1
|
Li J, Ye B, Gao S, Liu X, Zhan P. The latest developments in the design and discovery of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of HIV. Expert Opin Drug Discov 2024; 19:1439-1456. [PMID: 39397419 DOI: 10.1080/17460441.2024.2415309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION This review encapsulates the recent strides in the development of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, focusing on the novel structural designs that promise to overcome limitations of existing therapies, such as drug resistance and toxicity. AREAS COVERED We underscore the application of computational chemistry and structure-based drug design in refining NNRTIs with enhanced potency and safety. EXPERT OPINION Highlighting the emergence of diverse chemical scaffolds like diarylpyrimidines, indoles, DABOs and HEPTs, the review reveals compounds with nanomolar efficacy and improved pharmacokinetics. The integration of artificial intelligence in drug discovery is poised to accelerate the evolution of NNRTIs, laying the foundation for addressing drug resistance in the era of anti-HIV therapy through innovative designs and multi-target strategies.
Collapse
Affiliation(s)
- Junyi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
2
|
Khalifa Z, Patel AB. Tri-substituted 1,3,5-triazine-based analogs as effective HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs): A systematic review. Drug Dev Res 2024; 85:e22154. [PMID: 38349259 DOI: 10.1002/ddr.22154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 02/15/2024]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have significantly impacted the HIV-1 wild-type due to their high specificity and superior potency. As well as different combinations of NNRTIs have been used on clinically approved combining highly active antiretroviral therapy (HAART) to resist the growth of HIV-1 and decrease the mortality rate of HIV/AIDS. Although the feeble strength against the drug-resistant mutant strains and the long-term damaging effects have been reducing the effectiveness of HAART, it could be a crucial challenge to develop novel Anti-HIV leads with a vital mode of action and the least side effects. The extensive chemical reactivity and the diverse chemotherapeutic applications of the 1,3,5-triazine have provided a wide scope of research in medicinal chemistry via a structural modification. In this review, we focused on the Anti-HIV profile of the tri-substituted s-triazine derivatives with structure-based features and also discussed the active mode of action to evaluate the significant findings. The tri-substituted 1,3,5-triazine derivatives have been found more promising to inhibit the growth of the drug-sensitive and drug-resistant variants of HIV-1, especially HIV-1 wild-type, HIV-1 K103N/Y181C, and HIV-1 Tyr181Cys. It has been observed that these derivatives have interacted with the enzyme protein residues via a significantπ $\pi $ -π $\pi $ interaction and hydrogen bonding to resist the proliferation of the viral genomes. Further, the SAR and the active binding modes are critically described and highlight the role of structural variations with functional groups along with the binding affinity of targeted enzymes, which may be beneficial for rational drug discovery to develop highly dynamic Anti-HIV agents.
Collapse
Affiliation(s)
- Zebabanu Khalifa
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
3
|
Srivastava R, Gupta SK, Naaz F, Sen Gupta PS, Yadav M, Singh VK, Singh A, Rana MK, Gupta SK, Schols D, Singh RK. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput Biol Chem 2020; 89:107400. [PMID: 33068917 PMCID: PMC7537607 DOI: 10.1016/j.compbiolchem.2020.107400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
New benzimidazole analogs synthesized as antivirals against HIV-1 and yellow fever virus. Molecular dynamics simulation studies indicated a stable ligand-protein complex of compound 3a within NNIBP of HIV-RT. DFT analysis confirmed the stability of hydrogen bonding interaction between the TRP 229 residue of HIV-RT and compound 3a. Molecules were tested for their anti-HIV and broad spectrum antiviral properties against different DNA and RNA viruses. Antiviral properties and cytotoxicity determined using MTT assay. Compound 3a showed anti-HIV activity and compound 2b showed excellent inhibition property against yellow fever virus.
A series of alkylated benzimidazole derivatives was synthesized and screened for their anti-HIV, anti-YFV, and broad-spectrum antiviral properties. The physicochemical parameters and drug-like properties of the compounds were assessed first, and then docking studies and MD simulations on HIV-RT allosteric sites were conducted to find the possible mode of their action. DFT analysis was also performed to confirm the nature of the hydrogen bonding interaction of active compounds. The in silico studies indicated that the molecules behaved like possible NNRTIs. The nature – polar or non-polar and position of the substituent present at fifth, sixth, and N-1 positions of the benzimidazole moiety played an important role in determining the antiviral properties of the compounds. Among the various compounds, 2-(5,6-dibromo-2-chloro-1H-benzimidazol-1-yl)ethan-1-ol (3a) showed anti-HIV activity with an appreciably low IC50 value as 0.386 × 10−5μM. Similarly, compound 2b, 3-(2-chloro-5-nitro-1H-benzimidazol-1-yl) propan-1-ol, showed excellent inhibitory property against the yellow fever virus (YFV) with EC50 value as 0.7824 × 10−2μM.
