1
|
Muhammad Akhtar H, Latif M, Khan MA, Abdullah M, Khan TM. Smart integration of cold plasma stream and surface discharge with ns laser ablation for composite nanomaterial. DISCOVER NANO 2024; 19:93. [PMID: 38802660 PMCID: PMC11130095 DOI: 10.1186/s11671-024-04034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In this paper, smart integration of cold dielectric barrier discharge (DBD) plasma in various geometrical arrangements with laser ablation at atmospheric pressure for nanomaterial was described. A composite Co:ZnO target was ablated in an airflow by a nanosecond (ns) laser (wavelength: 1064 nm, pulse duration: 30 ns) using fluence of 5 J-cm-2 at a repetition rate of 10 Hz. The nanomaterial produced under vertical and oblique plasma streams, surface discharge and gas flow, were compared. Utilization surface discharge markedly improved the material adhesion by altering surface intrinsic behavior, inducing anticipated surface energy activation, chemical changes, and the formation of a densely packed solid structure. Under all conditions, the material consistently retained its crystalline nature, elemental composition, and ultraviolet emission characteristics. These preliminary findings hold promise for additional research, suggesting avenues for making complex materials in a flexible environment. Such new advancements could facilitate applications in the biomedical, catalysis, pharmaceutical, and surgical device domains.
Collapse
Affiliation(s)
- Hafiz Muhammad Akhtar
- Department of Physics, Federal Urdu University of Arts, Science and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Latif
- Department of Physics, Federal Urdu University of Arts, Science and Technology, Islamabad, 44000, Pakistan
| | - Mahtab Ahmad Khan
- Department of Physics, Federal Urdu University of Arts, Science and Technology, Islamabad, 44000, Pakistan
| | - M Abdullah
- Tokamak Plasma Research Institute, Nilore, Islamabad, 45650, Pakistan
| | - Taj Muhammad Khan
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan.
| |
Collapse
|
2
|
Shanmugasundaram E, Vellaisamy K, Ganesan V, Narayanan V, Saleh N, Thambusamy S. Dual Applications of Cobalt-Oxide-Grafted Carbon Quantum Dot Nanocomposite for Two Electrode Asymmetric Supercapacitors and Photocatalytic Behavior. ACS OMEGA 2024; 9:14101-14117. [PMID: 38559980 PMCID: PMC10976396 DOI: 10.1021/acsomega.3c09594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Carbon materials, such as graphene, carbon nanotubes, and quantum-dot-doped metal oxides, are highly attractive for energy storage and environmental applications. This is due to their large surface area and efficient optical and electrochemical activity. In this particular study, a composite material of cobalt oxide and carbon quantum dots (Co3O4-CQD) was prepared using cobalt nitrate and ascorbic acid (carbon source) through a simple one-pot hydrothermal method. The properties of the composite material, including the functional groups, composition, surface area, and surface morphology, were evaluated by using various methods such as ultraviolet, Fourier transform infrared, X-ray diffraction, Raman, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller, scanning electron microscopy, and transmission electron microscopy analysis. The electrochemical performance of the Co3O4-CQD composite has been studied using a three-electrode system. The results show that at 1 A g-1, the composite delivers a higher capacitance of 1209 F g-1. The asymmetric supercapacitor (Co3O4-CQD//AC) provided 13.88 W h kg-1 energy and 684.65 W kg-1 power density with a 96% capacitance retention. The Co3O4-CQD composite also demonstrated excellent photocatalytic activity (90% in 60 min) for the degradation of methylene blue dye under UV irradiation, which is higher than that of pristine Co3O4 and CQD. This demonstrates that the Co3O4-CQD composite is a promising material for commercial energy storage and environmental applications.
Collapse
Affiliation(s)
| | - Kannan Vellaisamy
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vigneshkumar Ganesan
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Vimalasruthi Narayanan
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Na’il Saleh
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain 15551, United Arab
Emirates
| | - Stalin Thambusamy
- Department
of Industrial Chemistry, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| |
Collapse
|
3
|
Priyadarsini A, Mohanty C, Nanda S, Mishra A, Das N, Swain N, Dash M, Jena PK. Synergistic cobalt oxide/reduced graphene oxide/biochar nano-composite catalyst: harnessing the power of the catalyst for sustainable remediation of organic dyes and chromium(vi). RSC Adv 2024; 14:10089-10103. [PMID: 38566836 PMCID: PMC10986776 DOI: 10.1039/d4ra01031k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
The exponential growth of industrial activities has led to a significant rise in the release of organic effluents, containing hazardous heavy metals and dyes, into the environment. These pollutants exhibit resistance to conventional biodegradation processes and are associated with carcinogenic properties, posing a severe threat to living organisms. In this context, the present research endeavours to address this environmental challenge through the development of an affordable and efficient photocatalyst, the Co3O4/reduced graphene oxide/biochar (CBG-10) heterostructure. The structural analysis of CBG-10, conducted through various techniques such as XRD, XPS, SEM, and optical property measurements, demonstrates its potential as a highly effective and easily recoverable catalyst for the mineralization of persistent pollutants like methylene blue, malachite green, and hexavalent Cr(vi). The recyclability of CBG-10 was confirmed through XRD studies, highlighting its stability and practical usability in wastewater purification. The photocatalytic behaviour of the catalyst was attributed to the generation of hydroxyl (˙OH) and superoxide radicals (˙O2-) during visible light illumination, as revealed by quenching experiments. The cost-effectiveness and stability of CBG-10 position it as a promising solution for addressing the challenges associated with the removal of stubborn organic contaminants from wastewater, thereby contributing to environmental protection and public health.
