1
|
Kasianchuk N, Rzymski P, Kaczmarek Ł. The biomedical potential of tardigrade proteins: A review. Biomed Pharmacother 2023; 158:114063. [PMID: 36495665 DOI: 10.1016/j.biopha.2022.114063] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Tardigrades are ubiquitous microinvertebrates exhibiting extreme tolerance to various environmental stressors like low and high temperatures, lack of water, or high radiation. Although exact pathways behind the tardigrade extremotolerance are yet to be elucidated, some molecules involved have been identified. Their evidenced properties may lead to novel opportunities in biomedical and pharmacological development. This review aims to present the general characteristics of tardigrade intrinsically disordered proteins (TDPs: Dsup, CAHS, SAHS, MAHS) and late embryogenesis-abundant proteins (LEA) and provide an updated overview of their features and relevance for potential use in biomedicine and pharmacology. The Dsup reveals a promising action in attenuating oxidative stress, DNA damage, and pyrimidine dimerization, as well as increasing radiotolerance in transfected human cells. Whether Dsup can perform these functions when delivered externally is yet to be understood by in vivo preclinical testing. In turn, CAHS and SAHS demonstrate properties that could benefit the preservation of pharmaceuticals (e.g., vaccines) and biomaterials (e.g., cells). Selected CAHS proteins can also serve as inspiration for designing novel anti-apoptotic agents. The LEA proteins also reveal promising properties to preserve desiccated biomaterials and can act as anti-osmotic agents. In summary, tardigrade molecules reveal several potential biomedical applications advocating further research and development. The challenge of extracting larger amounts of these molecules can be solved with genetic engineering and synthetic biology tools. With new species identified each year and ongoing studies on their extremotolerance, progress in the medical use of tardigrade proteins is expected shortly.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland; Faculty of Pharmacy, Bogomolets Nationals Medical University, Kyiv, Ukraine.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
2
|
Lima IS, Pêgo AC, Barros JT, Prada AR, Gozzelino R. Cell Death-Osis of Dopaminergic Neurons and the Role of Iron in Parkinson's Disease. Antioxid Redox Signal 2021; 35:453-473. [PMID: 33233941 DOI: 10.1089/ars.2020.8229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: There is still no cure for neurodegenerative diseases, such as Parkinson's disease (PD). Current treatments are based on the attempt to reduce dopaminergic neuronal loss, and multidisciplinary approaches have been used to provide only a temporary symptoms' relief. In addition to the difficulties of drugs developed against PD to access the brain, the specificity of those inhibitory compounds could be a concern. This because neurons might degenerate by activating distinct signaling pathways, which are often initiated by the same stimulus. Recent Advances: Apoptosis, necroptosis, and ferroptosis were shown to significantly contribute to PD progression and, so far, are the main death programs described as capable to alter brain homeostasis. Their activation is characterized by different biochemical and morphological features, some of which might even share the same molecular players. Critical Issues: If there is a pathological need to engage, in PD, multiple death programs, sequentially or simultaneously, is not clear yet. Possibly the activation of apoptosis, necroptosis, and/or ferroptosis correlates to different PD stages and symptom severities. This would imply that the efficacy of therapeutic approaches against neuronal death might depend on the death program they target and the relevance of this death pathway on a specific PD phase. Future Directions: In this review, we describe the molecular mechanisms underlying the activation of apoptosis, necroptosis, and ferroptosis in PD. Understanding the interrelationship between different death pathways' activation in PD is of utmost importance for the development of therapeutic approaches against disease progression. Antioxid. Redox Signal. 35, 453-473.