Collapse
Affiliation(s)
- Ritika Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Sunil K Gupta
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | - Madhu Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Vishal Kumar Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Anuradha Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha 760010, India
| | | | | | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
4
|
Wei F, Kang D, Cherukupalli S, Zalloum WA, Zhang T, Liu X, Zhan P. Discovery and optimizing polycyclic pyridone compounds as anti-HBV agents. Expert Opin Ther Pat 2020; 30:715-721. [PMID: 32746660 DOI: 10.1080/13543776.2020.1801641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Hepatitis B disease is caused by the hepatitis B virus (HBV), which is a DNA virus that belongs to the Hepadnaviridae family. It is a considerable health burden, with 257 million active cases globally. Long-standing infection may create a fundamental cause of liver disease and chronic infections, including cirrhosis, hepatocellular, and carcinoma liver failure. There is an urgent need to develop novel, safe, and effective drug candidates with a novel mechanism of action, improved activity, efficacy, and cure rate. AREAS COVERED Herein, the authors provide a concise report focusing on a general and cutting-edge overview of the current state of polycyclic pyridone-related anti-HBV agent patents from 2016 to 2018 and some future perspectives. EXPERT OPINION In medicinal chemistry, high-throughput screening (HTS), hit-to-lead optimization (H2L), bioisosteric replacement, and scaffold hopping approaches are playing a major role in the discovery and development of HBV inhibitors. Developing polycyclic pyridone-related anti-HBV agents that could target host factors has attracted significant interest and attention in recent years.
Collapse
Affiliation(s)
- Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba , Amman, Jordan
| | - Tao Zhang
- Shandong Qidu Pharmaceutical Co. Ltd., Shandong Provincial Key Laboratory of Neuroprotective Drugs , Zibo, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong, PR China
| |
Collapse
|
5
|
Wu Y, Tang C, Rui R, Yang L, Ding W, Wang J, Li Y, Lai CC, Wang Y, Luo R, Xiao W, Zhang H, Zheng Y, He Y. Synthesis and biological evaluation of a series of 2-(((5-akly/aryl-1 H-pyrazol-3-yl)methyl)thio)-5-alkyl-6-(cyclohexylmethyl)-pyrimidin-4(3 H)-ones as potential HIV-1 inhibitors. Acta Pharm Sin B 2020; 10:512-528. [PMID: 32140396 PMCID: PMC7049619 DOI: 10.1016/j.apsb.2019.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
A series of 2-(((5-akly/aryl-1H-pyrazol-3-yl)methyl)thio)-5-alkyl-6-(cyclohexylmethyl)-pyrimidin-4(3H)-ones were synthesized and their anti-HIV-1 activities were evaluated. Most of these compounds were highly active against wild-type (WT) HIV-1 strain (IIIB) with EC50 values in the range of 0.0038–0.4759 μmol/L. Among those compounds, I-11 had an EC50 value of 3.8 nmol/L and SI (selectivity index) of up to 25,468 indicating excellent activity against WT HIV-1. In vitro anti-HIV-1 activity and resistance profile studies suggested that compounds I-11 and I-12 displayed potential anti-HIV-1 activity against laboratory adapted strains and primary isolated strains including different subtypes and tropism strains (EC50s range from 4.3 to 63.6 nmol/L and 18.9–219.3 nmol/L, respectively). On the other hand, it was observed that those two compounds were less effective with EC50 values of 2.77 and 4.87 μmol/L for HIV-1A17 (K103N + Y181C). The activity against reverse transcriptase (RT) was also evaluated for those compounds. Both I-11 and I-12 obtained sub-micromolar IC50 values showing their potential in RT inhibition. The pharmacokinetics examination in rats indicated that compound I-11 has acceptable pharmacokinetic properties and bioavailability. Preliminary structure–activity relationships and molecular modeling studies were also discussed.
Collapse
Affiliation(s)
- Yumeng Wu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chengrun Tang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, the National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ruomei Rui
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Liumeng Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, the National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Ding
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jiangyuan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yiming Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Christopher C. Lai
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yueping Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ronghua Luo
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, the National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Hongbing Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- Corresponding authors. Tel./ fax: +86 871 65035538.
| | - Yongtang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, the National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Corresponding authors. Tel./ fax: +86 871 65035538.
| | - Yanping He
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- Corresponding authors. Tel./ fax: +86 871 65035538.
| |
Collapse
|
6
|
Sang Y, Han S, Pannecouque C, De Clercq E, Zhuang C, Chen F. Ligand-Based Design of Nondimethylphenyl-Diarylpyrimidines with Improved Metabolic Stability, Safety, and Oral Pharmacokinetic Profiles. J Med Chem 2019; 62:11430-11436. [PMID: 31714780 DOI: 10.1021/acs.jmedchem.9b01446] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of nondimethylphenyl-diarylpyrimidines with much lower cytotoxicities than their dimethyl analogues were developed. Compound B13 with a difluorobiphenyl moiety showed the highest antiviral activity against WT, mutant strains, and RT. The hydrochloride form of B13 exhibited an improved water solubility of 5.6 μg/mL compared with ETR (≪1 μg/mL), better stability in human and rat liver microsomes, and a great oral bioavailability of 44%, making it promising as a drug candidate. In addition, no apparent toxicity was observed in the acute toxicity assay (2 g/kg) and HE staining.
