1
|
Lin C, Song D, Wang S, Chu Y, Chi C, Jia S, Lin M, He C, Jiang C, Gong F, Chen Q. Polygonatum cyrtonema polysaccharides reshape the gut microbiota to ameliorate dextran sodium sulfate-induced ulcerative colitis in mice. Front Pharmacol 2024; 15:1424328. [PMID: 38898924 PMCID: PMC11185953 DOI: 10.3389/fphar.2024.1424328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized inflammatory imbalance, intestinal epithelial mucosal damage, and dysbiosis of the gut microbiota. Polygonatum cyrtonema polysaccharides (PCPs) can regulate gut microbiota and inflammation. Here, the different doses of PCPs were administered to dextran sodium sulfate-induced UC mice, and the effects of the whole PCPs were compared with those of the fractionated fractions PCP-1 (19.9 kDa) and PCP-2 (71.6 and 4.2 kDa). Additionally, an antibiotic cocktail was administered to UC mice to deplete the gut microbiota, and PCPs were subsequently administered to elucidate the potential role of the gut microbiota in these mice. The results revealed that PCP treatment significantly optimized the lost weight and shortened colon, restored the balance of inflammation, mitigated oxidative stress, and restored intestinal epithelial mucosal damage. And, the PCPs exhibited superior efficacy in ameliorating these symptoms compared with PCP-1 and PCP-2. However, depletion of the gut microbiota diminished the therapeutic effects of PCPs in UC mice. Furthermore, fecal transplantation from PCP-treated UC mice to new UC-afflicted mice produced therapeutic effects similar to PCP treatment. So, PCPs significantly ameliorated the symptoms, inflammation, oxidative stress, and intestinal mucosal damage in UC mice, and gut microbiota partially mediated these effects.
Collapse
Affiliation(s)
- Chaoyou Lin
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Dawei Song
- Mount Jiuhuashan Sealwort Research Institute, Chizhou, China
| | - Shangwen Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yunfei Chu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Changxing Chi
- China Department of Endocrinology, Yanbian University Hospital, Yanji, China
| | - Sining Jia
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Lin
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chenbei He
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chengxi Jiang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Qiongzhen Chen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
2
|
Osman EO, Khalil NA, Magdy A, El-Dash Y. Pyridazine and pyridazinone derivatives: Synthesis and in vitro investigation of their anti-inflammatory potential in LPS-induced RAW264.7 macrophages. Drug Dev Res 2024; 85:e22173. [PMID: 38515272 DOI: 10.1002/ddr.22173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/18/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
New pyridazine and pyridazinone derivatives 3a-g, 4a-f, 6a, and 6b were designed and synthesized. Cell viability of all compounds was established based on the viability of lipopolysaccharide-induced RAW264.7 macrophage cells determined via the MTT assay. In vitro inhibition assays on human COX-1 and COX-2 enzymes were conducted to probe the newly synthesized compounds' anti-inflammatory activity. The half maximal inhibitory concentration values for the most active compounds, 3d, 3e, and 4e towards COX-2 were 0.425, 0.519, and 0.356 µM, respectively, in comparison with celecoxib. The newly synthesized compounds' ability to inhibit the production of certain proinflammatory cytokines, such as inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-6, and prostaglandin-E2, was also estimated in lipopolysaccharide-induced macrophages (RAW264.7 cells). Compounds 3d and 3e were identified as the most potent cytokine production inhibitors. The results of molecular modeling studies suggested that these compounds were characterized by a reasonable binding affinity toward the active site of COX-2, when compared to a reference ligand. These results might be taken into consideration in further investigations into new anti-inflammatory agents.
Collapse
Affiliation(s)
- Eman O Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nadia A Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alaa Magdy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yara El-Dash
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Rudolph S, Dahlhaus H, Hanekamp W, Albers C, Barth M, Michels G, Friedrich D, Lehr M. Aryl N-[ω-(6-Fluoroindol-1-yl)alkyl]carbamates as Inhibitors of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and Butyrylcholinesterase: Structure-Activity Relationships and Hydrolytic Stability. ACS OMEGA 2021; 6:13466-13483. [PMID: 34056494 PMCID: PMC8158844 DOI: 10.1021/acsomega.1c01699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 05/02/2023]
Abstract
A series of aryl N-[ω-(6-fluoroindol-1-yl)alkyl]carbamates with alkyl spacers of varying lengths between the indole and the carbamate group and with differently substituted aryl moieties at the carbamate oxygen were synthesized and tested for inhibition of the pharmacologically interesting serine hydrolases fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), butyrylcholinesterase (BuChE), and acetylcholinesterase (AChE). Furthermore, the chemical stability in an aqueous solution and the metabolic stability toward esterases in porcine liver homogenate and porcine blood plasma were determined. While most of the synthesized derivatives were potent inhibitors of FAAH, a considerable inhibition of MAGL and BuChE was elicited only by compounds with a high carbamate reactivity, as evidenced by a significant hydrolysis of these compounds in an aqueous solution. However, the high inhibitory potency of some compounds toward MAGL and BuChE, especially that of the ortho-carboxyphenyl derivative 37, could not be explained by chemical reactivity alone. Several of the carbamates studied possessed varying degrees of stability toward esterases from liver and blood plasma. In some cases, marked inactivation by the pseudo-esterase activity of plasma albumin was observed. Mass spectrometric studies showed that such carbamates formed covalent bonds with albumin at several sites.