Collapse
Affiliation(s)
- Illyane Sofia Lima
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Catarina Pêgo
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Tomas Barros
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Rita Prada
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Raffaella Gozzelino
- Inflammation and Neurodegeneration Laboratory, Centro de Estudos de Doenças Crónicas (CEDOC)/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Universidade Técnica do Atlântico (UTA), São Vicente, Cabo Verde
| |
Collapse
|
3
|
Barlow KM, Brooks BL, Esser MJ, Kirton A, Mikrogianakis A, Zemek RL, MacMaster FP, Nettel-Aguirre A, Yeates KO, Kirk V, Hutchison JS, Crawford S, Turley B, Cameron C, Hill MD, Samuel T, Buchhalter J, Richer L, Platt R, Boyd R, Dewey D. Efficacy of Melatonin in Children With Postconcussive Symptoms: A Randomized Clinical Trial. Pediatrics 2020; 145:peds.2019-2812. [PMID: 32217739 DOI: 10.1542/peds.2019-2812] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Approximately 25% of children with concussion have persistent postconcussive symptoms (PPCS) with resultant significant impacts on quality of life. Melatonin has significant neuroprotective properties, and promising preclinical data suggest its potential to improve outcomes after traumatic brain injury. We hypothesized that treatment with melatonin would result in a greater decrease in PPCS symptoms when compared with a placebo. METHODS We conducted a randomized, double-blind trial of 3 or 10 mg of melatonin compared with a placebo (NCT01874847). We included youth (ages 8-18 years) with PPCS at 4 to 6 weeks after mild traumatic brain injury. Those with significant medical or psychiatric histories or a previous concussion within the last 3 months were excluded. The primary outcome was change in the total youth self-reported Post-Concussion Symptom Inventory score measured after 28 days of treatment. Secondary outcomes included change in health-related quality of life, cognition, and sleep. RESULTS Ninety-nine children (mean age: 13.8 years; SD = 2.6 years; 58% girls) were randomly assigned. Symptoms improved over time with a median Post-Concussion Symptom Inventory change score of -21 (95% confidence interval [CI]: -16 to -27). There was no significant effect of melatonin when compared with a placebo in the intention-to-treat analysis (3 mg melatonin, -2 [95% CI: -13 to 6]; 10 mg melatonin, 4 [95% CI: -7 to 14]). No significant group differences in secondary outcomes were observed. Side effects were mild and similar to the placebo. CONCLUSIONS Children with PPCS had significant impairment in their quality of life. Seventy-eight percent demonstrated significant recovery between 1 and 3 months postinjury. This clinical trial does not support the use of melatonin for the treatment of pediatric PPCS.
Collapse
Affiliation(s)
- Karen M Barlow
- Department of Pediatrics, Alberta Children's Hospital Research Institute and .,Clinical Neurosciences, Cumming School of Medicine and.,Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Brian L Brooks
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Clinical Neurosciences, Cumming School of Medicine and.,Psychology, University of Calgary, Calgary, Alberta, Canada.,Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Michael J Esser
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Clinical Neurosciences, Cumming School of Medicine and
| | - Adam Kirton
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Radiology.,Clinical Neurosciences, Cumming School of Medicine and
| | - Angelo Mikrogianakis
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Emergency Medicine, and
| | - Roger L Zemek
- Departments of Pediatrics and Emergency Medicine and Research Institute, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, Ontario, Canada
| | - Frank P MacMaster
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Departments of Psychiatry, Paediatrics, and
| | - Alberto Nettel-Aguirre
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Departments of Community Health Sciences
| | - Keith Owen Yeates
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Clinical Neurosciences, Cumming School of Medicine and.,Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Valerie Kirk
- Department of Pediatrics, Alberta Children's Hospital Research Institute and
| | - James S Hutchison
- Neurosciences and Mental Health Research Program, Department of Critical Care Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Susan Crawford
- Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Brenda Turley
- Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Candice Cameron
- Research Pharmacy, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | | | - Tina Samuel
- Neuroscience Program, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Jeffrey Buchhalter
- Department of Pediatrics, Alberta Children's Hospital Research Institute and
| | - Lawrence Richer
- Department of Pediatrics and Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Platt
- McGill University, Montreal, Québec, Canada; and
| | - Roslyn Boyd
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Deborah Dewey
- Department of Pediatrics, Alberta Children's Hospital Research Institute and.,Departments of Community Health Sciences
| |
Collapse
|
4
|
Liu Q, Wang SC, Ding K. Research advances in the treatment of Alzheimer's disease with polysaccharides from traditional Chinese medicine. Chin J Nat Med 2018; 15:641-652. [PMID: 28991525 DOI: 10.1016/s1875-5364(17)30093-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the loss of patients' memory and their cognitive abilities and the mechanism is not completely clear. Although a variety of drugs have been approved for the AD treatment, substances which can prevent and cure AD are still in great need. The effect of polysaccharides from traditional Chinese medicine (TCM) on anti-AD has gained great progress and attained more and more attention in recent years. In this review, research advances in TCM-polysaccharides on AD made in this decade are summarized.
