1
|
Papamichail A, Kourek C, Briasoulis A, Xanthopoulos A, Tsougos E, Farmakis D, Paraskevaidis I. Targeting Key Inflammatory Mechanisms Underlying Heart Failure: A Comprehensive Review. Int J Mol Sci 2023; 25:510. [PMID: 38203681 PMCID: PMC10778956 DOI: 10.3390/ijms25010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammation is a major component of heart failure (HF), causing peripheral vasculopathy and cardiac remodeling. High levels of circulating inflammatory cytokines in HF patients have been well recognized. The hallmark of the inflammatory imbalance is the insufficient production of anti-inflammatory mediators, a condition that leads to dysregulated cytokine activity. The condition progresses because of the pathogenic consequences of the cytokine imbalance, including the impact of endothelial dysfunction and adrenergic responsiveness deterioration, and unfavorable inotropic effects on the myocardium. Hence, to develop possible anti-inflammatory treatment options that will enhance the outcomes of HF patients, it is essential to identify the potential pathophysiological mechanisms of inflammation in HF. Inflammatory mediators, such as cytokines, adhesion molecules, and acute-phase proteins, are elevated during this process, highlighting the complex association between inflammation and HF. Therefore, these inflammatory markers can be used in predicting prognosis of the syndrome. Various immune cells impact on myocardial remodeling and recovery. They lead to stimulation, release of alarmins and risk-related molecule patterns. Targeting key inflammatory mechanisms seems a quite promising therapy strategy in HF. Cytokine modulation is only one of several possible targets in the fight against inflammation, as the potential molecular targets for therapy in HF include immune activation, inflammation, oxidative stress, alterations in mitochondrial bioenergetics, and autophagy.
Collapse
Affiliation(s)
- Adamantia Papamichail
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.); (C.K.); (A.B.)
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.); (C.K.); (A.B.)
| | - Alexandros Briasoulis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.); (C.K.); (A.B.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece;
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Dimitrios Farmakis
- Attikon University Hospital, Medical School of Athens, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece; (A.P.); (C.K.); (A.B.)
| |
Collapse
|
2
|
Ren L, Li Q, Li H, Zhan X, Yang R, Li Z, Fang Z, Liu T, Wei Z, Zhao J, Lin L, Mou W, Dai W, Bai Z, Xu G, Cao J. Polysaccharide extract from Isatidis Radix inhibits multiple inflammasomes activation and alleviate gouty arthritis. Phytother Res 2022; 36:3295-3312. [PMID: 35666808 DOI: 10.1002/ptr.7514] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/09/2022] [Accepted: 04/24/2022] [Indexed: 01/06/2023]
Abstract
The polysaccharide extract from Isatidis Radix exhibits potent antiinflammatory and antiviral activities, but the mechanism of Isatidis Radix polysaccharide (IRP) remains obscure. Herein, we reported that IRP blocked the activation of nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, leading to the inhibiting of caspase-1 cleavage and IL-1β secretion. Mechanistically, IRP did not inhibit NLRP3 inflammasome through suppressing mitochondrial reactive oxygen species (mtROS) production. However, IRP can significantly suppress the oligomerization of apoptosis-associated speck-like protein (ASC) and subsequently block the formation of inflammasome. Next, we evaluate the role of IRP in monosodium urate (MSU)-induced gout in vivo which is a NLRP3-associated disease. We also observed that oral administration of IRP can reduce the increased ankle thickness and the secretion of IL-1β, IL-18, IL-6, TNF-α and MPO of the mouse ankle joints caused by MSU crystals. Furthermore, flow cytometry analysis highlighted a significant modulation of T helper 17 cells (Th17)/regulatory T cells (Treg) following IRP treatment in MSU induced gout. Overall, our findings suggest that IRP has comprehensive and potent antiinflammatory effects and provide a reasonable therapeutic strategy in preventing inflammasome-associated diseases, such as inflammatory gouty arthritis.