Collapse
Affiliation(s)
- Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , People's Republic of China
| | - Sheng Han
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , People's Republic of China
| | - Christophe Pannecouque
- Rega Institute for Medical Research , KU Leuven , Herestraat 49 , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research , KU Leuven , Herestraat 49 , B-3000 Leuven , Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , People's Republic of China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry , Fudan University , Shanghai 200433 , People's Republic of China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs , Shanghai 200433 , People's Republic of China.,Institute of Pharmaceutical Science and Technology , Zhejiang University of Technology , 18 Chao Wang Road , 310014 Hangzhou , China
| |
Collapse
|
7
|
Hao X, Zuo X, Kang D, Zhang J, Song Y, Liu X, Zhan P. Contemporary medicinal-chemistry strategies for discovery of blood coagulation factor Xa inhibitors. Expert Opin Drug Discov 2019; 14:915-931. [DOI: 10.1080/17460441.2019.1626821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xia Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong, PR China
| |
Collapse
|
8
|
Jiang X, Yu J, Zhou Z, Kongsted J, Song Y, Pannecouque C, De Clercq E, Kang D, Poongavanam V, Liu X, Zhan P. Molecular design opportunities presented by solvent‐exposed regions of target proteins. Med Res Rev 2019; 39:2194-2238. [PMID: 31002405 DOI: 10.1002/med.21581] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Ji Yu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Zhongxia Zhou
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Jacob Kongsted
- Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Odense Denmark
| | - Yuning Song
- Department of Clinical PharmacyQilu Hospital of Shandong University Jinan China
| | - Christophe Pannecouque
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Dongwei Kang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | | | - Xinyong Liu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Peng Zhan
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| |
Collapse
|
9
|
Gu SX, Lu HH, Liu GY, Ju XL, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors. Eur J Med Chem 2018; 158:371-392. [PMID: 30223123 DOI: 10.1016/j.ejmech.2018.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs) have been playing an important role in the fight against acquired immunodeficiency syndrome (AIDS). Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine (TMC125) and rilpivirine (TMC278), have attracted extensive attention due to their extraordinary potency, high specificity and low toxicity. However, the rapid emergence of drug-resistant virus strains and dissatisfactory pharmacokinetics of DAPYs present new challenges. In the past two decades, an increasing number of novel DAPY derivatives have emerged, which significantly enriched the structure-activity relationship of DAPYs. Studies of crystallography and molecular modeling have afforded a lot of useful information on structural requirements of NNRTIs, which contributes greatly to the improvement of their resistance profiles. In this review, we reviewed the discovery history and their evolution of DAPYs including their structural modification, derivatization and scaffold hopping in continuous pursuit of excellent anti-HIV drugs. And also, we discussed the prospect of DAPYs and the directions of future efforts.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Huan-Huan Lu
- Yichang Humanwell Pharmaceutical Co., Ltd, Yichang, 443005, PR China
| | - Gen-Yan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Xiu-Lian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
10
|
Zuo X, Huo Z, Kang D, Wu G, Zhou Z, Liu X, Zhan P. Current insights into anti-HIV drug discovery and development: a review of recent patent literature (2014-2017). Expert Opin Ther Pat 2018; 28:299-316. [PMID: 29411697 DOI: 10.1080/13543776.2018.1438410] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION To deal with the rapid emergence of drug resistance challenges, together with the difficulty to eradicate the virus, off-target effects and significant cumulative drug toxicities, it is still imperative to develop next-generation anti-HIV agents with novel chemical classes or new mechanisms of action. AREAS COVERED We primarily focused on current strategies to discover novel anti-HIV agents. Moreover, examples of anti-HIV lead compounds were mainly selected from recently patented publications (reported between 2014 and 2017). In particular, 'privileged structure'-focused substituents decorating approach, scaffold hopping, natural-product diversification and prodrug are focused on. Furthermore, exploitation of new compounds with unexplored mechanisms of action and medicinal chemistry strategies to deplete the HIV reservoir were also described. Perspectives that could inspire future anti-HIV drug discovery are delineated. EXPERT OPINION Even if a large number of patents have been disclosed recently, additional HIV inhibitors are still required, especially novel chemical skeletons displaying a unexploited mechanism of action. Current medicinal chemistry strategies are inadequate, and appropriate and new methodologies and technologies should be exploited to identify novel anti-HIV drug candidates in a time- and cost- effective manner.
Collapse
Affiliation(s)
- Xiaofang Zuo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Zhipeng Huo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Gaochan Wu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Zhongxia Zhou
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| |
Collapse
|
11
|
Searching for novel N 1-substituted benzimidazol-2-ones as non-nucleoside HIV-1 RT inhibitors. Bioorg Med Chem 2017; 25:3861-3870. [PMID: 28559060 DOI: 10.1016/j.bmc.2017.05.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 11/21/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent an integral part of the currently available combination antiretroviral therapy (cART) contributing to reduce the AIDS-mortality and turned the disease from lethal to chronic. In this context we recently reported a series of 6-chloro-1-(3-methylphenylsulfonyl)-1,3-dihydro-2H-benzimidazol-2-ones as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. In this paper, we describe the design and the synthesis of two novel series of benzimidazolone analogues in which the linker moiety between the phenyl ring and the sulfonyl group was modified and new small lipophilic groups on the benzyl sulfonyl pendant were introduced. All the new obtained compounds were evaluated as RT inhibitors and were also tested against RTs containing single amino acid mutations. Finally, molecular docking studies were performed in order to rationalize the observed activity of the most promising compound.