Collapse
Affiliation(s)
- Qin Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shun-Chun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
5
|
Kisrieva YS, Petushkova NA, Samenkova NF, Kuznetsova GP, Larina OV, Teryaeva NB, Zgoda VG, Karuzina II, Usachev DU, Belyaev AY. Analysis of Blood Plasma Protein Composition in Patients with Cerebral Ischemia. Bull Exp Biol Med 2018; 165:22-26. [PMID: 29797129 DOI: 10.1007/s10517-018-4090-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 11/29/2022]
Abstract
Blood plasma proteome in patients with cerebral ischemia and healthy individuals was studied using comparative proteomic analysis based on tandem HPLC-MS/MS. Mass spectra were analysed in an automated mode using Progenesis LS-MS software and 256 proteins were identified. Significant quantitative differences were revealed for 20 proteins. It was found that changes in the blood plasma proteome in subjects with cerebral ischemia involved a wide range of proteins: molecular chaperones, fibrinolysis, angiogenesis, and immune system proteins, proteins involved in homeostasis maintenance, cell differentiation and proliferation, regulators of apoptosis, and cytoskeleton proteins.
Collapse
Affiliation(s)
- Yu S Kisrieva
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - N A Petushkova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - N F Samenkova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - G P Kuznetsova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - O V Larina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - N B Teryaeva
- N. N. Burdenko National Research and Practical Centre for Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V G Zgoda
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - I I Karuzina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - D U Usachev
- N. N. Burdenko National Research and Practical Centre for Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Yu Belyaev
- N. N. Burdenko National Research and Practical Centre for Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
6
|
Liu Y, Jiang S, Yang PY, Zhang YF, Li TJ, Rui YC. EF1A1/HSC70 Cooperatively Suppress Brain Endothelial Cell Apoptosis via Regulating JNK Activity. CNS Neurosci Ther 2016; 22:836-44. [PMID: 27324700 DOI: 10.1111/cns.12581] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022] Open
Abstract
AIMS In our previous study, eEF1A1 was identified to be a new target for protecting brain ischemia injury, but the mechanism remains largely unknown. In this study, we screened the downstream cellular protein molecules interacted with eEF1A1 and found mechanism of eEF1A1 in brain ischemia protection. METHODS AND RESULTS Through co-immunoprecipitation and mass spectrometry for searching the interaction of proteins with eEF1A1 in bEnd3 cells, HSC70 was identified to be a binding protein of eEF1A1, which was further validated by Western blot and immunofluorescence. eEF1A1 or HSC70 knockdown, respectively, increased OGD-induced apoptosis of brain vascular endothelial cells, which was detected by Annexin V-FITC/PI staining. HSC70 or eEF1A1 knockdown enhances phosphorylated JNK, phosphorylation of c-JUN (Ser63, Ser73), cleaved caspase-9, and cleaved caspase-3 expression, which could be rescued by JNK inhibitor. CONCLUSION In summary, our data suggest that the presence of chaperone forms of interaction between eEF1A1 and HSC70 in brain vascular endothelial cells, eEF1A1 and HSC70 can play a protective role in the process of ischemic stroke by inhibiting the JNK signaling pathway activation.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Shu Jiang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Yang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yue-Fan Zhang
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Tie-Jun Li
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yao-Cheng Rui
- Department of Pharmacology, College of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Lee S, Park S, Won J, Lee SR, Chang KT, Hong Y. The Incremental Induction of Neuroprotective Properties by Multiple Therapeutic Strategies for Primary and Secondary Neural Injury. Int J Mol Sci 2015; 16:19657-70. [PMID: 26295390 PMCID: PMC4581318 DOI: 10.3390/ijms160819657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
Neural diseases including injury by endogenous factors, traumatic brain injury, and degenerative neural injury are eventually due to reactive oxygen species (ROS). Thus ROS generation in neural tissues is a hallmark feature of numerous forms of neural diseases. Neural degeneration and the neural damage process is complex, involving a vast array of tissue structure, transcriptional/translational, electrochemical, metabolic, and functional events within the intact neighbors surrounding injured neural tissues. During aging, multiple changes involving physical, chemical, and biochemical processes occur from the molecular to the morphological levels in neural tissues. Among many recommended therapeutic candidates, melatonin also plays a role in protecting the nervous system from anti-inflammation and efficiently safeguards neuronal cells via antioxidants and other endogenous/exogenous beneficial factors. Therefore, given the wide range of mechanisms responsible for neuronal damage, multi-action drugs or therapies for the treatment of neural injury that make use of two or more agents and target several pathways may have greater efficacy in promoting functional recovery than a single therapy alone.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Sookyoung Park
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Life Sciences, Kyungnam University, Changwon 51767, Korea.
