1
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
2
|
Trabanco AA, Bartolomé JM, Cid JM. mGluR2 positive allosteric modulators: an updated patent review (2013-2018). Expert Opin Ther Pat 2019; 29:497-507. [PMID: 31242055 DOI: 10.1080/13543776.2019.1637421] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Positive allosteric modulation of mGlu2 has attracted much interest as an alternative approach to classical orthosteric receptor activation. Two mGlu2 PAMS have advanced into the clinic. The results obtained in schizophrenia and MDD phase 2 clinical trials have tempered the high expectations put on selective mGlu2 receptor activation for treating these conditions; nevertheless, the search for novel therapeutic indications and novel chemotypes continues to be an active field of research. AREAS COVERED 2013-2018 patent literature on mGlu2 receptor PAMs. EXPERT OPINION After a decade of intensive research, the mGlu2 PAM field has seen a deceleration in the last five years. Negative phase 2 schizophrenia clinical trials with JNJ-40411813 and AZD8529 seem to have tempered the high expectations of the scientific community on the utility of mGlu2 PAMs for the treatment of schizophrenia. Nevertheless, novel therapeutic indications continue to be explored and AZD8529 is currently in a phase 2 study for smoking cessation. The advances in medicinal chemistry and in pharmacology, with novel indications such as epilepsy, have set the stage in the field of mGlu2 receptor PAMs. Ongoing preclinical and clinical studies will contribute to define their optimal therapeutic indication and potential to become novel therapeutic agents.
Collapse
Affiliation(s)
- Andrés A Trabanco
- a Discovery Chemistry , Janssen Research and Development, a division of Janssen-Cilag S.A ., Toledo , Spain
| | - José Manuel Bartolomé
- a Discovery Chemistry , Janssen Research and Development, a division of Janssen-Cilag S.A ., Toledo , Spain
| | - José María Cid
- a Discovery Chemistry , Janssen Research and Development, a division of Janssen-Cilag S.A ., Toledo , Spain
| |
Collapse
|
3
|
Insights on current and novel antipsychotic mechanisms from the MAM model of schizophrenia. Neuropharmacology 2019; 163:107632. [PMID: 31077730 DOI: 10.1016/j.neuropharm.2019.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/25/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Current antipsychotic drugs (APDs) act on D2 receptors, and preclinical studies demonstrate that repeated D2 antagonist administration downregulates spontaneously active DA neurons by producing overexcitation-induced inactivation of firing (depolarization block). Animal models of schizophrenia based on the gestational MAM administration produces offspring with adult phenotypes consistent with schizophrenia, including ventral hippocampal hyperactivity and a DA neuron overactivity. The MAM model reveals that APDs act differently in a hyperdopamineregic system compared to a normal one, including rapid onset of depolarization block in response to acute D2 antagonist administration and downregulation of DA neuron population activity following acute and repeated D2 partial agonist administration, none of which are observed in normal rats. Novel target compounds have been developed based on the theory that glutamatergic dysfunction is central to schizophrenia pathology. Despite showing promise in preclinical research, none of the novel drugs succeeded in clinical trials. However, preclinical research is generally performed in normal, drug-naïve rats, whereas models with disease-relevant pathology and prior APD exposure may improve the predictive validity of preclinical research. Indeed, in MAM rats, chronic D2 antagonist treatment leads to persistent DA supersensitivity that interferes with the response to drugs that target upstream pathology. Moreover, MAM rats revealed that the peri-pubertal period is a stress-sensitive window that can be targeted to prevent the development of MAM pathology in adulthood. Neurodevelopmental models, such as the MAM model, can thus be used to test potential pharmacotherapies that may be able to treat schizophrenia in early stages of the disease. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
|
4
|
Lundström L, Bissantz C, Beck J, Dellenbach M, Woltering TJ, Wichmann J, Gatti S. Reprint of Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2. Neuropharmacology 2017; 115:115-127. [PMID: 28216000 DOI: 10.1016/j.neuropharm.2016.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022]
Abstract
The metabotropic glutamate receptor 2 (mGlu2) plays an important role in the presynaptic control of glutamate release and several mGlu2 positive allosteric modulators (PAMs) have been under assessment for their potential as antipsychotics. The binding mode of mGlu2 PAMs is better characterized in functional terms while few data are available on the relationship between allosteric and orthosteric binding sites. Pharmacological studies characterizing binding and effects of two different chemical series of mGlu2 PAMs are therefore carried out here using the radiolabeled mGlu2 agonist 3[H]-LY354740 and mGlu2 PAM 3[H]-2,2,2-TEMPS. A multidimensional approach to the PAM mechanism of action shows that mGlu2 PAMs increase the affinity of 3[H]-LY354740 for the orthosteric site of mGlu2 as well as the number of 3[H]-LY354740 binding sites. 3[H]-2,2,2-TEMPS binding is also enhanced by the presence of LY354740. New residues in the allosteric rat mGlu2 binding pocket are identified to be crucial for the PAMs ligand binding, among these Tyr3.40 and Asn5.46. Also of remark, in the described experimental conditions S731A (Ser5.42) residue is important only for the mGlu2 PAM LY487379 and not for the compound PAM-1: an example of the structural differences among these mGlu2 PAMs. This study provides a summary of the information generated in the past decade on mGlu2 PAMs adding a detailed molecular investigation of PAM binding mode. Differences among mGlu2 PAM compounds are discussed as well as the mGlu2 regions interacting with mGlu2 PAM and NAM agents and residues driving mGlu2 PAM selectivity. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- L Lundström
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland
| | - C Bissantz
- Discovery Chemistry, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, CH4070, Switzerland
| | - J Beck
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland
| | - M Dellenbach
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland
| | - T J Woltering
- Discovery Chemistry, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, CH4070, Switzerland
| | - J Wichmann
- Discovery Chemistry, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, CH4070, Switzerland
| | - S Gatti
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, NORD Neuroscience, Switzerland.
