15 mL of AgNO₃. The antibacterial activity of the fabricated Ag NPs was assessed against both Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria and was found to possess high bactericidal effects.
Collapse
|