Collapse
Affiliation(s)
- Lutong Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qiang Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruichuang Yang
- Department of Pharmacy, Inner Mongolia People's Hospital, Hohhot, China
| | - Zhiyong Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhie Fang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Lin
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqing Mou
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenzhang Dai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of Pharmacy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junling Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Correale M, Tricarico L, Fortunato M, Mazzeo P, Nodari S, Di Biase M, Brunetti ND. New Targets in Heart Failure Drug Therapy. Front Cardiovasc Med 2021; 8:665797. [PMID: 34026873 PMCID: PMC8131549 DOI: 10.3389/fcvm.2021.665797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in chronic heart failure management (either pharmacological or non-pharmacological), the prognosis of heart failure (HF) patients remains poor. This poor prognosis emphasizes the need for developing novel pathways for testing new HF drugs, beyond neurohumoral and hemodynamic modulation approaches. The development of new drugs for HF therapy must thus necessarily focus on novel approaches such as the direct effect on cardiomyocytes, coronary microcirculation, and myocardial interstitium. This review summarizes principal evidence on new possible pharmacological targets for the treatment of HF patients, mainly focusing on microcirculation, cardiomyocyte, and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Michele Correale
- Department of Cardiology, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Savina Nodari
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
4
|
Sun K, Li YY, Jin J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct Target Ther 2021; 6:79. [PMID: 33612829 PMCID: PMC7897720 DOI: 10.1038/s41392-020-00455-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/14/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The response of immune cells in cardiac injury is divided into three continuous phases: inflammation, proliferation and maturation. The kinetics of the inflammatory and proliferation phases directly influence the tissue repair. In cardiac homeostasis, cardiac tissue resident macrophages (cTMs) phagocytose bacteria and apoptotic cells. Meanwhile, NK cells prevent the maturation and transport of inflammatory cells. After cardiac injury, cTMs phagocytose the dead cardiomyocytes (CMs), regulate the proliferation and angiogenesis of cardiac progenitor cells. NK cells prevent the cardiac fibrosis, and promote vascularization and angiogenesis. Type 1 macrophages trigger the cardioprotective responses and promote tissue fibrosis in the early stage. Reversely, type 2 macrophages promote cardiac remodeling and angiogenesis in the late stage. Circulating macrophages and neutrophils firstly lead to chronic inflammation by secreting proinflammatory cytokines, and then release anti-inflammatory cytokines and growth factors, which regulate cardiac remodeling. In this process, dendritic cells (DCs) mediate the regulation of monocyte and macrophage recruitment. Recruited eosinophils and Mast cells (MCs) release some mediators which contribute to coronary vasoconstriction, leukocyte recruitment, formation of new blood vessels, scar formation. In adaptive immunity, effector T cells, especially Th17 cells, lead to the pathogenesis of cardiac fibrosis, including the distal fibrosis and scar formation. CMs protectors, Treg cells, inhibit reduce the inflammatory response, then directly trigger the regeneration of local progenitor cell via IL-10. B cells reduce myocardial injury by preserving cardiac function during the resolution of inflammation.