| |
Collapse
|
5
|
Blanco MJ, Benesh DR, Knobelsdorf JA, Khilevich A, Cortez GS, Mokube F, Aicher TD, Groendyke TM, Marmsater FP, Tang TP, Johnson KW, Clemens-Smith A, Muhlhauser MA, Swanson S, Catlow J, Emkey R, Johnson MP, Schkeryantz JM. Discovery of dual positive allosteric modulators (PAMs) of the metabotropic glutamate 2 receptor and CysLT1 antagonists for treating migraine headache. Bioorg Med Chem Lett 2017; 27:323-328. [DOI: 10.1016/j.bmcl.2016.11.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
|
6
|
Lundström L, Bissantz C, Beck J, Dellenbach M, Woltering T, Wichmann J, Gatti S. Pharmacological and molecular characterization of the positive allosteric modulators of metabotropic glutamate receptor 2. Neuropharmacology 2016; 111:253-265. [DOI: 10.1016/j.neuropharm.2016.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 02/02/2023]
|
7
|
Griebel G, Pichat P, Boulay D, Naimoli V, Potestio L, Featherstone R, Sahni S, Defex H, Desvignes C, Slowinski F, Vigé X, Bergis OE, Sher R, Kosley R, Kongsamut S, Black MD, Varty GB. The mGluR2 positive allosteric modulator, SAR218645, improves memory and attention deficits in translational models of cognitive symptoms associated with schizophrenia. Sci Rep 2016; 6:35320. [PMID: 27734956 PMCID: PMC5062470 DOI: 10.1038/srep35320] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022] Open
Abstract
Normalization of altered glutamate neurotransmission through activation of the mGluR2 has emerged as a new approach to treat schizophrenia. These studies describe a potent brain penetrant mGluR2 positive allosteric modulator (PAM), SAR218645. The compound behaves as a selective PAM of mGluR2 in recombinant and native receptor expression systems, increasing the affinity of glutamate at mGluR2 as inferred by competition and GTPγ35S binding assays. SAR218645 augmented the mGluR2-mediated response to glutamate in a rat recombinant mGluR2 forced-coupled Ca2+ mobilization assay. SAR218645 potentiated mGluR2 agonist-induced contralateral turning. When SAR218645 was tested in models of the positive symptoms of schizophrenia, it reduced head twitch behavior induced by DOI, but it failed to inhibit conditioned avoidance and hyperactivity using pharmacological and transgenic models. Results from experiments in models of the cognitive symptoms associated with schizophrenia showed that SAR218645 improved MK-801-induced episodic memory deficits in rats and attenuated working memory impairment in NMDA Nr1neo-/- mice. The drug reversed disrupted latent inhibition and auditory-evoked potential in mice and rats, respectively, two endophenotypes of schizophrenia. This profile positions SAR218645 as a promising candidate for the treatment of cognitive symptoms of patients with schizophrenia, in particular those with abnormal attention and sensory gating abilities.
Collapse
Affiliation(s)
- Guy Griebel
- Sanofi R&D, Strategy, Science Policy &External Innovation, Chilly-Mazarin, France
| | - Philippe Pichat
- Sanofi R&D, Translational Sciences Unit, Chilly-Mazarin, France
| | - Denis Boulay
- Sanofi R&D, Translational Sciences Unit, Chilly-Mazarin, France
| | | | - Lisa Potestio
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | | | | - Henry Defex
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | | | | - Xavier Vigé
- Sanofi R&D, Translational Sciences Unit, Chilly-Mazarin, France
| | | | - Rosy Sher
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | | | | - Mark D Black
- Sanofi R&D, 1041 Route 202/206, Bridgewater, NJ, USA
| | | |
Collapse
|
8
|
Sheng L, Wang L, Su M, Zhao X, Hu R, Yu X, Hong J, Liu D, Xu B, Zhu Y, Wang H, Hong F. Mechanism of TiO2 nanoparticle-induced neurotoxicity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2016; 31:163-175. [PMID: 25059219 DOI: 10.1002/tox.22031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/07/2014] [Accepted: 07/13/2014] [Indexed: 06/03/2023]
Abstract
Zebrafish (Danio rerio) has been used historically for evaluating the toxicity of environmental and aqueous toxicants, and there is an emerging literature reporting toxic effects of manufactured nanoparticles (NPs) in zebrafish embryos. Few researches, however, are focused on the neurotoxicity on adult zebrafish after subchronic exposure to TiO2 NPs. This study was designed to evaluate the morphological changes, alterations of neurochemical contents, and expressions of memory behavior-related genes in zebrafish brains caused by exposures to 5, 10, 20, and 40 μg/L TiO2 NPs for 45 consecutive days. Our data indicated that spatial recognition memory and levels of norepinephrine, dopamine, and 5-hydroxytryptamine were significantly decreased and NO levels were markedly elevated, and over proliferation of glial cells, neuron apoptosis, and TiO2 NP aggregation were observed after low dose exposures of TiO2 NPs. Furthermore, the low dose exposures of TiO2 NPs significantly activated expressions of C-fos, C-jun, and BDNF genes, and suppressed expressions of p38, NGF, CREB, NR1, NR2ab, and GluR2 genes. These findings imply that low dose exposures of TiO2 NPs may result in the brain damages in zebrafish, provide a developmental basis for evaluating the neurotoxicity of subchronic exposure, and raise the caution of aquatic application of TiO2 NPs.