| | - Jinyoung Won
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Yonggeun Hong
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
| |
Collapse
|
8
|
Zhao H, Ji ZH, Liu C, Yu XY. Neuroprotective Mechanisms of 9-Hydroxy Epinootkatol Against Glutamate-Induced Neuronal Apoptosis in Primary Neuron Culture. J Mol Neurosci 2015; 56:808-814. [DOI: 10.1007/s12031-015-0511-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
9
|
Barlow KM, Brooks BL, MacMaster FP, Kirton A, Seeger T, Esser M, Crawford S, Nettel-Aguirre A, Zemek R, Angelo M, Kirk V, Emery CA, Johnson D, Hill MD, Buchhalter J, Turley B, Richer L, Platt R, Hutchison J, Dewey D. A double-blind, placebo-controlled intervention trial of 3 and 10 mg sublingual melatonin for post-concussion syndrome in youths (PLAYGAME): study protocol for a randomized controlled trial. Trials 2014; 15:271. [PMID: 25001947 PMCID: PMC4227124 DOI: 10.1186/1745-6215-15-271] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022] Open
Abstract
Background By the age of sixteen, one in five children will sustain a mild traumatic brain injury also known as concussion. Our research found that one in seven school children with mild traumatic brain injury suffer post-concussion syndrome symptoms for three months or longer. Post-concussion syndrome is associated with significant disability in the child and his/her family and yet there are no evidence-based medical treatments available. Melatonin has several potential mechanisms of action that could be useful following mild traumatic brain injury, including neuroprotective effects. The aim of this study is to determine if treatment with melatonin improves post-concussion syndrome in youths following mild traumatic brain injury. Our hypothesis is that treatment of post-concussion syndrome following mild traumatic brain injury with 3 or 10 mg of sublingual melatonin for 28 days will result in a decrease in post-concussion syndrome symptoms compared with placebo. Methods/Design Ninety-nine youths with mild traumatic brain injury, aged between 13 and 18 years, who are symptomatic at 30 days post-injury will be recruited. This study will be conducted as a randomized, double blind, placebo-controlled superiority trial of melatonin. Three parallel treatment groups will be examined with a 1:1:1 allocation: sublingual melatonin 3 mg, sublingual melatonin 10 mg, and sublingual placebo. Participants will receive treatment for 28 days. The primary outcome is a change on the Post-Concussion Symptom Inventory (Parent and Youth). The secondary outcomes will include neurobehavioral function, health-related quality of life and sleep. Neurophysiological and structural markers of change, using magnetic resonance imaging techniques and transcranial magnetic stimulation, will also be investigated. Discussion Melatonin is a safe and well-tolerated agent that has many biological properties that may be useful following a traumatic brain injury. This study will determine whether it is a useful treatment for children with post-concussion syndrome. Recruitment commenced on 4 December 2014. Trial registration This trial was registered on 6 June 2013 at ClinicalTrials.gov. Registration number: NCT01874847.