Collapse
|
12
|
Lu HH, Xue P, Zhu YY, Ju XL, Zheng XJ, Zhang X, Xiao T, Pannecouque C, Li TT, Gu SX. Structural modifications of diarylpyrimidines (DAPYs) as HIV-1 NNRTIs: Synthesis, anti-HIV activities and SAR. Bioorg Med Chem 2017; 25:2491-2497. [DOI: 10.1016/j.bmc.2017.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 12/01/2022]
|
13
|
Discovery of novel piperidine-substituted indolylarylsulfones as potent HIV NNRTIs via structure-guided scaffold morphing and fragment rearrangement. Eur J Med Chem 2016; 126:190-201. [PMID: 27750153 DOI: 10.1016/j.ejmech.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022]
Abstract
To further explore the chemical space around the entrance channel of HIV-1 reverse transcriptase (RT), a series of novel indolylarylsulfones (IASs) bearing N-substituted piperidine at indole-2-carboxamide were identified as potent HIV NNRTIs by structure-guided scaffold morphing and fragment rearrangement. All the IASs exhibited moderate to excellent potency against wild-type HIV-1 with EC50 values ranging from 0.62 μM to 0.006 μM 8 (EC50 = 6 nM) and 18 (EC50 = 9 nM) were identified as the most potent compounds, which were more active than NVP and DLV, and reached the same order of EFV and ETV. Furthermore, most compounds maintained high activity agaist various single HIV-1 mutants (L100I, K103N, E138K, Y181C) as well as one double mutant (F227L/V106A) with EC50 values in low-micromolar to double-digit nanomolar concentration ranges. Especially, 8 displayed outstanding potency against L100I (EC50 = 17 nM with a 2.8-fold resistance ratio) and 18 was relatively more potent to E138K mutant (EC50 = 43 nM with a 4.7-fold resistance ratio). Preliminary SARs and molecular modeling studies were also discussed in detail, which may provide valuable insights for further optimization.
Collapse
|
14
|
Novel (2,6-difluorophenyl)(2-(phenylamino)pyrimidin-4-yl)methanones with restricted conformation as potent non-nucleoside reverse transcriptase inhibitors against HIV-1. Eur J Med Chem 2016; 122:185-195. [DOI: 10.1016/j.ejmech.2016.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/01/2016] [Accepted: 06/15/2016] [Indexed: 01/26/2023]
|
15
|
Kang D, Fang Z, Li Z, Huang B, Zhang H, Lu X, Xu H, Zhou Z, Ding X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, Synthesis, and Evaluation of Thiophene[3,2-d]pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles. J Med Chem 2016; 59:7991-8007. [PMID: 27541578 DOI: 10.1021/acs.jmedchem.6b00738] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We designed and synthesized a series of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a piperidine-substituted thiophene[3,2-d]pyrimidine scaffold, employing a strategy of structure-based molecular hybridization and substituent decorating. Most of the synthesized compounds exhibited broad-spectrum activity with low (single-digit) nanomolar EC50 values toward a panel of wild-type (WT), single-mutant, and double-mutant HIV-1 strains. Compound 27 was the most potent; compared with ETV, its antiviral efficacy was 3-fold greater against WT, 5-7-fold greater against Y181C, Y188L, E138K, and F227L+V106A, and nearly equipotent against L100I and K103N, though somewhat weaker against K103N+Y181C. Importantly, 27 has lower cytotoxicity (CC50 > 227 μM) and a huge selectivity index (SI) value (ratio of CC50/EC50) of >159101. 27 also showed favorable, drug-like pharmacokinetic and safety properties in rats in vivo. Molecular docking studies and the structure-activity relationships provide important clues for further molecular elaboration.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China.,The Second Hospital, Shandong University , No. 247 Beiyuan Avenue, Jinan 250033, China
| | - Zhenyu Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Haoran Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| |
Collapse
|
16
|
Gao P, Sun L, Zhou J, Li X, Zhan P, Liu X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin Drug Discov 2016; 11:857-71. [PMID: 27400283 DOI: 10.1080/17460441.2016.1210125] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In recent years, a variety of new synthetic methodologies and concepts have been proposed in the search for new pharmaceutical lead structures and optimization. Notably, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach has drawn great attention and has become a powerful tool for the generation of privileged medicinal skeletons in the discovery of anti-HIV agents. This is due to the high degree of reliability, complete specificity (chemoselectivity and regioselectivity), mild conditions, and the biocompatibility of the reactants. AREAS COVERED Herein, the authors describe the progress thus far on the discovery of novel anti-HIV agents via the CuAAC click chemistry-based approach. EXPERT OPINION CuAAC click chemistry is a proven protocol for synthesizing triazole products which could serve as basic pharmacophores, act as replacements of traditional scaffold or substituent modification, be a linker of dual-target or dual-site inhibitors and more for the discovery of novel anti-HIV agents. What's more, it also provides convenience and feasibility for dynamic combinatorial chemistry and in situ screening. It is envisioned that click chemistry will draw more attention and make more contributions in anti-HIV drug discovery in the future.
Collapse
Affiliation(s)
- Ping Gao
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Lin Sun
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Junsu Zhou
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xiao Li
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| |
Collapse
|
17
|
Lu X, Li X, Yang J, Huang B, Kang D, Zhao F, Zhou Z, De Clercq E, Daelemans D, Pannecouque C, Zhan P, Liu X. Arylazolyl(azinyl)thioacetanilides. Part 20: Discovery of novel purinylthioacetanilides derivatives as potent HIV-1 NNRTIs via a structure-based bioisosterism approach. Bioorg Med Chem 2016; 24:4424-4433. [PMID: 27501911 DOI: 10.1016/j.bmc.2016.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 11/26/2022]
Abstract
By means of structure-based bioisosterism approach, a series of novel purinylthioacetanilide derivatives were designed, synthesized and evaluated as potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Some of the tested compounds were found to be active against wild-type (WT) HIV-1(IIIB) with EC50 in the range of 0.78-4.46μM. Among them, LAD-8 displayed the most potent anti-HIV activity (EC50=0.78μM, SI=24). In addition, LBD-6 showed moderate activity against L100I mutant (EC50=5.64μM) and double mutant strain RES056 (EC50=22.24μM). Preliminary structure-activity relationships (SARs) were discussed in detail. Molecular modeling study was used to predict the optimal conformation in the NNRTI binding site, which may play a guiding role in further rational optimization.