Collapse
Affiliation(s)
- Stefan Rudolph
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Helmut Dahlhaus
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Walburga Hanekamp
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Christian Albers
- Bruker
Daltonik GmbH, Fahrenheitstrasse
4, 28359 Bremen, Germany
| | - Maximilian Barth
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Giulia Michels
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Denise Friedrich
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
| | - Matthias Lehr
- Institute
of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstrasse 48, 48149 Münster, Germany
- . Tel: +49251 83 33331. Fax: +49251 83 32144
| |
Collapse
|
4
|
Elevated Brain Fatty Acid Amide Hydrolase Induces Depressive-Like Phenotypes in Rodent Models: A Review. Int J Mol Sci 2021; 22:ijms22031047. [PMID: 33494322 PMCID: PMC7864498 DOI: 10.3390/ijms22031047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Altered activity of fatty acid amide hydrolase (FAAH), an enzyme of the endocannabinoid system, has been implicated in several neuropsychiatric disorders, including major depressive disorder (MDD). It is speculated that increased brain FAAH expression is correlated with increased depressive symptoms. The aim of this scoping review was to establish the role of FAAH expression in animal models of depression to determine the translational potential of targeting FAAH in clinical studies. A literature search employing multiple databases was performed; all original articles that assessed FAAH expression in animal models of depression were considered. Of the 216 articles that were screened for eligibility, 24 articles met inclusion criteria and were included in this review. Three key findings emerged: (1) FAAH expression is significantly increased in depressive-like phenotypes; (2) genetic knockout or pharmacological inhibition of FAAH effectively reduces depressive-like behavior, with a dose-dependent effect; and (3) differences in FAAH expression in depressive-like phenotypes were largely localized to animal prefrontal cortex, hippocampus and striatum. We conclude, based on the animal literature, that a positive relationship can be established between brain FAAH level and expression of depressive symptoms. In summary, we suggest that FAAH is a tractable target for developing novel pharmacotherapies for MDD.
Collapse
|
5
|
Effects of systemic endocannabinoid manipulation on social and exploratory behavior in prairie voles (Microtus ochrogaster). Psychopharmacology (Berl) 2021; 238:293-304. [PMID: 33130926 PMCID: PMC7796938 DOI: 10.1007/s00213-020-05683-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE Anandamide is an endocannabinoid that contributes to certain aspects of social behavior, like play and reward, by binding to cannabinoid receptor type 1 (CB1). Most interesting is the recent discovery that anandamide may be mobilized by oxytocin receptor activation under certain contexts, particularly in the nucleus accumbens. OBJECTIVES Given the established role of oxytocin and the nucleus accumbens in the neurobiology of pair-bonding, we investigated whether systemic administration of brain-permeable modulators of the endocannabinoid system could alter preferential partner contact in both male and female prairie voles. METHODS Specifically, we tested whether intraperitoneal administration of the neutral CB1 antagonist AM4113 (4.0-16.0 mg/kg) or the anandamide hydrolysis inhibitor URB597 (5.0-20.0 mg/kg) could prevent or facilitate partner preference formation, respectively. To further investigate the specificity of effects on partner preference, we repeated our URB597 dosing regimen on an additional group of females and tested their anxiety-related behavior in both an elevated-plus maze and a light/dark test. RESULTS AM4113 administration had no effect on partner preference. But while URB597 also had no effect on partner preference, low-dose females did increase absolute preferential contact with either the partner or the stranger; individual females spent significant contact time with either the partner or the stranger. None of our outcome measures in either anxiety test showed significant effects of treatment. CONCLUSIONS Our results reveal that experimentally increasing anandamide levels in female prairie voles can increase social contact with both a familiar and novel male via unknown mechanisms that are likely separate from anxiety reduction.