Collapse
Affiliation(s)
- Kang Sun
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
- Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
5
|
Naveed M, Han L, Hasnat M, Baig MMFA, Wang W, Mikrani R, Zhiwei L, Sembatya KR, Xie D, Zhou X. Suppression of TGP on myocardial remodeling by regulating the NF-κB pathway. Biomed Pharmacother 2018; 108:1460-1468. [PMID: 30372848 DOI: 10.1016/j.biopha.2018.09.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/16/2022] Open
|
6
|
Reddy SS, Agarwal H, Barthwal MK. Cilostazol ameliorates heart failure with preserved ejection fraction and diastolic dysfunction in obese and non-obese hypertensive mice. J Mol Cell Cardiol 2018; 123:46-57. [PMID: 30138626 DOI: 10.1016/j.yjmcc.2018.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/12/2018] [Accepted: 08/17/2018] [Indexed: 01/02/2023]
Abstract
Cilostazol (Ciloz) a potent Type III phosphodiesterase inhibitor is effective against inflammation, insulin resistance and cardiomyopathy. However, the effect of Ciloz on obesity-associated left ventricular diastolic dysfunction has not been explored yet. Hence, we examined the effect of Ciloz on cardiac remodelling and dysfunction in non-obese and obese-insulin resistant mice infused with AngiotensinII (AngII). Male C57BL/6 J mice were initially subjected to 19 weeks of chow or high fat diet (HFD) regimen and thereafter animals were randomised for AngII (1500 ng/kg/min, s.c) infusion or saline and Ciloz (50 mg/kg, p.o) for another 1 week. Obese and non-obese mice infused with AngII exhibited significant diastolic dysfunction and features of heart failure with preserved ejection fraction (HFpEF) since a decrease in fractional shortening and no change in ejection fraction were observed when compared with respective controls. Administration of AngII and Ciloz in HFD fed mice significantly improved the left ventricular function compared with AngII infused HFD mice as evinced from the echocardiographic data. Further, Ciloz treatment significantly reduced cardiomyocyte area, interstitial and perivascular fibrosis; and collagen deposition. Moreover, Ciloz reduced the inflammatory milieu in the heart as evinced by decreased F4/80+ and CD68+ cells; IL-1β and IL-6 gene transcripts. Quantitative assessment of the expression levels revealed substantial upregulation of MMP-9 (pro- and mature-forms) and α-SMA in the left ventricle of AngII infused HFD-fed mice, which was considerably suppressed by Ciloz regimen. The beneficial effect of Ciloz was associated with the normalization in gene expression of hypertrophic and fibrotic markers. Likewise, Ciloz administration markedly reduced the AngII and HFD induced TGF-β1/SMAD3 and Akt/mTOR signalling. Additionally, AngII administered and HFD-fed mice showed increased glycolytic flux, which was considerably diminished by Ciloz treatment as indicated from suppressed PKM2, HK-2, PDK-2, HIF-1α mRNA and GLUT-1 protein expression. Taken together, Ciloz might be therapeutically exploited against AngII and obesity-associated diastolic dysfunction thereby preventing overt heart failure.
Collapse
Affiliation(s)
- Sukka Santosh Reddy
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi 110025, India
| | - Heena Agarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
7
|
Zhu R, Sun H, Yu K, Zhong Y, Shi H, Wei Y, Su X, Xu W, Luo Q, Zhang F, Zhu Z, Meng K, Zhao X, Liu Y, Mao Y, Cheng P, Mao X, Zeng Q. Interleukin-37 and Dendritic Cells Treated With Interleukin-37 Plus Troponin I Ameliorate Cardiac Remodeling After Myocardial Infarction. J Am Heart Assoc 2016; 5:e004406. [PMID: 27919929 PMCID: PMC5210436 DOI: 10.1161/jaha.116.004406] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Excessive immune-mediated inflammatory reactions play a deleterious role in postinfarction ventricular remodeling. Interleukin-37 (IL-37) emerges as an inhibitor of both innate and adaptive immunity. However, the exact role of IL-37 and IL-37 plus troponin I (TnI)-treated dendritic cells (DCs) in ventricular remodeling after myocardial infarction (MI) remains elusive. METHODS AND RESULTS MI was induced by permanent ligation of the left anterior descending artery. Our results showed that treatment with recombinant human IL-37 significantly ameliorated ventricular remodeling after MI, as demonstrated by decreased infarct size, better cardiac function, lower mortality, restricted inflammatory responses, decreased myocardial fibrosis, and inhibited cardiomyocyte apoptosis. In vitro, we examined the phenotype of IL-37 plus TnI-conditioned DCs of male C57BL/6 mice and their capacity to influence the number of regulatory T cells. Our results revealed that IL-37 plus TnI-conditioned DCs obtained the characteristics of tolerogenic DCs (tDCs) and expanded the number of regulatory T cells when co-cultured with splenic CD4+ T cells. Interestingly, we also found that adoptive transfer of these antigen-loaded tDCs markedly increased the number of regulatory T cells in the spleen, attenuated the infiltration of inflammatory cells in the infarct hearts, decreased myocardial fibrosis, and improved cardiac function. CONCLUSIONS Our results reveal a beneficial role of IL-37 or tDCs treated with IL-37 plus TnI in post-MI remodeling that is possibly mediated by reestablishing a tolerogenic immune response, indicating that IL-37 or adoptive transfer of IL-37 plus TnI-treated tDCs may be a novel therapeutic strategy for ventricular remodeling after MI.