Collapse
Affiliation(s)
- Lei Sheng
- Medical College of Soochow University, Suzhou, 215123, China
| | - Ling Wang
- Libary of Soochow University, Suzhou, 215021, China
| | - Mingyu Su
- Medical College of Soochow University, Suzhou, 215123, China
- Suzhou Environmental Monitor Center, Suzhou, 215004, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou, 215123, China
| | - Renping Hu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou, 215123, China
| | - Dong Liu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Bingqing Xu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Yunting Zhu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Han Wang
- Medical College of Soochow University, Suzhou, 215123, China
| | - Fashui Hong
- Medical College of Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Monn JA, Prieto L, Taboada L, Hao J, Reinhard MR, Henry SS, Beadle CD, Walton L, Man T, Rudyk H, Clark B, Tupper D, Baker SR, Lamas C, Montero C, Marcos A, Blanco J, Bures M, Clawson DK, Atwell S, Lu F, Wang J, Russell M, Heinz BA, Wang X, Carter JH, Getman BG, Catlow JT, Swanson S, Johnson BG, Shaw DB, McKinzie DL. Synthesis and Pharmacological Characterization of C4-(Thiotriazolyl)-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1R,2S,4R,5R,6R)-2-Amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2812223), a Highly Potent, Functionally Selective mGlu2 Receptor Agonist. J Med Chem 2015; 58:7526-48. [PMID: 26313429 DOI: 10.1021/acs.jmedchem.5b01124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Identification of orthosteric mGlu(2/3) receptor agonists capable of discriminating between individual mGlu2 and mGlu3 subtypes has been highly challenging owing to the glutamate-site sequence homology between these proteins. Herein we detail the preparation and characterization of a series of molecules related to (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate 1 (LY354740) bearing C4-thiotriazole substituents. On the basis of second messenger responses in cells expressing other recombinant human mGlu2/3 subtypes, a number of high potency and efficacy mGlu2 receptor agonists exhibiting low potency mGlu3 partial agonist/antagonist activity were identified. From this, (1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 14a (LY2812223) was further characterized. Cocrystallization of 14a with the amino terminal domains of hmGlu2 and hmGlu3 combined with site-directed mutation studies has clarified the underlying molecular basis of this unique pharmacology. Evaluation of 14a in a rat model responsive to mGlu2 receptor activation coupled with a measure of central drug disposition provides evidence that this molecule engages and activates central mGlu2 receptors in vivo.
Collapse
Affiliation(s)
- James A Monn
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lourdes Prieto
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lorena Taboada
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Junliang Hao
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Matthew R Reinhard
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Steven S Henry
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Christopher D Beadle
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Lesley Walton
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Teresa Man
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Helene Rudyk
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Barry Clark
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David Tupper
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - S Richard Baker
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Carlos Lamas
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Carlos Montero
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Alicia Marcos
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Jaime Blanco
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Mark Bures
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David K Clawson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Shane Atwell
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Frances Lu
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Jing Wang
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Marijane Russell
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Beverly A Heinz
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Xushan Wang
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Joan H Carter
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Brian G Getman
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - John T Catlow
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Steven Swanson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - Bryan G Johnson
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David B Shaw
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| | - David L McKinzie
- Discovery Chemistry Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition and ⊥Neuroscience Research, Eli Lilly and Company , Lilly Corporate Center, Drop 0510, Indianapolis, Indiana 46285, United States
| |
Collapse
|
10
|
mGlu2 Receptor Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance towards Their Primary Efficacy on Sleep Measures in Rats. PLoS One 2015; 10:e0144017. [PMID: 26658273 PMCID: PMC4684355 DOI: 10.1371/journal.pone.0144017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
G-protein-coupled receptor (GPCR) agonists are known to induce both cellular adaptations resulting in tolerance to therapeutic effects and withdrawal symptoms upon treatment discontinuation. Glutamate neurotransmission is an integral part of sleep-wake mechanisms, which processes have translational relevance for central activity and target engagement. Here, we investigated the efficacy and tolerance potential of the metabotropic glutamate receptors (mGluR2/3) agonist LY354740 versus mGluR2 positive allosteric modulator (PAM) JNJ-42153605 on sleep-wake organisation in rats. In vitro, the selectivity and potency of JNJ-42153605 were characterized. In vivo, effects on sleep measures were investigated in rats after once daily oral repeated treatment for 7 days, withdrawal and consecutive re-administration of LY354740 (1–10 mg/kg) and JNJ-42153605 (3–30 mg/kg). JNJ-42153605 showed high affinity, potency and selectivity at mGluR2. Binding site analyses and knowledge-based docking confirmed the specificity of JNJ-42153605 at the mGluR2 allosteric binding site. Acute LY354740 and JNJ-42153605 dose-dependently decreased rapid eye movement (REM) sleep time and prolonged its onset latency. Sub chronic effects of LY354740 on REM sleep measures disappeared from day 3 onwards, whereas those of JNJ-42153605 were maintained after repeated exposure. LY354740 attenuated REM sleep homeostatic recovery, while this was preserved after JNJ-42153605 administration. JNJ-42153605 enhanced sleep continuity and efficiency, suggesting its potential as an add-on medication for impaired sleep quality during early stages of treatment. Abrupt cessation of JNJ-42153605 did not induce withdrawal phenomena and sleep disturbances, while the initial drug effect was fully reinstated after re-administration. Collectively, long-term treatment with JNJ-42153605 did not induce tolerance phenomena to its primary functional effects on sleep measures, nor adverse effects at withdrawal, while it promoted homeostatic recovery sleep. From the translational perspective, the present rodent findings suggest that mGluR2 positive allosteric modulation has therapeutic potential based on its superior long term efficacy over agonists in psychiatric disorders, particularly of those commonly occurring with REM sleep overdrive.