Collapse
|
6
|
Deplano A, Karlsson J, Svensson M, Moraca F, Catalanotti B, Fowler CJ, Onnis V. Exploring the fatty acid amide hydrolase and cyclooxygenase inhibitory properties of novel amide derivatives of ibuprofen. J Enzyme Inhib Med Chem 2020; 35:815-823. [PMID: 32200655 PMCID: PMC7144264 DOI: 10.1080/14756366.2020.1743283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inhibition of fatty acid amide hydrolase (FAAH) reduces the gastrointestinal damage produced by non-steroidal anti-inflammatory agents such as sulindac and indomethacin in experimental animals, suggesting that a dual-action FAAH-cyclooxygenase (COX) inhibitor could have useful therapeutic properties. Here, we have investigated 12 novel amide analogues of ibuprofen as potential dual-action FAAH/COX inhibitors. N-(3-Bromopyridin-2-yl)−2-(4-isobutylphenyl)propanamide (Ibu-AM68) was found to inhibit the hydrolysis of [3H]anandamide by rat brain homogenates by a reversible, mixed-type mechanism of inhibition with a Ki value of 0.26 µM and an α value of 4.9. At a concentration of 10 µM, the compound did not inhibit the cyclooxygenation of arachidonic acid by either ovine COX-1 or human recombinant COX-2. However, this concentration of Ibu-AM68 greatly reduced the ability of the COX-2 to catalyse the cyclooxygenation of the endocannabinoid 2-arachidonoylglycerol. It is concluded that Ibu-AM68 is a dual-acting FAAH/substrate-selective COX inhibitor.
Collapse
Affiliation(s)
- Alessandro Deplano
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Jessica Karlsson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Mona Svensson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Federica Moraca
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | | | - Valentina Onnis
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Takizawa M, Cerneus D, Michon I, Rijnders S, Meijer J, Someya A, Sato Y. Investigation of Safety and Tolerability of ASP3652 Based on Clinical Studies of Cerebrospinal Fluid Transfer After Multiple Doses and Exposure After Single Doses at High Dose Levels. Adv Ther 2020; 37:3967-3984. [PMID: 32715381 DOI: 10.1007/s12325-020-01451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The studies described here were conducted to investigate the central nervous system (CNS) transfer of ASP3652, a peripherally acting inhibitor of fatty acid amide hydrolase, after multiple doses at around the anticipated therapeutic dose and the safety, tolerability, and pharmacokinetics after single doses at corresponding supratherapeutic doses in healthy subjects. METHODS Study 1 was an open-label multiple dose study in which ASP3652 (300 mg bid) or matching placebo was administered in multiple doses to healthy subjects. Study 2 was a placebo-controlled, randomized 4 × 4 crossover study in which ASP3652 was given as three single ascending doses of ASP3652 (600-1800 mg) or matching placebo to healthy subjects. Levels of ASP3652 and endocannabinoids (eCBs) in plasma, cerebrospinal fluid (CSF) (study 1 only), and safety were evaluated. RESULTS In study 1, ASP3652 was readily absorbed to reach Cmax at 1 h after dosing. AUCtau and Cmax of ASP3652 in CSF were approximately 0.2% and 0.06% of the AUCtau and Cmax in plasma after multiple doses of ASP3652 300 mg bid. At steady state the area under the response-time curve (AURC) from 0 to 12 h and the maximum response for anandamide in plasma were approximately 550-fold and 230-fold higher than those in CSF. In study 2, the Cmax and AUC of ASP3652 increased higher than dose proportionally in subjects receiving 600-1800 mg ASP3652. For eCBs, although the AURC increased less than dose proportionally, maximum plasma levels were comparable across all treatment groups. The incidence of adverse events (AEs) was similar across all treatment groups including the placebo group. There was no evidence of CNS-related side effects. CONCLUSIONS ASP3652 showed low CNS penetration at the anticipated therapeutic dose and was well tolerable without any CNS-related AEs at supratherapeutic doses, supporting that the drug can be safely tested at the anticipated therapeutic dose. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT02034734 for study 1, NCT01815684 for study 2.
