1
|
Coelho RS, Soares LC, Adarme OFH, Maia LC, Costa CSD, Guibal E, Gurgel LVA. A Review on Advances in the Use of Raw and Modified Agricultural Lignocellulosic Residues in Mono- and Multicomponent Continuous Adsorption of Inorganic Pollutants for Upscaling Technologies. Polymers (Basel) 2025; 17:953. [PMID: 40219342 PMCID: PMC11991513 DOI: 10.3390/polym17070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Using raw and modified lignocellulosic residues as bioadsorbents in continuous adsorption is challenging but it marks significant progress in water treatment and the transition to a bio-based circular economy. This study reviews the application of bioadsorbents in fixed-bed columns for treating water contaminated with inorganic species, offering guidance for future research. It evaluates chemical modifications to enhance adsorptive properties, explores adsorption mechanisms, and analyzes bioadsorbent performance under competitive adsorption conditions. Analysis of adsorption data included evaluation of adsorption capacity in mono- and multicomponent solutions, regeneration, reuse, bed efficiency, and disposal of spent bioadsorbents. This enabled assessing their scalability to sufficiently high levels of maturity for commercialization. In multicomponent solutions, selectivity was influenced by the characteristics of the bioadsorbents and by competitive adsorption among inorganic species. This affected adsorption performance, increasing the complexity of breakthrough curve modeling and controlling the biomaterial selectivity. Models for mono- and multicomponent systems are presented, including mass transfer equations and alternatives including "bell-type" equations for overshooting phenomena and innovative approaches using artificial neural networks and machine learning. The criteria discussed will assist in improving studies conducted from cradle (synthesis of new biomaterials) to grave (end use or disposal), contributing to accurate decision making for transferring the developed technology to an industrial scale and evaluating the technical and economic feasibility of bioadsorbents.
Collapse
Affiliation(s)
- Ricardo Silva Coelho
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
- Environmental Engineering Graduate Program (ProAmb), School of Mines, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Nove, s/n, Bauxita, Ouro Preto 35402-163, MG, Brazil
| | - Liliane Catone Soares
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
| | - Oscar Fernando Herrera Adarme
- Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas (Unicamp), Av. Cândido Rondon, 501, Campinas 13083-875, SP, Brazil;
| | - Luisa Cardoso Maia
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
- Environmental Engineering Graduate Program (ProAmb), School of Mines, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Nove, s/n, Bauxita, Ouro Preto 35402-163, MG, Brazil
| | - Camila Stéfanne Dias Costa
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
- Environmental Engineering Graduate Program (ProAmb), School of Mines, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Nove, s/n, Bauxita, Ouro Preto 35402-163, MG, Brazil
| | - Eric Guibal
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, 30100 Ales, France;
| | - Leandro Vinícius Alves Gurgel
- Group of Physical Organic Chemistry, Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Rua Quatro, 786, Bauxita, Ouro Preto 35402-136, MG, Brazil; (R.S.C.); (L.C.S.); (L.C.M.); (C.S.D.C.)
| |
Collapse
|
3
|
Kinetics of acid blue 40 dye degradation under solar light in the presence of CuO nanoparticles synthesized using Citrullus lanatus seeds extract. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In view of eco-benign nature of green synthesis, in the present investigation, the CuO NPs are prepared using Citrullus lanatus seeds extract and photocatalytic degradation efficiency for Acid Blue 40 (AB-40) was evaluated. The CuO NPs were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy), EDX (energy dispersive X-ray), and FT-IR (Fourier transform infrared) techniques. The synthesized CuO NPs was in face centered monoclinic crystalline form with particle size in 40–60 nm range. The photocatalytic degradation potential of CuO NPs was assessed for acid blue 40 (AB-40) dye degradation and catalyst dose, concentration of dye, radiation exposure time and pH are considered for dye removal. The CuO NPs exhibited auspicious efficiency, an 84.89% dye removal was attained at optimal conditions and dye degradation followed BMG (Behnajady–Modirshahla–Ghanbery) kinetics model. Results revealed CuO NPs synthesized using C. lanatus seeds extract is photoactive catalyst and green route can be employed for CuO NPs fabrication for photocatalytic applications.