Collapse
Affiliation(s)
- Karen M Barlow
- Alberta Children's Hospital Research Institute, University of Calgary, Room 293, Heritage Medical Research Building 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Łos MJ. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2013; 112:24-49. [PMID: 24211851 DOI: 10.1016/j.pneurobio.2013.10.004] [Citation(s) in RCA: 773] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Shahla Shojaei
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Yeganeh
- Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada; Hospital for Sick Children Research Institute, Department of Physiology and Experimental Medicine, University of Toronto, Canada
| | - Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Jaganmohan R Jangamreddy
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Maryam Mehrpour
- INSERM U845, Research Center "Growth & Signaling" Paris Descartes University Medical School, France
| | - Jonas Christoffersson
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden
| | - Wiem Chaabane
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden; Department of Biology, Faculty of Sciences, Tunis University, Tunis, Tunisia
| | | | - Hessam H Kashani
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada; Manitoba Institute of Child Health, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Biology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali A Owji
- Department of Biochemistry, Recombinant Protein Laboratory, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Marek J Łos
- Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden.
| |
Collapse
|
11
|
Wang H, Yang YJ, Qian HY, Zhang Q, Xu H, Li JJ. Resveratrol in cardiovascular disease: what is known from current research? Heart Fail Rev 2012; 17:437-448. [PMID: 21688187 DOI: 10.1007/s10741-011-9260-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Resveratrol is a well-known antioxidant that exists in grape skin/seed, red wine, and the root of Polygonum cuspidatum, a traditional Chinese and Japanese medicinal material. Studies have found that resveratrol has many interesting properties, including anti-carcinogenic properties, anti-microbial and antiviral effects, the ability to reverse dyslipidemia and obesity, the ability to attenuate hyperglycemia and hyperinsulinemia, and the ability to protect endothelial function. Heart failure is the final consequence of the majority of cardiovascular diseases, and resveratrol has been shown to directly attenuate heart contraction. The cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. This article will mainly review recently published basic researches about the protective cardiovascular effects of resveratrol because these results may lead to the development of new clinical therapeutics in patients.
Collapse
Affiliation(s)
- Hong Wang
- Centre for Coronary Heart Disease, Department of Cardiology, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Xicheng District, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Chang CF, Huang HJ, Lee HC, Hung KC, Wu RT, Lin AMY. Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. J Pineal Res 2012; 52:312-21. [PMID: 22212051 DOI: 10.1111/j.1600-079x.2011.00945.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, the protective effect of melatonin on kainic acid (KA)-induced neurotoxicity involving autophagy and α-synuclein aggregation was investigated in the hippocampus of C57/BL6 mice. Our data showed that intraperitoneal injection of KA (20 mg/kg) increased LC3-II levels (a hallmark protein of autophagy) and reduced mitochondrial DNA content and cytochrome c oxidase levels (a protein marker of mitochondria). Atg7 siRNA transfection prevented KA-induced LC3-II elevations and mitochondria loss. Furthermore, Atg7 siRNA attenuated KA-induced activation of caspases 3/12 (biomarkers of apoptosis) and hippocampal neuronal loss, suggesting a pro-apoptotic role of autophagy in the KA-induced neurotoxicity. Nevertheless, KA-induced α-synuclein aggregation was not affected in the Atg7 siRNA-transfected hippocampus. The neuroprotective effect of melatonin (50 mg/kg) orally administered 1 hr prior to KA injection was studied. Melatonin was found to inhibit KA-induced autophagy-lysosomal activation by reducing KA-induced increases in LC3-II, lysosomal-associated membrane protein 2 (a biomarker of lysosomes) and cathepsin B (a lysosomal cysteine protease). Subsequently, KA-induced mitochondria loss was prevented in the melatonin-treated mice. At the same time, melatonin reduced KA-increased HO-1 levels and α-synuclein aggregation. Our immunoprecipitation study showed that melatonin enhanced ubiquitination of α-synuclein monomers and aggregates. The anti-apoptotic effect of melatonin was demonstrated by attenuating KA-induced DNA fragmentation, activation of caspases 3/12, and neuronal loss. Taken together, our study suggests that KA-induced neurotoxicity may be mediated by autophagy and α-synuclein aggregation. Moreover, melatonin may exert its neuroprotection via inhibiting KA-induced autophagy and a subsequent mitochondrial loss as well as reducing α-synuclein aggregation by enhancing α-synuclein ubiquitination in the CNS.