Collapse
|
11
|
Monn JA, Prieto L, Taboada L, Pedregal C, Hao J, Reinhard MR, Henry SS, Goldsmith PJ, Beadle CD, Walton L, Man T, Rudyk H, Clark B, Tupper D, Baker SR, Lamas C, Montero C, Marcos A, Blanco J, Bures M, Clawson DK, Atwell S, Lu F, Wang J, Russell M, Heinz BA, Wang X, Carter JH, Xiang C, Catlow JT, Swanson S, Sanger H, Broad LM, Johnson MP, Knopp KL, Simmons RMA, Johnson BG, Shaw DB, McKinzie DL. Synthesis and Pharmacological Characterization of C4-Disubstituted Analogs of 1S,2S,5R,6S-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylate: Identification of a Potent, Selective Metabotropic Glutamate Receptor Agonist and Determination of Agonist-Bound Human mGlu2 and mGlu3 Amino Terminal Domain Structures. J Med Chem 2015; 58:1776-94. [DOI: 10.1021/jm501612y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James A. Monn
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lourdes Prieto
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lorena Taboada
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Concepcion Pedregal
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Junliang Hao
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Matt R. Reinhard
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Steven S. Henry
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Paul J. Goldsmith
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Christopher D. Beadle
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lesley Walton
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Teresa Man
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Helene Rudyk
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Barry Clark
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David Tupper
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - S. Richard Baker
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Carlos Lamas
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Carlos Montero
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Alicia Marcos
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jaime Blanco
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Mark Bures
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David K. Clawson
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Shane Atwell
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Frances Lu
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jing Wang
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Marijane Russell
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Beverly A. Heinz
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Xushan Wang
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Joan H. Carter
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Chuanxi Xiang
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - John T. Catlow
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Steven Swanson
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Helen Sanger
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Lisa M. Broad
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Michael P. Johnson
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Kelly L. Knopp
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Rosa M. A. Simmons
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Bryan G. Johnson
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David B. Shaw
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David L. McKinzie
- Discovery Chemistry
Research and Technologies, ‡Quantitative Biology, §Structural Biology, ∥Drug Disposition,
and ⊥Neuroscience
Research, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
12
|
Hiyoshi T, Marumo T, Hikichi H, Tomishima Y, Urabe H, Tamita T, Iida I, Yasuhara A, Karasawa JI, Chaki S. Neurophysiologic and antipsychotic profiles of TASP0433864, a novel positive allosteric modulator of metabotropic glutamate 2 receptor. J Pharmacol Exp Ther 2014; 351:642-53. [PMID: 25277141 DOI: 10.1124/jpet.114.218651] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Excess glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, and the activation of metabotropic glutamate 2 (mGlu2) receptor may exert antipsychotic effects by normalizing glutamate transmission. In the present study, we investigated the neurophysiologic and antipsychotic profiles of TASP0433864 [(2S)-2-[(4-tert-butylphenoxy)methyl]-5-methyl-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide], a newly synthesized positive allosteric modulator (PAM) of mGlu2 receptor. TASP0433864 exhibited PAM activity at human and rat mGlu2 receptors with EC50 values of 199 and 206 nM, respectively, without exerting agonist activity at rat mGlu2 receptor. TASP0433864 produced a leftward and upward shift in the concentration-response curve of glutamate-increased guanosine 5'-O-(3-[(35)S]thio)triphosphate binding to mGlu2 receptor. In contrast, TASP0433864 had negligible activities for other mGlu receptors, including mGlu3 receptor, and did not have any affinity for other receptors or transporters. In hippocampal slices, TASP0433864 potentiated an inhibitory effect of DCG-IV [(2S,2'R,3'R)-2-(2',3'-dicarboxylcyclopropyl)glycine], a mGlu2/3 receptor agonist, on the field excitatory postsynaptic potentials in the dentate gyrus, indicating that TASP0433864 potentiates the mGlu2 receptor-mediated presynaptic inhibition of glutamate release. Moreover, TASP0433864 inhibited both MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]- and ketamine-increased cortical γ band oscillation in the rat cortical electroencephalogram, which have been considered to reflect the excess activation of cortical pyramidal neurons. The inhibitory effect of TASP0433864 on cortical activation was also observed in the mouse 2-deoxy-glucose uptake study. In a behavioral study, TASP0433864 significantly inhibited both ketamine- and methamphetamine-increased locomotor activities in mice and rats, respectively. Collectively, these findings indicate that TASP0433864 is a selective mGlu2 receptor PAM with antipsychotic activity, and the attenuation of excess glutamatergic neurotransmission may be involved in the action of TASP0433864.
Collapse
Affiliation(s)
- Tetsuaki Hiyoshi
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Toshiyuki Marumo
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Hirohiko Hikichi
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Yasumitsu Tomishima
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Hiroki Urabe
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Tomoko Tamita
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Izumi Iida
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Akito Yasuhara
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Jun-ichi Karasawa
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Shigeyuki Chaki
- Pharmacology Laboratories (T.H., T.M., H.H., Y.T., J.K., S.C.), Chemistry Laboratories (H.U., T.T., A.Y.), and Drug Safety and Pharmacokinetics Laboratories (I.I.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| |
Collapse
|
13
|
Radchenko EV, Karlov DS, Palyulin VA, Zefirov NS. Molecular modeling of the transmembrane domain of mGluR2 metabotropic glutamate receptor and the binding site of its positive allosteric modulators. DOKL BIOCHEM BIOPHYS 2014; 454:13-6. [PMID: 24633605 DOI: 10.1134/s1607672914010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Indexed: 11/23/2022]
Affiliation(s)
- E V Radchenko
- Department of Chemistry, Moscow State University, Moscow, 119991, Russia
| | | | | | | |
Collapse
|
14
|
Metabotropic Glutamate Receptor 2 Activators. SMALL MOLECULE THERAPEUTICS FOR SCHIZOPHRENIA 2014. [DOI: 10.1007/7355_2014_48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Cioffi CL. Modulation of NMDA receptor function as a treatment for schizophrenia. Bioorg Med Chem Lett 2013; 23:5034-44. [PMID: 23916256 DOI: 10.1016/j.bmcl.2013.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/03/2013] [Accepted: 07/13/2013] [Indexed: 11/30/2022]
Abstract
Schizophrenia is a devastating mental illness that afflicts nearly 1% of the world's population. Currently available antipsychotics treat positive symptoms, but are largely ineffective at addressing negative symptoms and cognitive dysfunction. Thus, improved pharmacotherapies that treat all aspects of the disease remain a critical unmet need. There is mounting evidence that links NMDA receptor hypofunction and the expression of schizophrenia, and numerous drug discovery programs have developed agents that directly or indirectly potentiate NMDA receptor-mediated neurotransmission. Several compounds have emerged that show promise for treating all symptom sub-domains in both preclinical models and clinical studies, and we will review recent developments in many of these areas.