Collapse
Affiliation(s)
| | - Dirk Cerneus
- Astellas Pharma Europe B. V., Leiden, The Netherlands
| | - Ingrid Michon
- Astellas Pharma Europe B. V., Leiden, The Netherlands
| | | | - John Meijer
- Astellas Pharma Europe B. V., Leiden, The Netherlands
| | | | | |
Collapse
|
8
|
Takizawa M, Cerneus D, Michon I, Rijnders S, van der Heide D, Meijer J, Stoelzel M, Sato Y. The Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of ASP3652 in First-in-Human and Ascending Multiple Oral Dose Studies in Healthy Subjects. Adv Ther 2020; 37:3878-3900. [PMID: 32681461 DOI: 10.1007/s12325-020-01402-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Inhibitors of fatty acid amide hydrolase (FAAH) increase the levels of endocannabinoids and have shown analgesic and anti-inflammatory activity in animal models. ASP3652 is a peripherally acting FAAH inhibitor in development for the treatment of chronic bladder and pelvic pain disorders. Here we describe the safety, pharmacokinetics, and pharmacodynamics of single and multiple oral doses of ASP3652 administered in healthy non-elderly and elderly male and female volunteers. METHODS Study 1 was a combined single-ascending dose and food-effect study in which ASP3652 was given as single doses (1-600 mg) or matching placebo in healthy subjects. Study 2 was a multiple ascending dose study in which ASP3652 or matching placebo was administered in multiple oral doses (10-300 mg bid and 600 mg qd for 14 days) to healthy subjects. In both studies, the levels of ASP3652, FAAH, endocannabinoids (eCBs) and safety were evaluated. RESULTS ASP3652 was readily absorbed to reach Cmax at 1 h after a single dose. Steady state was reached within 3 days after the start of multiple dosing. The Cmax and AUC of ASP3652 increased in a slightly more than dose-proportional manner after a single dose of ASP3652 at 30-600 mg. There was some accumulation (15-38%) based on Cmax and AUC12h upon multiple doses. Cmax was 47% lower in combination with food. There was no significant effect of gender or age on the pharmacokinetics of ASP3652. FAAH activity was inhibited in a dose-dependent manner in all dose groups after single and multiple doses of ASP3652, paralleled by an increase in plasma levels of anandamide (AEA). The incidence of adverse events following multiple doses was similar across all treatment groups including the placebo group. CONCLUSIONS Single and multiple doses of ASP3652 were safe and well tolerated and increased endogenous cannabinoid plasma levels.
Collapse
Affiliation(s)
| | - Dirk Cerneus
- Astellas Pharma Europe B. V., Leiden, The Netherlands
| | - Ingrid Michon
- Astellas Pharma Europe B. V., Leiden, The Netherlands
| | | | | | - John Meijer
- Astellas Pharma Europe B. V., Leiden, The Netherlands
| | | | | |
Collapse
|
9
|
Tian X, Liu T, Li L, Shao B, Yao D, Feng L, Cui J, James TD, Ma X. Visual High-Throughput Screening for Developing a Fatty Acid Amide Hydrolase Natural Inhibitor Based on an Enzyme-Activated Fluorescent Probe. Anal Chem 2020; 92:9493-9500. [DOI: 10.1021/acs.analchem.9b05826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiangge Tian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lu Li
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Bo Shao
- Zhendong Pharmaceutical Research Institute Co. Ltd., Changzhi, Shanxi 047100, China
| | - Dahong Yao
- Department of Pharmacology, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lei Feng
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xiaochi Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
10
|
Schaffler K, Yassen A, Reeh P, Passier P. A Randomized, Double-Blind, Placebo- and Active Comparator-Controlled Phase I Study of Analgesic/Antihyperalgesic Properties of ASP8477, a Fatty Acid Amide Hydrolase Inhibitor, in Healthy Female Subjects. PAIN MEDICINE 2019; 19:1206-1218. [PMID: 29228247 PMCID: PMC5998989 DOI: 10.1093/pm/pnx281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives To evaluate the analgesic/antihyperalgesic effect of ASP8477. Design Randomized, double-blind, double-dummy, cross-over, placebo- and active comparator-controlled study. Setting HPR Dr. Schaffler GmbH, Munich, Germany. Subjects Healthy female subjects aged 18–65 years. Methods Eligible subjects were randomly assigned to one of six treatment sequences and received multiple ascending doses of ASP8477, duloxetine, and placebo over three treatment periods (each consisting of 21-day dosing separated by 14-day washout periods). On the last day of each dose level, laser evoked potentials (LEPs) and visual analog scales (VAS pain) on capsaicin-treated skin at baseline and at multiple postdose time points were assessed. The primary end point was the difference in LEP N2-P2 peak-to-peak (PtP) amplitudes for ASP8477 100 mg vs placebo. Results Twenty-five subjects were randomized. In all subjects, LEP N2-P2 PtP amplitudes were numerically lower for ASP8477 100 mg vs placebo (P = 0.0721); in subjects who demonstrated positive capsaicin skin effects, a greater mean difference of –2.24 µV (P = 0.0146) was observed. Across all doses, LEP N2-P2 PtP amplitudes were lower for duloxetine compared with ASP8477 (mean difference –3.80 µV; P < 0.0001) or placebo (mean difference –5.21 µV; P < 0.0001). The effect of ASP8477 (all doses) on down-scoring the VAS pain score was significant compared with placebo (mean difference –2.55%; P < 0.0007). Conclusions ASP8477 was well tolerated in this study. Analysis of all subjects did not demonstrate a significant difference in LEP for ASP8477 100 mg over placebo but did in subjects who demonstrated positive capsaicin skin effects.