Collapse
Affiliation(s)
- Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Xiao Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Jiapei Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
18
|
Bergström CAS, Charman WN, Porter CJH. Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv Drug Deliv Rev 2016; 101:6-21. [PMID: 26928657 DOI: 10.1016/j.addr.2016.02.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 12/12/2022]
Abstract
The physicochemical properties of some contemporary drug candidates are moving towards higher molecular weight, and coincidentally also higher lipophilicity in the quest for biological selectivity and specificity. These physicochemical properties move the compounds towards beyond rule-of-5 (B-r-o-5) chemical space and often result in lower water solubility. For such B-r-o-5 compounds non-traditional delivery strategies (i.e. those other than conventional tablet and capsule formulations) typically are required to achieve adequate exposure after oral administration. In this review, we present the current status of computational tools for prediction of intestinal drug absorption, models for prediction of the most suitable formulation strategies for B-r-o-5 compounds and models to obtain an enhanced understanding of the interplay between drug, formulation and physiological environment. In silico models are able to identify the likely molecular basis for low solubility in physiologically relevant fluids such as gastric and intestinal fluids. With this baseline information, a formulation scientist can, at an early stage, evaluate different orally administered, enabling formulation strategies. Recent computational models have emerged that predict glass-forming ability and crystallisation tendency and therefore the potential utility of amorphous solid dispersion formulations. Further, computational models of loading capacity in lipids, and therefore the potential for formulation as a lipid-based formulation, are now available. Whilst such tools are useful for rapid identification of suitable formulation strategies, they do not reveal drug localisation and molecular interaction patterns between drug and excipients. For the latter, Molecular Dynamics simulations provide an insight into the interplay between drug, formulation and intestinal fluid. These different computational approaches are reviewed. Additionally, we analyse the molecular requirements of different targets, since these can provide an early signal that enabling formulation strategies will be required. Based on the analysis we conclude that computational biopharmaceutical profiling can be used to identify where non-conventional gateways, such as prediction of 'formulate-ability' during lead optimisation and early development stages, are important and may ultimately increase the number of orally tractable contemporary targets.
Collapse
Affiliation(s)
- Christel A S Bergström
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia; Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| | - William N Charman
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Nano-Bio Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
19
|
Chen W, Zhan P, Daelemans D, Yang J, Huang B, De Clercq E, Pannecouque C, Liu X. Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket. Eur J Med Chem 2016; 121:352-363. [PMID: 27267005 DOI: 10.1016/j.ejmech.2016.05.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 05/13/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022]
Abstract
Based on the crystallographic studies of diarylpyrimidines (DAPYs), we embarked on incorporating the hydrophilic piperidyl or morpholinyl group into the known DAPY derivatives bearing the pyridine moiety as a core structure, with the double aim to exploit additional interactions with the HIV-1 NNRTI binding pocket (NNIBP), as well as to improve the compound solubility. The antiviral evaluation result show that the most potent compounds I-8b2, I-8b3, I-8b4 and I-8c3 exhibited anti-HIV-1 (IIIB) strain activity ranging from 7.4 nM to 9.4 nM (SI = 168-1283), superior to FDA-approved drugs of nevirapine (NVP), lamivudine (3TC) and delavirdine (DLV), and comparable to etravirine (ETV), zidovudine (AZT) and efavirenz (EFV). Additionally, compounds I-8c2 and I-8c3 showed moderate activity against NNRTI resistant strains baring mutations K103N and Y181C with EC50 values of 6.2 μM and 6.8 μM, respectively. Preliminary structure-activity relationships (SARs), reverse transcriptase inhibition efficacy and molecular modeling of selected compounds are also presented. These outcomes support our design hypothesis and demonstrate that the piperidyl group modified pyridine-typed DAPY derivatives are highly potent NNRTIs with improved water solubility.