Collapse
|
16
|
Wang MJ, Li YC, Snyder MA, Wang H, Li F, Gao WJ. Group II metabotropic glutamate receptor agonist LY379268 regulates AMPA receptor trafficking in prefrontal cortical neurons. PLoS One 2013; 8:e61787. [PMID: 23593498 PMCID: PMC3625159 DOI: 10.1371/journal.pone.0061787] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/13/2013] [Indexed: 12/26/2022] Open
Abstract
Group II metabotropic glutamate receptor (mGluR) agonists have emerged as potential treatment drugs for schizophrenia and other neurological disorders, whereas the mechanisms involved remain elusive. Here we examined the effects of LY379268 (LY37) on the expression and trafficking of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits GluA1 and GluA2 in prefrontal neurons. We show that LY37 significantly increased the surface and total expression of both GluA1 and GluA2 subunits in cultured prefrontal neurons and in vivo. This effect was mimicked by the selective mGluR2 agonist LY395756 and was blocked by mGluR2/3 antagonist LY341495. Moreover, we found that both GluA1 and GluA2 subunits were colocalized with PSD95 but not synapsin I, suggesting a postsynaptic localization. Consistently, treatment with LY37 significantly increased the amplitude, but not frequency, of miniature excitatory postsynaptic currents. Further, actinomycin-D blocked LY37's effects, suggesting a transcriptional regulation. In addition, application of glycogen synthase kinase-3beta (GSK-3β) inhibitor completely blocked LY37's effect on GluA2 surface expression, whereas GSK-3β inhibitor itself induced decreases in the surface and total protein levels of GluA1, but not GluA2 subunits. This suggests that GSK-3β differentially mediates GluA1 and GluA2 trafficking. Further, LY37 significantly increased the phosphorylation, but not total protein, of extracellular signal-regulated kinase 1/2 (ERK1/2). Neither ERK1/2 inhibitor PD98059 alone nor PD98059 combined with LY37 treatment induced changes in GluA1 or GluA2 surface expression or total protein levels. Our data thus suggest that mGluR2/3 agonist regulates postsynaptic AMPA receptors by affecting the synaptic trafficking of both GluA1 and GluA2 subunits and that the regulation is likely through ERK1/2 signaling in GluA1 and/or both ERK1/2 and GSK-3β signaling pathways in the GluA2 subunit.
Collapse
Affiliation(s)
- Min-Juan Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Zhongshan College of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Melissa A. Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Huaixing Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Feng Li
- Department of Neurobiology and Anatomy, Zhongshan College of Medicine, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (WJG); (FL)
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (WJG); (FL)
| |
Collapse
|
17
|
Trabanco AA, Cid JM. mGluR2 positive allosteric modulators: a patent review (2009 - present). Expert Opin Ther Pat 2013; 23:629-47. [PMID: 23452205 DOI: 10.1517/13543776.2013.777043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The mGlu2 receptor, which belongs to the group II subfamily of metabotropic glutamate receptors (mGlu) along with the mGlu3 receptor, has proven to be of particular importance in neuropharmacology. Preferentially expressed on presynaptic nerve terminals, the mGlu2 receptor negatively modulates glutamate and GABA release and is widely distributed in the brain. High levels of mGlu2 receptors are seen in brain areas such as prefrontal cortex, hippocampus and amygdala where glutamate hyperfunction may be implicated in disorders and diseases such as anxiety and schizophrenia. Given the promise offered by mGlu2/3 receptor activation, there is increased interest in identifying small molecules which activate the receptor. A preferred approach is via positive allosteric modulators (PAMs) which bind at an alternative site to agonists. AREAS COVERED This review covers the patent applications which were published between April 2009 and December 2012 on PAMs of the mGlu2, and it is a continuation of an earlier review published in this journal. EXPERT OPINION Advances in medicinal chemistry and pharmacology have set the stage in the field of mGlu2 receptor PAMs. Compounds currently advancing in clinical trials will soon establish the therapeutic potential of this allosteric approach.
Collapse
Affiliation(s)
- Andrés A Trabanco
- Janssen Research and Development, Neuroscience Medicinal Chemistry Department, Toledo, Spain.