Collapse
Affiliation(s)
- Ruirui Zhu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haitao Sun
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunwu Yu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucheng Zhong
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huairui Shi
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhen Wei
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Su
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Xu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Luo
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyuan Zhang
- Department of Dermatology, Wuhan Union Hospital West Campus, Wuhan, China
| | - Zhengfeng Zhu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Meng
- Department of Cardiology, Wuhan Union Hospital West Campus, Wuhan, China
| | - Xiaoqi Zhao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhou Liu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Mao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Mao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
The CXCL10/CXCR3 Axis and Cardiac Inflammation: Implications for Immunotherapy to Treat Infectious and Noninfectious Diseases of the Heart. J Immunol Res 2016; 2016:4396368. [PMID: 27795961 PMCID: PMC5066021 DOI: 10.1155/2016/4396368] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence reveals involvement of T lymphocytes and adaptive immunity in the chronic inflammation associated with infectious and noninfectious diseases of the heart, including coronary artery disease, Kawasaki disease, myocarditis, dilated cardiomyopathies, Chagas, hypertensive left ventricular (LV) hypertrophy, and nonischemic heart failure. Chemokine CXCL10 is elevated in cardiovascular diseases, along with increased cardiac infiltration of proinflammatory Th1 and cytotoxic T cells. CXCL10 is a chemoattractant for these T cells and polarizing factor for the proinflammatory phenotype. Thus, targeting the CXCL10 receptor CXCR3 is a promising therapeutic approach to treating cardiac inflammation. Due to biased signaling CXCR3 also couples to anti-inflammatory signaling and immunosuppressive regulatory T cell formation when activated by CXCL11. Numbers and functionality of regulatory T cells are reduced in patients with cardiac inflammation, supporting the utility of biased agonists or biologicals to simultaneously block the pro-inflammatory and activate the anti-inflammatory actions of CXCR3. Other immunotherapy strategies to boost regulatory T cell actions include intravenous immunoglobulin (IVIG) therapy, adoptive transfer, immunoadsorption, and low-dose interleukin-2/interleukin-2 antibody complexes. Pharmacological approaches include sphingosine 1-phosphate receptor 1 agonists and vitamin D supplementation. A combined strategy of switching CXCR3 signaling from pro- to anti-inflammatory and improving Treg functionality is predicted to synergistically lessen adverse cardiac remodeling.
Collapse
|
9
|
|
10
|
Effect of Morphofunctional Properties of Mobilized Progenitor Cells of Patients with Chronic Heart Failure on the Efficiency of Autologous Intramyocardial Cell Transplantation. Bull Exp Biol Med 2014; 157:695-700. [DOI: 10.1007/s10517-014-2645-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Indexed: 10/24/2022]
|
11
|
Mangner N, Matsuo Y, Schuler G, Adams V. Cachexia in chronic heart failure: endocrine determinants and treatment perspectives. Endocrine 2013; 43:253-65. [PMID: 22903414 DOI: 10.1007/s12020-012-9767-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022]
Abstract
It is well documented in the current literature that chronic heart failure is often associated with cachexia, defined as involuntary weight loss of 5 % in 12 month or less. Clinical studies unraveled that the presence of cachexia decreases significantly mean survival of the patient. At the molecular level mainly myofibrillar proteins are degraded, although a reduced protein synthesis may also contribute to the loss of muscle mass. Endocrine factors clearly regulate muscle mass and function by influencing the normally precisely controlled balance between protein breakdown and protein synthesis The aim of the present article is to review the knowledge in the field with respect to the role of endocrine factors for the regulation of cachexia in patients with CHF and deduce treatment perspectives.