Collapse
Affiliation(s)
- Wenmin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Jiapei Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
20
|
Li X, Huang B, Zhou Z, Gao P, Pannecouque C, Daelemans D, De Clercq E, Zhan P, Liu X. Arylazolyl(azinyl)thioacetanilides: Part 19: Discovery of Novel Substituted Imidazo[4,5-b]pyridin-2-ylthioacetanilides as Potent HIV NNRTIs Via a Structure-based Bioisosterism Approach. Chem Biol Drug Des 2016; 88:241-53. [PMID: 26914186 DOI: 10.1111/cbdd.12751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 02/14/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao Li
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Boshi Huang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Ping Gao
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Christophe Pannecouque
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Xinyong Liu
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| |
Collapse
|
21
|
Abstract
Viruses are major pathogenic agents causing a variety of serious diseases in humans, other animals, and plants. Drugs that combat viral infections are called antiviral drugs. There are no effective antiviral drugs for many viral infections. However, there are several drugs for influenza, a couple of drugs for herpesviruses, and some new antiviral drugs for treatment of HIV and hepatitis C infections. The arsenal of antivirals is complex. As of March 2014, it consists of approximately 50 drugs approved by the FDA, approximately half of which are directed against HIV. Antiviral drug creation strategies are focused on two different approaches: targeting the viruses themselves or targeting host cell factors. Direct virus-targeting antiviral drugs include attachment inhibitors, entry inhibitors, uncoating inhibitors, protease inhibitors, polymerase inhibitors, nucleoside and nucleotide reverse transcriptase inhibitors, nonnucleoside reverse-transcriptase inhibitors, and integrase inhibitors. Protease inhibitors (darunavir, atazanavir, and ritonavir), viral DNA polymerase inhibitors (acyclovir, valacyclovir, valganciclovir, and tenofovir), and an integrase inhibitor (raltegravir) are included in the list of Top 200 Drugs by sales for the 2010s.
Collapse
|
22
|
Efavirenz a nonnucleoside reverse transcriptase inhibitor of first-generation: Approaches based on its medicinal chemistry. Eur J Med Chem 2016; 108:455-465. [DOI: 10.1016/j.ejmech.2015.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 11/21/2022]
|
23
|
Huang B, Kang D, Yang J, Zhan P, Liu X. Novel diarylpyrimidines and diaryltriazines as potent HIV-1 NNRTIs with dramatically improved solubility: a patent evaluation of US20140378443A1. Expert Opin Ther Pat 2015; 26:281-9. [PMID: 26559996 DOI: 10.1517/13543776.2016.1113256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diarylpyrimidine and diaryltriazine derivatives, two representative structurally related classes of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with robust potencies against wild-type and several mutant strains of HIV-1, have attracted more and more attention in the last decade. However, they have been suffering from poor aqueous solubility. A series of novel diarylpyrimidines and diaryltriazines with solubilizing substituents attached to the central rings were reported as potent NNRTIs in the patent US20140378443A1. Some compounds exhibited potencies against wild-type HIV-1 which were comparable or even superior to those of dapivirine, etravirine and rilpivirine. In addition, dramatically enhanced solubilities were observed for these new compounds. Moreover, some structure optimization strategies for improving aqueous solubility are detailed in this review, providing new insights into development of next-generation NNRTIs endowed with favorable solubility. We anticipate that application of these strategies will ultimately lead to discovery of new anti-HIV drug candidates.
Collapse
Affiliation(s)
- Boshi Huang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Jiapei Yang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| |
Collapse
|
24
|
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2015; 59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
25
|
Meng Q, Liu N, Huang B, Zhan P, Liu X. Novel fluorine-containing DAPY derivatives as potent HIV-1 NNRTIs: a patent evaluation of WO2014072419. Expert Opin Ther Pat 2015; 25:1477-86. [PMID: 26415039 DOI: 10.1517/13543776.2016.1088832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diarylpyrimidine (DAPY) derivatives, one family of HIV non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) with superior activities against wild-type (WT) HIV-1 and NNRTI-resistant strains, have attracted much attention in the past decade. A series of DAPY derivatives featuring a fluorine atom on the central ring were reported as novel NNRTIs in the patent WO2014072419. Some compounds exhibited robust potency against both WT and mutant strains, which were approximately equal to or higher than those of the reference drug TMC120. Moreover, it has become evident that fluorinated molecules have a remarkable record in many other potent NNRTIs. Thus, this survey provides a sampling of renowned fluorinated NNRTIs and their mode of action, with an analysis clarifying the functional roles and impact of fluorine substitution on antiviral potency. We envision that fluorinated NNRTIs will play a continuing role in affording anti-HIV drug candidates for therapeutic applications.
Collapse
Affiliation(s)
- Qing Meng
- a Shandong University, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China ,
| | - Na Liu
- a Shandong University, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China ,
| | - Boshi Huang
- a Shandong University, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China ,
| | | | - Xinyong Liu
- a Shandong University, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China ,
| |
Collapse
|
26
|
Huang B, Kang D, Zhan P, Liu X. Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities. Expert Opin Drug Discov 2015; 10:1271-81. [PMID: 26372893 DOI: 10.1517/17460441.2015.1083007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The search for additional drugs to treat HIV infection is a continuing effort due to the emergence and spread of HIV strains resistant to nearly all current drugs. The recent literature reveals that fragment-based drug design/discovery (FBDD) has become an effective alternative to conventional high-throughput screening strategies for drug discovery. AREAS COVERED In this critical review, the authors describe the state of the art in FBDD strategies for the discovery of anti-HIV drug-like compounds. The article focuses on fragment screening techniques, direct fragment-based design and early hit-to-lead progress. EXPERT OPINION Rapid progress in biophysical detection and in silico techniques has greatly aided the application of FBDD to discover candidate agents directed at a variety of anti-HIV targets. Growing evidence suggests that structural insights on key proteins in the HIV life cycle can be applied in the early phase of drug discovery campaigns, providing valuable information on the binding modes and efficiently prompting fragment hit-to-lead progression. The combination of structural insights with improved methodologies for FBDD, including the privileged fragment-based reconstruction approach, fragment hybridization based on crystallographic overlays, fragment growth exploiting dynamic combinatorial chemistry, and high-speed fragment assembly via diversity-oriented synthesis followed by in situ screening, offers the possibility of more efficient and rapid discovery of novel drugs for HIV-1 prevention or treatment. Though the use of FBDD in anti-HIV drug discovery is still in its infancy, it is anticipated that anti-HIV agents developed via fragment-based strategies will be introduced into the clinic in the future.