Collapse
Affiliation(s)
- Amrita Priyadarsini
- Department of Chemistry, College of Basic Science and Humanities, Odisha University of Agriculture and Technology Odisha India
| | | | - Spandan Nanda
- Department of Chemistry, College of Basic Science and Humanities, Odisha University of Agriculture and Technology Odisha India
| | - Abinash Mishra
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology Odisha India
| | - Nigamananda Das
- Department of Chemistry, Utkal University Bhubaneswar 751004 Odisha India
| | - Nandita Swain
- Department of Chemistry, College of Basic Science and Humanities, Odisha University of Agriculture and Technology Odisha India
| | - Manasi Dash
- Department of Genetics and Plant Breeding, College of Agriculture, Odisha University of Agriculture and Technology Odisha India
| | - Pradip Kumar Jena
- Department of Chemistry, College of Basic Science and Humanities, Odisha University of Agriculture and Technology Odisha India
| |
Collapse
|
4
|
Subagyo R, Yudhowijoyo A, Sholeha NA, Hutagalung SS, Prasetyoko D, Birowosuto MD, Arramel A, Jiang J, Kusumawati Y. Recent advances of modification effect in Co 3O 4-based catalyst towards highly efficient photocatalysis. J Colloid Interface Sci 2023; 650:1550-1590. [PMID: 37490835 DOI: 10.1016/j.jcis.2023.07.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Tricobalt tetroxide (Co3O4) has been developed as a promising photocatalyst material for various applications. Several reports have been published on the self-modification of Co3O4 to achieve optimal photocatalytic performance. The pristine Co3O4 alone is inadequate for photocatalysis due to the rapid recombination process of photogenerated (PG) charge carriers. The modification of Co3O4 can be extended through the introduction of doping elements, incorporation of supporting materials, surface functionalization, metal loading, and combination with other photocatalysts. The addition of doping elements and support materials may enhance the photocatalysis process, although these modifications have a slight effect on decreasing the recombination process of PG charge carriers. On the other hand, combining Co3O4 with other semiconductors results in a different PG charge carrier mechanism, leading to a decrease in the recombination process and an increase in photocatalytic activity. Therefore, this work discusses recent modifications of Co3O4 and their effects on its photocatalytic performance. Additionally, the modification effects, such as enhanced surface area, generation of oxygen vacancies, tuning the band gap, and formation of heterojunctions, are reviewed to demonstrate the feasibility of separating PG charge carriers. Finally, the formation and mechanism of these modification effects are also reviewed based on theoretical and experimental approaches to validate their formation and the transfer process of charge carriers.
Collapse
Affiliation(s)
- Riki Subagyo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Azis Yudhowijoyo
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia
| | - Novia Amalia Sholeha
- College of Vocational Studies, Bogor Agricultural University (IPB University), Jalan Kumbang No. 14, Bogor 16151, Indonesia
| | | | - Didik Prasetyoko
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland; CINTRA UMI CNRS/NTU/THALES 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553, Singapore
| | - Arramel Arramel
- Nano Center Indonesia, Jl PUSPIPTEK, South Tangerang, Banten 15314, Indonesia.