Collapse
Affiliation(s)
- Norman Mangner
- Heart Center Leipzig, University Leipzig, Strümpellstrasse 39, 04289, Leipzig, Germany
| | | | | | | |
Collapse
|
12
|
Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol 2011; 107:232. [DOI: 10.1007/s00395-011-0232-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/14/2011] [Accepted: 11/25/2011] [Indexed: 12/21/2022]
|
13
|
Affiliation(s)
- Angeliki Asimaki
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
14
|
Sweeney G, Litwin SE, Abel ED. Obesity and Cardiac Dysfunction. METABOLIC BASIS OF OBESITY 2011:257-292. [DOI: 10.1007/978-1-4419-1607-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Lu J, Gong D, Choong SY, Xu H, Chan YK, Chen X, Fitzpatrick S, Glyn-Jones S, Zhang S, Nakamura T, Ruggiero K, Obolonkin V, Poppitt SD, Phillips ARJ, Cooper GJS. Copper(II)-selective chelation improves function and antioxidant defences in cardiovascular tissues of rats as a model of diabetes: comparisons between triethylenetetramine and three less copper-selective transition-metal-targeted treatments. Diabetologia 2010; 53:1217-26. [PMID: 20221822 DOI: 10.1007/s00125-010-1698-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/22/2010] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Treatment with the Cu(II)-selective chelator triethylenetetramine (TETA) improves cardiovascular disease in human patients, and cardiac and vascular/renal disease in rats used as a model of diabetes. Here we tested two hypotheses: first, that TETA elicits greater improvement in organ function than less Cu-selective transition-metal-targeted treatments; second, that the therapeutic actions of TETA are consistent with mediation through suppression of oxidative stress. METHODS Rats were made diabetic with streptozotocin (55 mg/kg, i. v.) and treated from 8 weeks after disease induction for the following 8 weeks with effective dosages of oral TETA, or one of three less Cu-selective transition-metal-targeted treatments: D-penicillamine, deferiprone or Zn acetate. Treatment effects were measured in ex vivo cardiac and aortic tissues, plasma and urine. RESULTS Diabetes damaged both cardiac and renal/vascular function by impairing the ability of cardiac output to respond physiologically to rising afterload, and by significantly elevating the urinary albumin/creatinine ratio. Diabetes also lowered total antioxidant potential and heparan sulphate levels in cardiac and arterial tissues, and serum ferroxidase activity, whereas it elevated urinary heparan sulphate excretion. TETA treatment rectified or partially rectified all these defects, whereas the other three experimental treatments were ineffectual. By contrast, none of the four drug treatments lowered diabetes-mediated elevations of plasma glucose or lipid concentrations. CONCLUSIONS/INTERPRETATION TETA may limit the cardiac and renal/vascular damage inflicted by diabetes through its actions to reinforce antioxidant defence mechanisms, probably acting through selective chelation of 'loosely-bound'/chelatable Cu(II). It may also improve heparan sulphate homeostasis and bolster antioxidant defence by increasing vascular extracellular superoxide dismutase activity. Urinary albumin/creatinine ratio might prove useful for monitoring TETA treatment.
Collapse
Affiliation(s)
- J Lu
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kåsin JI, Kjekshus J, Aukrust P, Mollnes TE, Wagstaff A. A helicopter flight does not induce significant changes in systemic biomarker profiles. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:462-74. [PMID: 19333819 DOI: 10.1080/00365510902745360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Whole-body vibration and noise are inherent characteristics of helicopter operations. The helicopter pilot is affected by vibration from both low-frequency noise and mechanical vibration sources. The way this energy is transmitted to different tissues and organs depends on intensity, frequency and resonance phenomena within the body. Whole-body vibration is known to affect the muscular and skeletal system in the lower part of the spine, but less is known about the response at the cellular level to this stimulation. In some studies, chronic pathological changes have been described in different types of tissue in people exposed to low-frequency noise and vibration. The aim of the present study was to investigate possible cellular reactions to acute exposure to low-frequency noise and vibration in a helicopter. Thirteen healthy males aged 38 (18-69) years were subjected to a 3.5 h helicopter flight in a Westland Sea King Rescue helicopter. Blood tests taken before and after the flight were analysed for more than 40 parameters, including acute phase reactants, markers of leucocyte and platelet activation, complement and hemostasis markers, as well as a broad panel of cytokines, chemokines, growth factors and cell adhesion molecules. The subjects served as their own controls. With the exception of an increase in vascular cell adhesion molecule-1 (VCAM-1) during the flight, no statistically significant changes in the biomarkers were found after controlling for diurnal variation in the control blood tests, which were observed independently of the helicopter flight. In conclusion, one helicopter flight does not induce measurable changes in systemic biomarkers.