Collapse
Affiliation(s)
- Klaus Schaffler
- Human Pharmacodynamic Research (HPR) Dr. Schaffler GmbH, Munich, Germany
| | | | - Peter Reeh
- Institute for Physiology and Pathophysiology, University Erlangen-Nuremberg, Erlangen, Germany
| | - Paul Passier
- Astellas Pharma Europe B.V., Leiden, Netherlands
| |
Collapse
|
11
|
Deplano A, Cipriano M, Moraca F, Novellino E, Catalanotti B, Fowler CJ, Onnis V. Benzylamides and piperazinoarylamides of ibuprofen as fatty acid amide hydrolase inhibitors. J Enzyme Inhib Med Chem 2019; 34:562-576. [PMID: 30688118 PMCID: PMC6352954 DOI: 10.1080/14756366.2018.1532418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fatty Acid Amide Hydrolase (FAAH) is a serine hydrolase that plays a key role in controlling endogenous levels of endocannabinoids. FAAH inhibition is considered a powerful approach to enhance the endocannabinoid signalling, and therefore it has been largely studied as a potential target for the treatment of neurological disorders such as anxiety or depression, or of inflammatory processes. We present two novel series of amide derivatives of ibuprofen designed as analogues of our reference FAAH inhibitor Ibu-AM5 to further explore its structure-activity relationships. In the new amides, the 2-methylpyridine moiety of Ibu-AM5 was substituted by benzylamino and piperazinoaryl moieties. The obtained benzylamides and piperazinoarylamides showed FAAH inhibition ranging from the low to high micromolar potency. The binding of the new amides in the active site of FAAH, estimated using the induced fit protocol, indicated arylpiperazinoamides binding the ACB channel and the cytosolic port, and benzylamides binding the ACB channel.
Collapse
Affiliation(s)
- Alessandro Deplano
- a Department of Life and Environmental Sciences - Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences , University of Cagliari , Cagliari , Italy
| | - Mariateresa Cipriano
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Federica Moraca
- c Department of Chemical Sciences , University of Napoli Federico II , Napoli , Italy
| | - Ettore Novellino
- d Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Bruno Catalanotti
- d Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Christopher J Fowler
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Valentina Onnis
- a Department of Life and Environmental Sciences - Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences , University of Cagliari , Cagliari , Italy
| |
Collapse
|
12
|
Moreno E, Cavic M, Krivokuca A, Casadó V, Canela E. The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet? Front Pharmacol 2019; 10:339. [PMID: 31024307 PMCID: PMC6459931 DOI: 10.3389/fphar.2019.00339] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into attractive new targets for the treatment of various cancer subtypes. Although the clinical use of cannabinoids has been extensively documented in the palliative setting, clinical trials on their application as anti-cancer drugs are still ongoing. As drug repurposing is significantly faster and more economical than de novo introduction of a new drug into the clinic, there is hope that the existing pharmacokinetic and safety data on the ECS ligands will contribute to their successful translation into oncological healthcare. CB1R and CB2R are members of a large family of membrane proteins called G protein-coupled receptors (GPCR). GPCRs can form homodimers, heterodimers and higher order oligomers with other GPCRs or non-GPCRs. Currently, several CB1R and CB2R-containing heteromers have been reported and, in cancer cells, CB2R form heteromers with the G protein-coupled chemokine receptor CXCR4, the G protein-coupled receptor 55 (GPR55) and the tyrosine kinase receptor (TKR) human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2). These protein complexes possess unique pharmacological and signaling properties, and their modulation might affect the antitumoral activity of the ECS. This review will explore the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it, and will develop on the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Enric Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
13
|
Kodani SD, Wan D, Wagner KM, Hwang SH, Morisseau C, Hammock BD. Design and Potency of Dual Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase Inhibitors. ACS OMEGA 2018; 3:14076-14086. [PMID: 30411058 PMCID: PMC6210075 DOI: 10.1021/acsomega.8b01625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is responsible for regulating concentrations of the endocannabinoid arachidonoyl ethanolamide. Multiple FAAH inhibitors have been developed for clinical trials and have failed to demonstrate efficacy at treating pain, despite promising preclinical data. One approach toward increasing the efficacy of FAAH inhibitors is to concurrently inhibit other targets responsible for regulating pain. Here, we designed dual inhibitors targeting the enzymes FAAH and soluble epoxide hydrolase (sEH), which are targets previously shown to synergize at reducing inflammatory and neuropathic pain. Exploration of the sEH/FAAH inhibitor structure-activity relationship started with PF-750, a FAAH inhibitor (IC50 = 19 nM) that weakly inhibited sEH (IC50 = 640 nM). Potency was optimized resulting in an inhibitor with improved potency on both targets (11, sEH IC50 = 5 nM, FAAH IC50 = 8 nM). This inhibitor demonstrated good target selectivity, pharmacokinetic properties (AUC = 1200 h nM, t 1/2 = 4.9 h in mice), and in vivo target engagement.