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, Hubei, PR China.
| | - Yuly Kusumawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS Keputih, 60111 Sukolilo, Surabaya, Indonesia.
| |
Collapse
|
5
|
You J, Li J, Wang Z, Baghayeri M, Zhang H. Application of Co 3O 4 nanocrystal/rGO for simultaneous electrochemical detection of cadmium and lead in environmental waters. CHEMOSPHERE 2023:139133. [PMID: 37290509 DOI: 10.1016/j.chemosphere.2023.139133] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
Sensing of cadmium (Cd) and lead (Pb) in environmental samples is crucial for identifying potential health risks associated with exposure to these heavy metals as well as understanding the extent of heavy metal contamination in different environments and its impact on the ecosystem. The present study elucidates the development of a novel electrochemical sensor that can detect Cd (II) and Pb (II) ions simultaneously. This sensor is fabricated using reduced graphene oxide (rGO) and cobalt oxide nanocrystals (Co3O4 nanocrystals/rGO). The characterization of Co3O4 nanocrystals/rGO was done by using various analytical techniques. The incorporation of cobalt oxide nanocrystals with intense absorption properties results in an amplification of the electrochemical current generated on the surface of the sensor by heavy metals. This, when coupled with the unique properties of the GO layer, enables the identification of trace levels of Cd (II) and Pb (II) in the surrounding environment. The electrochemical testing parameters were meticulously optimized to obtain high sensitivity and selectivity. The Co3O4 nanocrystals/rGO sensor exhibited exceptional performance in detecting Cd (II) and Pb (II) within a concentration range of 0.1-450 ppb. Notably, the limits of detection (LOD) for Pb (II) and Cd (II) were found to be highly impressive at 0.034 ppb and 0.062 ppb, respectively. The Co3O4 nanocrystals/rGO sensor integrated with the SWASV method displayed notable resistance to interference and exhibited consistent reproducibility and stability. Therefore, the suggested sensor has the potential to serve as a technique for detecting both ions in aqueous samples using SWASV analysis.
Collapse
Affiliation(s)
- Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Jingjing Li
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Zhiwei Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| | - Hangzhou Zhang
- Department of Orthopedics, Joint Surgery and Sports Medicine, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
6
|
Sanad MMS, Taha TA, Helal A, Mahmoud MH. Rational optimization of g-C 3N 4/Co 3O 4 nanocomposite for enhanced photodegradation of Rhodamine B dye under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60225-60239. [PMID: 37017836 DOI: 10.1007/s11356-023-26767-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Heterogeneous catalysis is widely known as an efficient, clean, and low-cost technology to mitigate the environmental pollution of industrial effluents. This research aimed at optimizing the preparation and characterization of efficient g-C3N4/Co3O4 nanocomposite for catalytic removal of Rhodamine B (Rh B) dye. The detected XRD peaks for the prepared nano-Co3O4 are matched with the cubic crystal structure. In contrast, the broad peak at 27.3° corresponding to the graphite reflection of hkl (002) was noticeably weakened in the XRD pattern of the g-C3N4/Co3O4 composite. FTIR spectra of g-C3N4/Co3O4 nanocomposites revealed the active vibrational modes of each Co3O4 and g-C3N4 component. The microstructure study of g-C3N4 showed the strong interlayer stacking of carbon nitride nanosheets, while the surface morphology of g-C3N4/Co3O4 nanocomposite revealed a hybrid particulate system. EDS analysis indicated that the spot area of g-C3N4/Co3O4 confirmed the chemical ratios of carbon, nitrogen, cobalt, and oxygen. BET measurements of g-C3N4/Co3O4 showed a significant increase in the surface area and pore volume of single components due to the lamination of stacked g-C3N4 nanosheets by the intercalated Co3O4 nanoparticles. The prepared 30% g-C3N4/Co3O4 revealed the lowest value of Eg ~1.2 eV and the highest light absorptivity suggesting strong promotion for the photocatalytic performance under visible light. The maximum photocatalytic activity of about 87% was achieved by 30% g-C3N4/Co3O4 due to the photonic enhancement, which reduces the recombination of excited electrons. The developed nanocomposite with a g-C3N4/Co3O4 ratio of 0.3 exhibited high stability in its photocatalytic performance after four recycling times, and a slight decrease of about 7% was estimated after the 5th reuse test.
Collapse
Affiliation(s)
- Moustafa M S Sanad
- Central Metallurgical Research and Development Institute, (CMRDI), P.O. Box 87 Helwan, Cairo, 11421, Egypt.