| | | |
Collapse
|
18
|
Durand D, Carniglia L, Caruso C, Lasaga M. mGlu3 receptor and astrocytes: partners in neuroprotection. Neuropharmacology 2012; 66:1-11. [PMID: 22564439 DOI: 10.1016/j.neuropharm.2012.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/28/2012] [Accepted: 04/08/2012] [Indexed: 01/11/2023]
Abstract
Astrocytes are currently studied intensively because of their now highlighted relevance as key players with neurons that modulate a wide range of central functions, from synaptic plasticity and synaptogenesis to regulation of metabolic and neuroinflammatory processes. Since the discovery of mGlu3 receptors on astrocytes, accumulating evidence supports a role of these receptors not only in maintaining synaptic homeostasis and treating psychiatric disorders but also in promoting astrocyte survival in several pathologic conditions. This review focuses on providing up-to-date knowledge regarding effects of activating astroglial mGlu3 receptors on psychiatric disorders, astrocyte and neuronal survival, and neurodegenerative diseases. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Daniela Durand
- Instituto de Investigaciones Biomédicas (INBIOMED), School of Medicine, University of Buenos Aires, Paraguay 2155 Piso 10, CABA 1121 Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
19
|
Lundström L, Bissantz C, Beck J, Wettstein JG, Woltering TJ, Wichmann J, Gatti S. Structural determinants of allosteric antagonism at metabotropic glutamate receptor 2: mechanistic studies with new potent negative allosteric modulators. Br J Pharmacol 2012; 164:521-37. [PMID: 21470207 DOI: 10.1111/j.1476-5381.2011.01409.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Altered glutamatergic neurotransmission is linked to several neurological and psychiatric disorders. Metabotropic glutamate receptor 2 (mGlu₂) plays an important role on the presynaptic control of glutamate release and negative allosteric modulators (NAMs) acting on mGlu₂/₃ receptors are under assessment for their potential as antidepressants, neurogenics and cognitive enhancers. Two new potent mGlu₂/₃ NAMs, RO4988546 and RO5488608, are described in this study and the allosteric binding site in the transmembrane (TM) domain of mGlu₂ is characterized. EXPERIMENTAL APPROACH Site directed mutagenesis, functional measurements and β₂-adrenoceptor-based modelling of mGlu₂ were employed to identify important molecular determinants of two new potent mGlu₂/₃ NAMs. KEY RESULTS RO4988546 and RO5488608 affected both [³H]-LY354740 agonist binding at the orthosteric site and the binding of a tritiated positive allosteric modulator (³H-PAM), indicating that NAMs and PAMs could have overlapping binding sites in the mGlu₂ TM domain. We identified eight residues in the allosteric binding pocket that are crucial for non-competitive antagonism of agonist-dependent activation of mGlu₂ and directly interact with the NAMs: Arg³·²⁸, Arg³·²⁹, Phe³·³⁶, His(E2.52) , Leu⁵·⁴³, Trp⁶·⁴⁸, Phe⁶·⁵⁵ and Val⁷·⁴³. The mGlu₂ specific residue His(E2.52) is likely to be involved in selectivity and residues located in the outer part of the binding pocket are more important for [³H]-LY354740 agonist binding inhibition, which is independent of the highly conserved Trp⁶·⁴⁸ residue. CONCLUSIONS AND IMPLICATIONS This is the first complete molecular investigation of the allosteric binding pocket of mGlu₂ and Group II mGluRs and provides new information on what determines mGlu₂ NAMs selective interactions and effects.
Collapse
Affiliation(s)
- L Lundström
- Neuroscience Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Fell MJ, McKinzie DL, Monn JA, Svensson KA. Group II metabotropic glutamate receptor agonists and positive allosteric modulators as novel treatments for schizophrenia. Neuropharmacology 2012; 62:1473-83. [DOI: 10.1016/j.neuropharm.2011.06.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
|
21
|
Vinson PN, Conn PJ. Metabotropic glutamate receptors as therapeutic targets for schizophrenia. Neuropharmacology 2012; 62:1461-72. [PMID: 21620876 PMCID: PMC3189289 DOI: 10.1016/j.neuropharm.2011.05.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/02/2011] [Accepted: 05/08/2011] [Indexed: 01/13/2023]
Abstract
Treatment options for schizophrenia that address all symptom categories (positive, negative, and cognitive) are lacking in current therapies for this disorder. Compounds targeting the metabotropic glutamate (mGlu) receptors hold promise as a more comprehensive therapeutic alternative to typical and atypical antipsychotics and may avoid the occurrence of extrapyramidal side effects that accompany these treatments. Activation of the group II mGlu receptors (mGlu(2) and mGlu(3)) and the group I mGlu(5) are hypothesized to normalize the disruption of thalamocortical glutamatergic circuitry that results in abnormal glutamaterigic signaling in the prefrontal cortex (PFC). Agonists of mGlu(2) and mGlu(3) have demonstrated efficacy for the positive symptom group in both animal models and clinical trials with mGlu(2) being the subtype most likely responsible for the therapeutic effect. Limitations in the chemical space tolerated by the orthosteric site of the mGlu receptors has led to the pursuit of compounds that potentiate the receptor's response to glutamate by acting at less highly conserved allosteric sites. Several series of selective positive allosteric modulators (PAMs) for mGlu(2) and mGlu(5) have demonstrated efficacy in animal models used for the evaluation of antipsychotic agents. In addition, evidence from animal studies indicates that mGlu(5) PAMs hold promise for the treatment of cognitive deficits that occur in schizophrenia. Hopefully, further optimization of allosteric modulators of mGlu receptors will yield clinical candidates that will allow full evaluation of the potential efficacy of these compounds in the treatment of multiple symptom domains in schizophrenia patients in the near future.
Collapse
Affiliation(s)
- Paige N. Vinson
- Vanderbilt University Medical Center, Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37202
| | - P. Jeffrey Conn
- Vanderbilt University Medical Center, Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN 37202
| |
Collapse
|
22
|
Cleva RM, Olive MF. Metabotropic glutamate receptors and drug addiction. ACTA ACUST UNITED AC 2012; 1:281-295. [DOI: 10.1002/wmts.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Herman EJ, Bubser M, Conn PJ, Jones CK. Metabotropic glutamate receptors for new treatments in schizophrenia. Handb Exp Pharmacol 2012:297-365. [PMID: 23027420 DOI: 10.1007/978-3-642-25758-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) represent exciting targets for the development of novel therapeutic agents for schizophrenia. Recent studies indicate that selective activation of specific mGluR subtypes may provide potential benefits for not only the positive symptoms, but also the negative symptoms and cognitive impairments observed in individuals with schizophrenia. Although optimization of traditional orthosteric agonists may still offer a feasible approach for the activation of mGluRs, important progress has been made in the discovery of novel subtype-selective allosteric ligands, including positive allosteric modulators (PAMs) of mGluR2 and mGluR5. These allosteric mGluR ligands have improved properties for clinical development and have served as key preclinical tools for a more in-depth understanding of the potential roles of these different mGluR subtypes for the treatment of schizophrenia.
Collapse
Affiliation(s)
- E J Herman
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
24
|
|
25
|
Sheffler DJ, Pinkerton AB, Dahl R, Markou A, Cosford NDP. Recent progress in the synthesis and characterization of group II metabotropic glutamate receptor allosteric modulators. ACS Chem Neurosci 2011; 2:382-93. [PMID: 22860167 DOI: 10.1021/cn200008d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/18/2011] [Indexed: 11/28/2022] Open
Abstract
Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu(2)) and metabotropic glutamate 3 (mGlu(3)) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu(2) and mGlu(3) receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors.