Collapse
|
14
|
Kiss LE, Beliaev A, Ferreira HS, Rosa CP, Bonifácio MJ, Loureiro AI, Pires NM, Palma PN, Soares-da-Silva P. Discovery of a Potent, Long-Acting, and CNS-Active Inhibitor (BIA 10-2474) of Fatty Acid Amide Hydrolase. ChemMedChem 2018; 13:2177-2188. [PMID: 30113139 PMCID: PMC6582431 DOI: 10.1002/cmdc.201800393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Indexed: 11/06/2022]
Abstract
Fatty acid amide hydrolase (FAAH) can be targeted for the treatment of pain associated with various medical conditions. Herein we report the design and synthesis of a novel series of heterocyclic-N-carboxamide FAAH inhibitors that have a good alignment of potency, metabolic stability and selectivity for FAAH over monoacylglycerol lipase (MAGL) and carboxylesterases (CEs). Lead optimization efforts carried out with benzotriazolyl- and imidazolyl-N-carboxamide series led to the discovery of clinical candidate 8 l (3-(1-(cyclohexyl(methyl)carbamoyl)-1H-imidazol-4-yl)pyridine 1-oxide; BIA 10-2474) as a potent and long-acting inhibitor of FAAH. However, during a Phase I clinical trial with compound 8 l, unexpected and unpredictable serious neurological adverse events occurred, affecting five healthy volunteers, including the death of one subject.
Collapse
Affiliation(s)
- László E Kiss
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Alexandre Beliaev
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Humberto S Ferreira
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Carla P Rosa
- Laboratory of Chemistry, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Maria João Bonifácio
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Ana I Loureiro
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Nuno M Pires
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - P Nuno Palma
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal
| | - Patrício Soares-da-Silva
- Laboratory of Pharmacology, Department of Research and Development, BIAL-Portela & Cª., S.A., À Avenida da Siderurgia Nacional, 4745-457, Coronado (S. Romão and S. Mamede), Portugal.,MedInUp-Center for Drug Discovery and Innovative Medicines, University of Porto, Praça Gomes Teixeira, 4099-002, Porto, Portugal
| |
Collapse
|
15
|
Bradford D, Stirling A, Ernault E, Liosatos M, Tracy K, Moseley J, Blahunka P, Smith MD. The MOBILE Study-A Phase IIa Enriched Enrollment Randomized Withdrawal Trial to Assess the Analgesic Efficacy and Safety of ASP8477, a Fatty Acid Amide Hydrolase Inhibitor, in Patients with Peripheral Neuropathic Pain. PAIN MEDICINE 2018; 18:2388-2400. [PMID: 28383710 PMCID: PMC5939857 DOI: 10.1093/pm/pnx046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective To evaluate the analgesic efficacy and safety of ASP8477 in patients with peripheral neuropathic pain (PNP). Design Enriched enrollment randomized withdrawal. Setting Centers in Poland (four), Czech Republic (six), and the United Kingdom (two). Subjects Patients aged 18 years or older with PNP resulting from painful diabetic peripheral neuropathy or postherpetic neuralgia. Methods A four-week screening period followed by a single-blind period (six-day dose titration and three-week maintenance period with ASP8477 [20/30 mg BID]). Treatment responders (defined as a ≥30% decrease in the mean average daily pain intensity during the last three days of the single-blind period) were stratified by disease and randomized to receive placebo or continue ASP8477 during a three-week, double-blind, randomized withdrawal period. The primary end point was change in mean 24-hour average numeric pain rating scale (NPRS) from baseline to end of double-blind period. Results Among 132 patients who enrolled, 116 entered the single-blind period and 63 (ASP8477, N = 31; placebo, N = 32) completed the double-blind period. There was no difference in mean 24-hour average NPRS score (P = 0.644) or in time-to-treatment failure (P = 0.485) between ASP8477 and placebo. During the single-blind period, 57.8% of patients were treatment responders. ASP8477 was well tolerated. During the single-blind period, 22% of patients experienced at least one treatment-related adverse event (TEAE); during the double-blind period, 8% in the ASP8477 arm and 18% in the placebo arm experienced at least one TEAE. Conclusions ASP8477 was well tolerated in patients with PNP; however, ASP8477 did not demonstrate a significant treatment difference compared with placebo.