| | - Taha A Taha
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - Ahmed Helal
- Central Metallurgical Research and Development Institute, (CMRDI), P.O. Box 87 Helwan, Cairo, 11421, Egypt
| | - Mohamed H Mahmoud
- Physics Department, College of Science and Arts, Jouf University, P.O. Box 756, Al-Gurayyat, Saudi Arabia
| |
Collapse
|
7
|
Aslam J, Wang Y. Metal Oxide Wrapped by Reduced Graphene Oxide Nanocomposites as Anode Materials for Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:296. [PMID: 36678050 PMCID: PMC9865346 DOI: 10.3390/nano13020296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The reduced graphene oxide/iron oxide (rGO/Fe2O3) and reduced graphene oxide/cobalt oxide (rGO/Co3O4) composite anodes have been successfully prepared through a simple and scalable ball-milling synthesis. The substantial interaction of Fe2O3 and Co3O4 with the rGO matrix strengthens the electronic conductivity and limits the volume variation during cycling in the rGO/Fe2O3 and rGO/Co3O4 composites because reduced graphene oxide (rGO) helps the metal oxides (MOs) to attain a more efficient diffusion of Li-ions and leads to high specific capacities. As anode materials for LIBs, the rGO/Fe2O3 and rGO/Co3O4 composites demonstrate overall superb electrochemical properties, especially rGO/Fe2O3T-5 and rGO/Co3O4T-5, showcasing higher reversible capacities of 1021 and 773 mAhg-1 after 100 cycles at 100 mAg-1, accompanied by the significant rate performance. Because of their superior electrochemical efficiency, high capacity and low cost, the rGO/Fe2O3 and rGO/Co3O4 composites made by ball milling could be outstanding anode materials for LIBs. Due to the excellent electrochemical performance, the rGO/Fe2O3 and rGO/Co3O4 composites prepared via ball milling could be promising anode materials with a high capacity and low cost for LIBs. The findings may provide shed some light on how other metal oxides wrapped by rGO can be prepared for future applications.
Collapse
Affiliation(s)
- Junaid Aslam
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
8
|
Photocatalytic activity of Co3O4@C enhanced by induction of amorphous cobalt-based MOF. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Ulyanov A, Stolbov D, Savilov S. Jellyfish-like few-layer graphene nanoflakes: high paramagnetic response alongside increased interlayer interaction. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Jellyfish-like graphene nanoflakes (GNF), prepared by hydrocarbon pyrolysis, are studied with electron paramagnetic resonance (EPR) method. The results are supported by X-ray photoelectron spectroscopy (XPS) data. Oxidized (GNFox) and N-doped oxidized (N-GNFox) flakes exhibit an extremely high EPR response associated with a large interlayer interaction which is caused by the structure of nanoflakes and layer edges reached by oxygen. The GNFox and N-GNFox provide the localized and mobile paramagnetic centers which are silent in the pristine (GNF
p
) and N-doped (N-GNF) samples. The change in the relative intensity of the line corresponding to delocalized electrons is parallel with the number of radicals in the quaternary N-group. The environment of localized and mobile electrons is different. The results can be important in GNF synthesis and for explanation of their features in applications, especially, in devices with high sensitivity to weak electromagnetic field.
Collapse
Affiliation(s)
- Alexander Ulyanov
- Department of Chemistry , M. V. Lomonosov Moscow State University , Leninskie gori, 1 , Moscow 119991 , Russia
| | - Dmitrii Stolbov
- Department of Chemistry , M. V. Lomonosov Moscow State University , Leninskie gori, 1 , Moscow 119991 , Russia
| | - Serguei Savilov
- Department of Chemistry , M. V. Lomonosov Moscow State University , Leninskie gori, 1 , Moscow 119991 , Russia
- Russian Academy of Sciences , A. V. Topchiev Institute of Petrochemical Synthesis , 29, Leninsky pr., 29 , Moscow 119991 , Russia
| |
Collapse
|
10
|
Chilakapati RB, Hemanth Kumar S, Satyanarayana SV, Behara DK. Adsorptive removal of methylene blue (MB) and malachite green (MG) dyes from aqueous solutions using graphene oxide (GO). Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Graphene oxide (GO) synthesized via modified Hummers method was studied for adsorption of methylene blue (MB) and malachite green (MG) dyes from aqueous solutions. It is hypothesized that electrostatic interactions between dye molecules and surface of GO will facilitate charge carrier movements and degrade the dye in an efficient way. The as synthesized GO was characterized using various characterization techniques such as XRD, Raman, FTIR, UV–Vis, SEM and EDAX. The experimental results suggest that dye removal percentage will increase with increase in adsorbent dosage, time as well as solution pH and the process was exothermic in nature. The adsorption data at 293 K could be fitted by Langmuir equation with a maximum adsorption amount of 119.04, 102.4 mg/g and Langmuir adsorption equilibrium constant of 1.58, 0.867 L/mg for MB and MG dyes, respectively. The outcomes of present article will help not only to understand the adsorption characteristics of GO on MB and MG dyes but also paves path towards development of highly oxidized GO surface for degradation of complex dyes.
Collapse
Affiliation(s)
| | - S. Hemanth Kumar
- Department of Chemical Engineering , JNTUA College of Engineering (Autonomous) , Ananthapuramu 515002 , India
| | - Suggala V. Satyanarayana
- Department of Chemical Engineering , JNTUA College of Engineering (Autonomous) , Ananthapuramu 515002 , India
| | - Dilip Kumar Behara
- Department of Chemical Engineering , JNTUA College of Engineering (Autonomous) , Ananthapuramu 515002 , India
| |
Collapse
|