Collapse
Affiliation(s)
- Chia-Fu Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Armagan G, Turunc E, Kanit L, Yalcin A. Neuroprotection by mefenamic acid against D-serine: involvement of oxidative stress, inflammation and apoptosis. Free Radic Res 2012; 46:726-39. [PMID: 22369458 DOI: 10.3109/10715762.2012.669836] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mefenamic acid, a non-steroidal antiinflammatory drug (NSAID), directly and dose-dependently exhibits neuroprotective activity. In our study, we investigated the effects of mefenamic acid against d-serine on oxidative stress in the hippocampus, cortex and cerebellum of rats. Furthermore, the potential inflammatory and apoptotic effects of d-serine and potential protective effect of mefenamic acid were determined at mRNA and protein levels of TNF-α, IL-1β, Bcl-2 and Bax. We found that d-serine significantly increased oxidative stress, levels of inflammation- and apoptosis-related molecules in a region specific manner. Mefenamic acid treatment provided significant protection against the elevation of lipid peroxidation, protein oxidation, levels of TNF-α, IL-1β and Bax. As a conclusion, we suggest that d-serine, as a potential neurodegenerative agent, may have a pivotal role in the regulation of oxidative stress, inflammation and apoptosis; and NSAIDs, such as mefenamic acid, may assist other therapeutics in treating disorders where d-serine-induced neurotoxic mechanisms are involved in.
Collapse
Affiliation(s)
- Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | | | | | | |
Collapse
|
14
|
Lanoix D, Lacasse AA, Reiter RJ, Vaillancourt C. Melatonin: the smart killer: the human trophoblast as a model. Mol Cell Endocrinol 2012; 348:1-11. [PMID: 21889572 DOI: 10.1016/j.mce.2011.08.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/15/2011] [Indexed: 02/08/2023]
Abstract
Melatonin has both the ability to induce intrinsic apoptosis in tumor cells while it inhibits it in non-tumor cells. Melatonin kills tumor cells through induction of reactive oxygen species generation and activation of pro-apoptotic pathways. In contrast, melatonin promotes the survival of non-tumor cells due to its antioxidant properties and the inhibition of pro-apoptotic pathways. In primary human villous trophoblast, a known pseudo-tumorigenic tissue, melatonin promotes the survival through inhibition of the Bax/Bcl-2 pathway while in BeWo choriocarcinoma cell line melatonin induces permeabilization of the mitochondrial membrane leading to cellular death. These findings suggest that the trophoblast is a good model to study the differential effects of melatonin on the intrinsic apoptosis pathway. This review describes the differential effects of melatonin on the intrinsic apoptosis pathway in tumor and non-tumor cells and presents the trophoblast as a novel model system in which to study these effects of melatonin.
Collapse
Affiliation(s)
- Dave Lanoix
- INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | | | | | | |
Collapse
|
15
|
Niu C, Yip HK. Neuroprotective signaling mechanisms of telomerase are regulated by brain-derived neurotrophic factor in rat spinal cord motor neurons. J Neuropathol Exp Neurol 2011; 70:634-52. [PMID: 21666495 DOI: 10.1097/nen.0b013e318222b97b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Telomerase can promote neuron survival and can be regulated by growth factors such as brain-derived neurotrophic factor (BDNF). Increases of BDNF expression and telomerase activity after brain injury suggest that telomerase may be involved in BDNF-mediated neuroprotection. We investigated BDNF regulation of telomerase in rat spinal cord motor neurons (SMNs). Our results indicate that BDNF increases telomerase expression and activity levels in SMNs and activates mitogen-activated protein kinase/extracellular signal-regulated kinases 1 and 2 and phosphatidylinositol-3-OH kinase/protein kinase B signals, and their downstream transcription factors nuclear factor-κB, c-Myc, and Sp1. Administration of the tyrosine kinase receptor B inhibitor K-252a, the mitogen-activated protein kinase 1 inhibitor PD98059, and the phosphatidylinositol-3-OH kinase inhibitor LY294002 abolished BDNF-induced upregulation of these transcription factors and telomerase expression. The nuclear factor-κB inhibitor Bay11-7082 also attenuated c-Myc and Sp1 expression and increased telomerase promoter activity. Spinal cord motor neurons with higher telomerase levels induced by BDNF became more resistant to apoptosis; survival of SMNs that overexpressed the catalytic protein component of telomerase with reverse transcriptase activity was also enhanced against apoptosis. The neuronal survival-promoting effect of telomerase was mediated through the regulation of Bcl-2, Bax, p53, and maintenance of mitochondrial membrane potential. Taken together, these data suggest that the neuroprotective effect of BDNF via telomerase is mediated by inhibition of apoptotic pathways.