Collapse
Affiliation(s)
| | | | | | - Maggie Liosatos
- Astellas Pharma Global Development, Northbrook, Illinois, USA
| | - Katherine Tracy
- Astellas Pharma Global Development, Northbrook, Illinois, USA
| | | | - Paul Blahunka
- Astellas Pharma Global Development, Northbrook, Illinois, USA
| | - Mike D Smith
- Astellas Pharma Global Development, Northbrook, Illinois, USA
| |
Collapse
|
16
|
Greco R, Demartini C, Zanaboni AM, Piomelli D, Tassorelli C. Endocannabinoid System and Migraine Pain: An Update. Front Neurosci 2018; 12:172. [PMID: 29615860 PMCID: PMC5867306 DOI: 10.3389/fnins.2018.00172] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS. Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache. Clinical observations, in particular, show that the levels of anandamide (AEA)—one of the two primary endocannabinoid lipids—are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord. AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors. Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna M Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents. Sci Rep 2018; 8:2416. [PMID: 29403000 PMCID: PMC5799259 DOI: 10.1038/s41598-018-20895-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 12/23/2022] Open
Abstract
Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-effects (memory deficit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like effects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profile positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors.
Collapse
|
18
|
Murillo-Rodríguez E, Di Marzo V, Machado S, Rocha NB, Veras AB, Neto GAM, Budde H, Arias-Carrión O, Arankowsky-Sandoval G. Role of N-Arachidonoyl-Serotonin (AA-5-HT) in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation. Front Mol Neurosci 2017; 10:152. [PMID: 28611585 PMCID: PMC5447686 DOI: 10.3389/fnmol.2017.00152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)], receptors (CB1 and CB2), enzymes such as [fatty acid amide hydrolase (FAHH) and monoacylglycerol lipase (MAGL)], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1), N-arachidonoyl-serotonin (AA-5-HT) in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p.) injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W) and increased slow wave sleep (SWS) as well as rapid eye movement sleep (REMS). Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT) whereas the levels of adenosine (AD) were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD) or modafinil (MOD) during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD). The injection of CBD or MOD increased alertness during sleep rebound period after TSD. However, AA-5-HT blocked this effect by allowing animals to display an enhancement in sleep across sleep rebound period. Overall, our findings provide evidence that AA-5-HT is an important modulator of sleep, sleep homeostasis and neurotransmitter contents.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación Desarrollos Tecnológicos para la Salud, División de Ingeniería y Ciencias Exactas, Universidad Anáhuac MayabMérida, Mexico.,Intercontinental Neuroscience Research Group
| | - Vincenzo Di Marzo
- Intercontinental Neuroscience Research Group.,Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Sergio Machado
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Postgraduate Program, Salgado de Oliveira UniversityRio de Janeiro, Brazil
| | - Nuno B Rocha
- Intercontinental Neuroscience Research Group.,Faculty of Health Sciences, Polytechnic Institute of PortoPorto, Portugal
| | - André B Veras
- Intercontinental Neuroscience Research Group.,Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Dom Bosco Catholic UniversityRio de Janeiro, Brazil
| | - Geraldo A M Neto
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group.,Faculty of Human Sciences, Medical School HamburgHamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering Reykjavik UniversityReykjavik, Iceland.,Department of Health, Physical and Social Education, Lithuanian Sports UniversityKaunas, Lithuania
| | - Oscar Arias-Carrión
- Intercontinental Neuroscience Research Group.,Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General "Dr. Manuel Gea González"Ciudad de México, Mexico
| | - Gloria Arankowsky-Sandoval
- Intercontinental Neuroscience Research Group.,Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de YucatánMérida, Mexico
| |
Collapse
|
19
|
Abstract
Cannabis sativa has long been used for medicinal purposes. To improve safety and efficacy, compounds from C. sativa were purified or synthesized and named under an umbrella group as cannabinoids. Currently, several cannabinoids may be prescribed in Canada for a variety of indications such as nausea and pain. More recently, an increasing number of reports suggest other salutary effects associated with endogenous cannabinoid signaling including cardioprotection. The therapeutic potential of cannabinoids is therefore extended; however, evidence is limited and mechanisms remain unclear. In addition, the use of cannabinoids clinically has been hindered due to pronounced psychoactive side effects. This review provides an overview on the endocannabinoid system, including known physiological roles, and conditions in which cannabinoid receptor signaling has been implicated.