Collapse
Affiliation(s)
- Boshi Huang
- a Shandong University, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry , 44 West Culture Road, 250012, Jinan, Shandong, China ,
| | - Dongwei Kang
- a Shandong University, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry , 44 West Culture Road, 250012, Jinan, Shandong, China ,
| | - Peng Zhan
- a Shandong University, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Department of Medicinal Chemistry , 44 West Culture Road, 250012, Jinan, Shandong, China ,
| | | |
Collapse
|
27
|
Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: Optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches. Eur J Med Chem 2015; 92:754-65. [DOI: 10.1016/j.ejmech.2015.01.042] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 11/19/2022]
|
28
|
Fang Z, Kang D, Zhang L, Huang B, Liu H, Pannecouque C, De Clercq E, Zhan P, Liu X. Synthesis and Biological Evaluation of a Series of 2-((1-substituted-1H-1,2,3-triazol-4-yl)methylthio)-6-(naphthalen-1-ylmethyl)pyrimidin-4(3H)-one As Potential HIV-1 Inhibitors. Chem Biol Drug Des 2015; 86:614-8. [PMID: 25626467 DOI: 10.1111/cbdd.12524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/07/2014] [Accepted: 01/09/2015] [Indexed: 01/18/2023]
Abstract
A series of novel S-DABO derivatives with the substituted 1,2,3-triazole moiety on the C-2 side chain were synthesized using the simple and efficient CuAAC reaction, and biologically evaluated as inhibitors of HIV-1. Among them, the most active HIV-1 inhibitor was compound 4-((4-((4-(2,6-dichlorobenzyl)-5-methyl-6-oxo-1,6-dihydropyrimidin-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)methyl)benzenesulfonamide (B5b7), which exhibited similar HIV-1 inhibitory potency (EC50 = 3.22 μm) compared with 3TC (EC50 = 2.24 μm). None of these compounds demonstrated inhibition against HIV-2 replication. The preliminary structure-activity relationship (SAR) of these new derivatives was discussed briefly.
Collapse
Affiliation(s)
- Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, China
| | - Lingzi Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, China
| | - Huiqing Liu
- Institute of Pharmacology, School of Medicine, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Ji'nan, Shandong, China
| |
Collapse
|
29
|
Kang D, Fang Z, Huang B, Zhang L, Liu H, Pannecouque C, Naesens L, De Clercq E, Zhan P, Liu X. Synthesis and Preliminary Antiviral Activities of Piperidine-substituted Purines against HIV and Influenza A/H1N1 Infections. Chem Biol Drug Des 2015; 86:568-77. [PMID: 25600073 DOI: 10.1111/cbdd.12520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/07/2014] [Accepted: 01/08/2015] [Indexed: 11/30/2022]
Abstract
We have developed a series of N(2) -(1-(substituted-aryl)piperidin-4-yl)-N(6) -mesityl-9H-purine-2,6-diamine derivatives as potent antiviral agents. Preliminary biological evaluation indicated that nearly half of them possessed remarkable HIV inhibitory potencies in cellular assays. In particular, FZJ13 appeared to be the most notable one, which displayed anti-HIV-1 activity compared to 3TC. Moreover, an unexpected finding was that FZJ05 displayed significant potency against influenza A/H1N1 (strain A/PR/8/34) in Madin-Darby canine kidney cells with EC50 values much lower than those of ribavirin, amantadine, and rimantadine. The results suggest that these novel purine derivatives have the potential to be further developed as new therapeutic agents against HIV-1 or influenza virus.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, China
| | - Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, China
| | - Lingzi Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, China
| | - Huiqing Liu
- Institute of Pharmacology, School of Medicine, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, China
| | - Christophe Pannecouque
- K.U.Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven, B-3000, Belgium
| | - Lieve Naesens
- K.U.Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven, B-3000, Belgium
| | - Erik De Clercq
- K.U.Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven, B-3000, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, China
| |
Collapse
|
30
|
Conformational restriction: an effective tactic in 'follow-on'-based drug discovery. Future Med Chem 2015; 6:885-901. [PMID: 24962281 DOI: 10.4155/fmc.14.50] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The conformational restriction (rigidification) of a flexible ligand has often been a commonly used strategy in drug design, as it can minimize the entropic loss associated with the ligand adopting a preferred conformation for binding, which leads to enhanced potency for a given physiological target, improved selectivity for isoforms and reduced the possibility of drug metabolism. Therefore, the application of conformational restriction strategy is a core aspect of drug discovery and development that is widely practiced by medicinal chemists either deliberately or subliminally. The present review will highlight current representative examples and a brief overview on the rational design of conformationally restricted agents as well as discuss its advantages over the flexible counterparts.