Collapse
Affiliation(s)
- Douglas J. Sheffler
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Nashville, Tennessee 37232, United States
| | - Anthony B. Pinkerton
- Apoptosis and Cell Death Research Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Russell Dahl
- Apoptosis and Cell Death Research Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Nicholas D. P. Cosford
- Apoptosis and Cell Death Research Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
26
|
Panneels V, Kock I, Krijnse-Locker J, Rezgaoui M, Sinning I. Drosophila photoreceptor cells exploited for the production of eukaryotic membrane proteins: receptors, transporters and channels. PLoS One 2011; 6:e18478. [PMID: 21494623 PMCID: PMC3072989 DOI: 10.1371/journal.pone.0018478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/01/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Membrane proteins (MPs) play key roles in signal transduction. However, understanding their function at a molecular level is mostly hampered by the lack of protein in suitable amount and quality. Despite impressive developments in the expression of prokaryotic MPs, eukaryotic MP production has lagged behind and there is a need for new expression strategies. In a pilot study, we produced a Drosophila glutamate receptor specifically in the eyes of transgenic flies, exploiting the naturally abundant membrane stacks in the photoreceptor cells (PRCs). Now we address the question whether the PRCs also process different classes of medically relevant target MPs which were so far notoriously difficult to handle with conventional expression strategies. PRINCIPAL FINDINGS We describe the homologous and heterologous expression of 10 different targets from the three major MP classes--G protein-coupled receptors (GPCRs), transporters and channels in Drosophila eyes. PRCs offered an extraordinary capacity to produce, fold and accommodate massive amounts of MPs. The expression of some MPs reached similar levels as the endogenous rhodopsin, indicating that the PRC membranes were almost unsaturable. Expression of endogenous rhodopsin was not affected by the target MPs and both could coexist in the membrane stacks. Heterologous expression levels reached about 270 to 500 pmol/mg total MP, resulting in 0.2-0.4 mg purified target MP from 1 g of fly heads. The metabotropic glutamate receptor and human serotonin transporter--both involved in synaptic transmission--showed native pharmacological characteristics and could be purified to homogeneity as a prerequisite for further studies. SIGNIFICANCE We demonstrate expression in Drosophila PRCs as an efficient and inexpensive tool for the large scale production of functional eukaryotic MPs. The fly eye system offers a number of advantages over conventional expression systems and paves the way for in-depth analyses of eukaryotic MPs that have so far not been accessible to biochemical and biophysical studies.
Collapse
Affiliation(s)
- Valérie Panneels
- Department of Structural Biology, Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ines Kock
- Department of Structural Biology, Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Jacomine Krijnse-Locker
- Department of Infectious Diseases and Core Facility Electron Microscopy (EMCF), University of Heidelberg, Heidelberg, Germany
| | - Meriem Rezgaoui
- Department of Structural Biology, Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Irmgard Sinning
- Department of Structural Biology, Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
27
|
Zhang L, Brodney MA, Candler J, Doran AC, Duplantier AJ, Efremov IV, Evrard E, Kraus K, Ganong AH, Haas JA, Hanks AN, Jenza K, Lazzaro JT, Maklad N, McCarthy SA, Qian W, Rogers BN, Rottas MD, Schmidt CJ, Siuciak JA, Tingley FD, Zhang AQ. 1-[(1-Methyl-1H-imidazol-2-yl)methyl]-4-phenylpiperidines as mGluR2 Positive Allosteric Modulators for the Treatment of Psychosis. J Med Chem 2011; 54:1724-39. [DOI: 10.1021/jm101414h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Zhang
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michael A. Brodney
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - John Candler
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Angela C. Doran
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Allen J. Duplantier
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ivan V. Efremov
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Edel Evrard
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kenneth Kraus
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alan H. Ganong
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jessica A. Haas
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ashley N. Hanks
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Keith Jenza
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - John T. Lazzaro
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Noha Maklad
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sheryl A. McCarthy
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Weimin Qian
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bruce N. Rogers
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Melinda D. Rottas
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J. Schmidt
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Judith A. Siuciak
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - F. David Tingley
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andy Q. Zhang
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
28
|
Caraci F, Molinaro G, Battaglia G, Giuffrida ML, Riozzi B, Traficante A, Bruno V, Cannella M, Merlo S, Wang X, Heinz BA, Nisenbaum ES, Britton TC, Drago F, Sortino MA, Copani A, Nicoletti F. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer's disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol Pharmacol 2011; 79:618-26. [PMID: 21159998 DOI: 10.1124/mol.110.067488] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dual orthosteric agonists of metabotropic glutamate 2 (mGlu2) and mGlu3 receptors are being developed as novel antipsychotic agents devoid of the adverse effects of conventional antipsychotics. Therefore, these drugs could be helpful for the treatment of psychotic symptoms associated with Alzheimer's disease (AD). In experimental animals, the antipsychotic activity of mGlu2/3 receptor agonists is largely mediated by the activation of mGlu2 receptors and is mimicked by selective positive allosteric modulators (PAMs) of mGlu2 receptors. We investigated the distinct influence of mGlu2 and mGlu3 receptors in mixed and pure neuronal cultures exposed to synthetic β-amyloid protein (Aβ) to model neurodegeneration occurring in AD. The mGlu2 receptor PAM, N-4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), devoid of toxicity per se, amplified Aβ-induced neurodegeneration, and this effect was prevented by the mGlu2/3 receptor antagonist (2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (LY341495). LY566332 potentiated Aβ toxicity regardless of the presence of glial mGlu3 receptors, but it was inactive when neurons lacked mGlu2 receptors. The dual mGlu2/3 receptor agonist, (-)-2-oxa-4-aminobicyclo[3.1.0]exhane-4,6-dicarboxylic acid (LY379268), was neuroprotective in mixed cultures via a paracrine mechanism mediated by transforming growth factor-β1. LY379268 lost its protective activity in neurons grown with astrocytes lacking mGlu3 receptors, indicating that protection against Aβ neurotoxicity was mediated entirely by glial mGlu3 receptors. The selective noncompetitive mGlu3 receptor antagonist, (3S)-1-(5-bromopyrimidin-2-yl)-N-(2,4-dichlorobenzyl)pyrrolidin-3-amine methanesulfonate hydrate (LY2389575), amplified Aβ toxicity on its own, and, interestingly, unmasked a neurotoxic activity of LY379268, which probably was mediated by the activation of mGlu2 receptors. These data indicate that selective potentiation of mGlu2 receptors enhances neuronal vulnerability to Aβ, whereas dual activation of mGlu2 and mGlu3 receptors is protective against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Trabanco AA, Duvey G, Cid JM, Macdonald GJ, Cluzeau P, Nhem V, Furnari R, Behaj N, Poulain G, Finn T, Poli S, Lavreysen H, Raux A, Thollon Y, Poirier N, D'Addona D, Andrés JI, Lutjens R, Le Poul E, Imogai H, Rocher JP. New positive allosteric modulators of the metabotropic glutamate receptor 2 (mGluR2). Identification and synthesis of N-propyl-5-substituted isoquinolones. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00200c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-propyl-5-substituted isoquinolones were identified as mGluR2 PAMs via high-throughput screening (HTS). Initial SAR exploration led to the identification of compound 20.