Collapse
Affiliation(s)
- Yan Lu
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Hope D Anderson
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.,c Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
20
|
Sunduru N, Svensson M, Cipriano M, Marwaha S, Andersson CD, Svensson R, Fowler CJ, Elofsson M. N-aryl 2-aryloxyacetamides as a new class of fatty acid amide hydrolase (FAAH) inhibitors. J Enzyme Inhib Med Chem 2017; 32:513-521. [PMID: 28114819 PMCID: PMC6009913 DOI: 10.1080/14756366.2016.1265520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fatty acid amide hydrolase (FAAH) is a promising target for the development of drugs to treat neurological diseases. In search of new FAAH inhibitors, we identified 2-(4-cyclohexylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4g, with an IC50 of 2.6 µM as a chemical starting point for the development of potent FAAH inhibitors. Preliminary hit-to-lead optimisation resulted in 2-(4-phenylphenoxy)-N-(3-(oxazolo[4,5-b]pyridin-2-yl)phenyl)acetamide, 4i, with an IC50 of 0.35 µM.
Collapse
Affiliation(s)
- Naresh Sunduru
- a Department of Chemistry , Umeå University , Umeå , Sweden
| | - Mona Svensson
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Mariateresa Cipriano
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | - Sania Marwaha
- a Department of Chemistry , Umeå University , Umeå , Sweden
| | | | - Richard Svensson
- c Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling platform (UDOPP) , Uppsala University , Uppsala , Sweden
| | - Christopher J Fowler
- b Department of Pharmacology and Clinical Neuroscience , Umeå University , Umeå , Sweden
| | | |
Collapse
|
21
|
Dahlhaus H, Hanekamp W, Lehr M. (Indolylalkyl)piperidine carbamates as inhibitors of fatty acid amide hydrolase (FAAH). MEDCHEMCOMM 2017; 8:616-620. [PMID: 30108777 DOI: 10.1039/c6md00683c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/23/2017] [Indexed: 11/21/2022]
Abstract
A series of phenyl 4-[(indol-1-yl)alkyl]piperidine carbamates was synthesized and tested for inhibition of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) and for metabolic stability in rat liver S9 fractions and porcine blood plasma. Structure-activity relationship studies revealed that variation of the length of the alkyl spacer connecting the indole and the piperidine heterocycle, introduction of substituents into the indole ring, replacement of the piperidine by a piperazine scaffold as well as opening of the piperidine ring system affect activity significantly. The metabolic stability of this compound class proved to be significantly higher than that of corresponding phenyl N-(indol-1-ylalkyl)carbamates.
Collapse
Affiliation(s)
- Helmut Dahlhaus
- Institute of Pharmaceutical and Medicinal Chemistry , University of Münster , Corrensstrasse 48 , D-48149 Münster , Germany . ; ; Tel: +49 (251) 8333331
| | - Walburga Hanekamp
- Institute of Pharmaceutical and Medicinal Chemistry , University of Münster , Corrensstrasse 48 , D-48149 Münster , Germany . ; ; Tel: +49 (251) 8333331
| | - Matthias Lehr
- Institute of Pharmaceutical and Medicinal Chemistry , University of Münster , Corrensstrasse 48 , D-48149 Münster , Germany . ; ; Tel: +49 (251) 8333331
| |
Collapse
|
22
|
Deutsch DG. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs). Front Pharmacol 2016; 7:370. [PMID: 27790143 PMCID: PMC5062061 DOI: 10.3389/fphar.2016.00370] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that "solubilize" anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992). As to be expected, this discovery raised the issues of AEA's synthesis and breakdown.
Collapse
Affiliation(s)
- Dale G Deutsch
- Department of Biochemistry and Cell Biology, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
23
|
Zheng YJ, Tice CM. The utilization of spirocyclic scaffolds in novel drug discovery. Expert Opin Drug Discov 2016; 11:831-4. [DOI: 10.1080/17460441.2016.1195367] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|