Collapse
|
4
|
Ata S, Amin S, Bibi I, Mohsin IU, Islam A, Mehmood A, Irshad S, Al-Fawzan FF, Alissa SA, Iqbal M. Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present work, halloysite nano-clay (HNTs) based hydrogel was fabricated and their efficiency for the removal of methylene blue dye was studied. The hydrogel films were prepared with varying amount of halloysite nano-clay via facile solution casting method. Effect of halloysite clay on adsorption performance of composite was investigated. The hydrophobic thermoplastic synthetic polymer, polylactic acid (PLA) was blended with hydrophilic polymer polyvinyl alcohol (PVA) and HNTs to synthesize hydrogels. Swelling behavior and antimicrobial efficiency was also evaluated. The halloysite incorporating films showed excellent antibacterial activity. Swelling capacity of hydrogel with increased halloysite content was reduced due to increased crosslinking among polymer chains. Halloysite incorporated hydrogel exhibited higher adsorption ability as compared to film comprising of only PVA and PLA and dye removal followed pseudo first order kinetics. Film with 0.03 g HNTs rapidly attained adsorption-desorption equilibria and removed the dye completely within 30 min. Results confirmed that synthesized film could be potentially used for the removal of cationic dye and fabricated hydrogel film have promising potential for wastewater treatment since a higher adsorption capacity was observed for halloysite nano-clay incorporated hydrogel.
Collapse
Affiliation(s)
- Sadia Ata
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Sadaf Amin
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Institute of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz-ul- Mohsin
- Deparment of Chemistry , The University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Department of Polymer Engineering and Technology , University of the Punjab , Lahore , Pakistan
| | - Azra Mehmood
- Centre of Excellence in Molecular Biology , University of the Punjab , Lahore , Pakistan
| | - Saba Irshad
- Institute of Biochemistry and Biotechnology , University of the Punjab , Lahore , Pakistan
| | - Foziah F. Al-Fawzan
- Chemistry Department , College of Science, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Siham A. Alissa
- Chemistry Department , College of Science, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| |
Collapse
|
5
|
Ata S, Naz S, Bibi I, Mohsin IU, Islam A, Mehmood A, Al-Fawzan FF, Alissa SA, Iqbal M. Highly photosensitized Mg4 Si6O15 (OH)2·6H2O@guar gum nanofibers for the removal of methylene blue under solar light irradiation. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the present investigation, photosensitized nanofibers (NFs) based on guar gum (GG)/poly(vinyl alcohol) (PVA)/Mg4Si6O15(OH)2·6H2O (SP) (modified by 1, 4-diamminobutane [DAB]) was fabricated by electrospinning approach and same was used for the degradation of dye under solar light irradiation. For electrospinning of NFs, the acceleration voltage, nozzle flow rate and collector distance levels of 19,000 KV, 0.5 mL/h and 3 cm were optimum conditions along with 7% (w/v) blend of GG/PVA (1.4:5.6 wt/wt) and 0.01 g modified Mg4Si6O15(OH)2·6H2O. The exfoliation, intercalation and clay organophilization in GG/PVA/Mg4Si6O15(OH)2·6H2O (GG/PVA/SP) NFs were examined by FTIR analysis. The photocatalytic activity (PCA) of NF was studied under the solar light irradiation for methylene blue (MB) dye degradation. The photosensitized GG/PVA/SP2 (G3) showed promising PCA under visible light and G3 furnished higher degradation of MB dye (99.1%) within 10 min of irradiation. Results revealed that GG/PVA/SP based NFs are highly active under solar light, which can be applied for the treatment of wastewater.
Collapse
Affiliation(s)
- Sadia Ata
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Saba Naz
- School of Chemistry , University of the Punjab , Lahore , Pakistan
| | - Ismat Bibi
- Institute of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ijaz-ul Mohsin
- Department of Chemistry , University of Engineering and Technology , Lahore , Pakistan
| | - Atif Islam
- Department of Polymer Engineering and Technology , University of the Punjab , Lahore , Pakistan
| | - Azra Mehmood
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Foziah F. Al-Fawzan
- Chemistry Department , College of Science, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Siham A. Alissa
- Chemistry Department , College of Science, Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| |
Collapse
|