Collapse
Affiliation(s)
- Andrés A. Trabanco
- Medicinal Chemistry
- Janssen Research & Development
- Janssen-Cilag S.A
- Polígono Industrial
- Toledo
| | | | - José María Cid
- Medicinal Chemistry
- Janssen Research & Development
- Janssen-Cilag S.A
- Polígono Industrial
- Toledo
| | - Gregor J. Macdonald
- Medicinal Chemistry
- Janssen Research & Development
- Janssen Pharmaceutica N.V
- Beerse
- Belgium
| | | | | | | | | | | | | | | | - Hilde Lavreysen
- Neuroscience
- Janssen Research & Development
- Janssen Pharmaceutica N.V
- Beerse
- Belgium
| | | | | | | | | | - José Ignacio Andrés
- Medicinal Chemistry
- Janssen Research & Development
- Janssen-Cilag S.A
- Polígono Industrial
- Toledo
| | | | | | | | | |
Collapse
|
30
|
Wroblewska B, Wegorzewska IN, Bzdega T, Neale JH. Type 2 metabotropic glutamate receptor (mGluR2) fails to negatively couple to cGMP in stably transfected cells. Neurochem Int 2010; 58:176-9. [PMID: 21115084 DOI: 10.1016/j.neuint.2010.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
The group II metabotropic glutamate receptors 2 and 3 (mGluR2 and mGluR3) share sequence homology, common pharmacology and negative coupling to cAMP. We recently discovered that mGluR3 also is negatively coupled through a G-protein to the cGMP transduction pathway in rat cerebellar granule cells and astrocytes. To test the hypothesis that mGluR2 also has access to the cGMP pathway, C6 glioma cells were stably transfected with mGluR2 and mGluR3 cDNA and their coupling to cGMP levels was characterized. In contrast to many other cell lines, C6 has a robust cGMP response that makes it attractive in the study of receptor coupling to this second messenger pathway. Consistent with prior studies, the mGluR3 receptor was negatively coupled to cGMP and this coupling was blocked by PTX. In contrast, mGluR2 agonists failed to reduce sodium nitroprusside stimulated cGMP levels in transfected cell lines where the receptor was negatively coupled to cAMP. These data provide further support for the functional divergence between these two closely related receptors.
Collapse
Affiliation(s)
- Barbara Wroblewska
- Department of Biology, Georgetown University, 2115 49th Sts., NW, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
31
|
Garbaccio RM, Brnardic EJ, Fraley ME, Hartman GD, Hutson PH, O'Brien JA, Magliaro BC, Uslaner JM, Huszar SL, Fillgrove KL, Small JH, Tang C, Kuo Y, Jacobson MA. Discovery of Oxazolobenzimidazoles as Positive Allosteric Modulators for the mGluR2 Receptor. ACS Med Chem Lett 2010; 1:406-10. [PMID: 24900224 DOI: 10.1021/ml100115a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/30/2010] [Indexed: 11/29/2022] Open
Abstract
Novel oxazolobenzimidazoles are described as potent and selective positive allosteric modulators of the metabotropic glutamate receptor 2. The discovery of this class and optimization of its physical and pharmacokinetic properties led to the identification of potent and orally bioavailable compounds (20 and 21) as advanced leads. Compound 20 (TBPCOB) was shown to have robust activity in a PCP-induced hyperlocomotion model in rat, an assay responsive to clinical antipsychotic treatments for schizophrenia.
Collapse
|
32
|
Brnardic EJ, Fraley ME, Garbaccio RM, Layton ME, Sanders JM, Culberson C, Jacobson MA, Magliaro BC, Hutson PH, O’Brien JA, Huszar SL, Uslaner JM, Fillgrove KL, Tang C, Kuo Y, Sur SM, Hartman GD. 3-Aryl-5-phenoxymethyl-1,3-oxazolidin-2-ones as positive allosteric modulators of mGluR2 for the treatment of schizophrenia: Hit-to-lead efforts. Bioorg Med Chem Lett 2010; 20:3129-33. [DOI: 10.1016/j.bmcl.2010.03.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/22/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
|
33
|
A decade of progress in the discovery and development of 'atypical' antipsychotics. PROGRESS IN MEDICINAL CHEMISTRY 2010; 49:37-80. [PMID: 20855038 DOI: 10.1016/s0079-6468(10)49002-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
|