Collapse
|
31
|
Li X, Zhang L, Tian Y, Song Y, Zhan P, Liu X. Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent review (2011 – 2014). Expert Opin Ther Pat 2014; 24:1199-227. [DOI: 10.1517/13543776.2014.964685] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Li X, Lu X, Chen W, Liu H, Zhan P, Pannecouque C, Balzarini J, De Clercq E, Liu X. Arylazolyl(azinyl)thioacetanilides. Part 16: Structure-based bioisosterism design, synthesis and biological evaluation of novel pyrimidinylthioacetanilides as potent HIV-1 inhibitors. Bioorg Med Chem 2014; 22:5290-7. [DOI: 10.1016/j.bmc.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
|
33
|
Wang L, Tian Y, Chen W, Liu H, Zhan P, Li D, Liu H, De Clercq E, Pannecouque C, Liu X. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 2: Discovery of novel [1,2,4]Triazolo[1,5-a]pyrimidines using a structure-guided core-refining approach. Eur J Med Chem 2014; 85:293-303. [DOI: 10.1016/j.ejmech.2014.07.104] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/15/2022]
|
34
|
Li X, Chen W, Tian Y, Liu H, Zhan P, De Clercq E, Pannecouque C, Balzarini J, Liu X. Discovery of novel diarylpyrimidines as potent HIV NNRTIs via a structure-guided core-refining approach. Eur J Med Chem 2014; 80:112-21. [DOI: 10.1016/j.ejmech.2014.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
35
|
Kang D, Song Y, Chen W, Zhan P, Liu X. “Old Dogs with New Tricks”: exploiting alternative mechanisms of action and new drug design strategies for clinically validated HIV targets. MOLECULAR BIOSYSTEMS 2014; 10:1998-2022. [DOI: 10.1039/c4mb00147h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Song Y, Zhan P, Kang D, Li X, Tian Y, Li Z, Chen X, Chen W, Pannecouque C, De Clercq E, Liu X. Discovery of novel pyridazinylthioacetamides as potent HIV-1 NNRTIs using a structure-based bioisosterism approach. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00028a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Zhan P, Li X, Li Z, Chen X, Tian Y, Chen W, Liu X, Pannecouque C, Clercq ED. Structure-based bioisosterism design, synthesis and biological evaluation of novel 1,2,4-triazin-6-ylthioacetamides as potent HIV-1 NNRTIs. Bioorg Med Chem Lett 2012; 22:7155-62. [DOI: 10.1016/j.bmcl.2012.09.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/15/2012] [Accepted: 09/18/2012] [Indexed: 01/17/2023]
|
38
|
Zhan P, Chen W, Li Z, Li X, Chen X, Tian Y, Pannecouque C, Clercq ED, Liu X. Discovery of novel 2-(3-(2-chlorophenyl)pyrazin-2-ylthio)-N-arylacetamides as potent HIV-1 inhibitors using a structure-based bioisosterism approach. Bioorg Med Chem 2012; 20:6795-802. [DOI: 10.1016/j.bmc.2012.09.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/29/2012] [Accepted: 09/29/2012] [Indexed: 10/27/2022]
|
39
|
Synthesis, biological evaluation and molecular modeling of 4,6-diarylpyrimidines and diarylbenzenes as novel non-nucleosides HIV-1 reverse transcriptase inhibitors. Eur J Med Chem 2012; 58:485-92. [DOI: 10.1016/j.ejmech.2012.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/15/2012] [Accepted: 10/20/2012] [Indexed: 11/18/2022]
|
40
|
Li X, Zhan P, Liu H, Li D, Wang L, Chen X, Liu H, Pannecouque C, Balzarini J, Clercq ED, Liu X. Arylazolyl(azinyl)thioacetanilides. Part 10: Design, synthesis and biological evaluation of novel substituted imidazopyridinylthioacetanilides as potent HIV-1 inhibitors. Bioorg Med Chem 2012; 20:5527-36. [DOI: 10.1016/j.bmc.2012.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 01/29/2023]
|
41
|
Arylazolyl(azinyl)thioacetanilide. Part 9: Synthesis and biological investigation of thiazolylthioacetamides derivatives as a novel class of potential antiviral agents. Arch Pharm Res 2012; 35:975-86. [DOI: 10.1007/s12272-012-0604-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/06/2011] [Accepted: 12/22/2011] [Indexed: 10/28/2022]
|
42
|
Singh R, Vince R. 2-Azabicyclo[2.2.1]hept-5-en-3-one: Chemical Profile of a Versatile Synthetic Building Block and its Impact on the Development of Therapeutics. Chem Rev 2012; 112:4642-86. [DOI: 10.1021/cr2004822] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rohit Singh
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| | - Robert Vince
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street Southeast,
Minneapolis, MN 55455, United States
| |
Collapse
|
43
|
Design, synthesis and biological evaluation of cycloalkyl arylpyrimidines (CAPYs) as HIV-1 NNRTIs. Bioorg Med Chem 2011; 19:7093-9. [DOI: 10.1016/j.bmc.2011.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/30/2011] [Accepted: 10/01/2011] [Indexed: 11/18/2022]
|
44
|
Zhan P, Chen X, Li X, Li D, Tian Y, Chen W, Pannecouque C, De Clercq E, Liu X. Arylazolylthioacetanilide. Part 8☆: Design, synthesis and biological evaluation of Novel 2-(2-(2,4-Dichlorophenyl)-2H-1,2,4-triazol-3-ylthio)-N-arylacetamides As Potent HIV-1 inhibitors. Eur J Med Chem 2011; 46:5039-45. [DOI: 10.1016/j.ejmech.2011.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/19/2011] [Accepted: 08/05/2011] [Indexed: 01/28/2023]
|