Collapse
Affiliation(s)
- Chenchen Niu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | |
Collapse
|
16
|
Torre AVDL, Junyent F, Folch J, Pelegrí C, Vilaplana J, Auladell C, Beas-Zarate C, Pallàs M, Camins A, Verdaguer E. Study of the pathways involved in apoptosis induced by PI3K inhibition in cerebellar granule neurons. Neurochem Int 2011; 59:159-67. [DOI: 10.1016/j.neuint.2011.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 01/28/2023]
|
17
|
Argiris K, Panethymitaki C, Tavassoli M. Naturally occurring, tumor-specific, therapeutic proteins. Exp Biol Med (Maywood) 2011; 236:524-36. [PMID: 21521711 DOI: 10.1258/ebm.2011.011004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emerging approach to cancer treatment known as targeted therapies offers hope in improving the treatment of therapy-resistant cancers. Recent understanding of the molecular pathogenesis of cancer has led to the development of targeted novel drugs such as monoclonal antibodies, small molecule inhibitors, mimetics, antisense and small interference RNA-based strategies, among others. These compounds act on specific targets that are believed to contribute to the development and progression of cancers and resistance of tumors to conventional therapies. Delivered individually or combined with chemo- and/or radiotherapy, such novel drugs have produced significant responses in certain types of cancer. Among the most successful novel compounds are those which target tyrosine kinases (imatinib, trastuzumab, sinutinib, cetuximab). However, these compounds can cause severe side-effects as they inhibit pathways such as epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor, which are also important for normal functions in non-transformed cells. Recently, a number of proteins have been identified which show a remarkable tumor-specific cytotoxic activity. This toxicity is independent of tumor type or specific genetic changes such as p53, pRB or EGFR aberrations. These tumor-specific killer proteins are either derived from common human and animal viruses such as E1A, E4ORF4 and VP3 (apoptin) or of cellular origin, such as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and MDA-7 (melanoma differentiation associated-7). This review aims to present a current overview of a selection of these proteins with preferential toxicity among cancer cells and will provide an insight into the possible mechanism of action, tumor specificity and their potential as novel tumor-specific cancer therapeutics.
Collapse
|
18
|
Rahvar M, Nikseresht M, Shafiee SM, Naghibalhossaini F, Rasti M, Panjehshahin MR, Owji AA. Effect of oral resveratrol on the BDNF gene expression in the hippocampus of the rat brain. Neurochem Res 2011; 36:761-5. [PMID: 21221775 DOI: 10.1007/s11064-010-0396-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2010] [Indexed: 01/12/2023]
Abstract
Resveratrol is a plant polyphenolic compound. Evidence indicates that resveratrol has beneficial effects against aging and neurodegenerative diseases. The goal of our study was in vivo examination of the effects of resveratrol on the abundance of mRNA encoding Brain Derived Neurotrophic Factor (BDNF) in the hippocampus of rat brain. Rats were administrated orally by different doses (2.5-20 mg/kg bwt) of resveratrol for 3, 10 and 30 days. Saline was used as control and 10% ethanol in saline was used as vehicle for resveratrol. Measurement of BDNF mRNA by Real-time RT-PCR showed that levels of the mRNA for BDNF were significantly and dose dependently elevated in the hippocampal tissues of rats. The findings suggest that the neuroprotective effects of resveratrol may be at least partly due to its inducing effects on the expression levels of the BDNF mRNA.
Collapse
Affiliation(s)
- Mostafa Rahvar
- Department of Biochemistry, Shiraz University of Medical Sciences, P.O. Box 1167, Shiraz, Iran
| | | | | | | | | | | | | |
Collapse
|