Collapse
Affiliation(s)
- Jan Ivar Kåsin
- Norwegian Defence Medical Services, Institute of Aviation Medicine, Oslo, Norway. jik@fl ymed.no
| | | | | | | | | |
Collapse
|
17
|
von Haehling S, Lainscak M, Springer J, Anker SD. Cardiac cachexia: a systematic overview. Pharmacol Ther 2008; 121:227-52. [PMID: 19061914 DOI: 10.1016/j.pharmthera.2008.09.009] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 09/03/2008] [Indexed: 01/10/2023]
Abstract
Cardiac cachexia as a terminal stage of chronic heart failure carries a poor prognosis. The definition of this clinical syndrome has been a matter of debate in recent years. This review describes the ongoing discussion about this issue and the complex pathophysiology of cardiac cachexia and chronic heart failure with particular focus on immunological, metabolic, and hormonal aspects at the intracellular and extracellular level. These include regulators such as neuropeptide Y, leptin, melanocortins, ghrelin, growth hormone, and insulin. The regulation of feeding is discussed as are nutritional aspects in the treatment of the disease. The mechanisms of wasting in different body compartments are described. Moreover, we discuss several therapeutic approaches. These include appetite stimulants like megestrol acetate, medroxyprogesterone acetate, and cannabinoids. Other drug classes of interest comprise angiotensin-converting enzyme inhibitors, beta-blockers, anabolic steroids, beta-adrenergic agonists, anti-inflammatory substances, statins, thalidomide, proteasome inhibitors, and pentoxifylline.
Collapse
Affiliation(s)
- Stephan von Haehling
- Applied Cachexia Research, Department of Cardiology, Charité Medical School, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Abstract
The dramatic increase in the prevalence of obesity and its strong association with cardiovascular disease have resulted in unprecedented interest in understanding the effects of obesity on the cardiovascular system. A consistent, but puzzling clinical observation is that obesity confers an increased susceptibility to the development of cardiac disease, while at the same time affording protection against subsequent mortality (termed the obesity paradox). In this review we focus on evidence available from human and animal model studies and summarize the ways in which obesity can influence structure and function of the heart. We also review current hypotheses regarding mechanisms linking obesity and various aspects of cardiac remodeling. There is currently great interest in the role of adipokines, factors secreted from adipose tissue, and their role in the numerous cardiovascular complications of obesity. Here we focus on the role of leptin and the emerging promise of adiponectin as a cardioprotective agent. The challenge of understanding the association between obesity and heart failure is complicated by the multifaceted interplay between various hemodynamic, metabolic, and other physiological factors that ultimately impact the myocardium. Furthermore, the end result of obesity-associated changes in the myocardial structure and function may vary at distinct stages in the progression of remodeling, may depend on the individual pathophysiology of heart failure, and may even remain undetected for decades before clinical manifestation. Here we summarize our current knowledge of this complex yet intriguing topic.
Collapse
Affiliation(s)
- E Dale Abel
- Department of Biology, York University, Toronto, Canada
| | | | | |
Collapse
|
19
|
Charalambous BM, Stephens RCM, Feavers IM, Montgomery HE. ROLE OF BACTERIAL ENDOTOXIN IN CHRONIC HEART FAILURE. Shock 2007; 28:15-23. [PMID: 17510602 DOI: 10.1097/shk.0b013e318033ebc5] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proinflammatory cytokines are now thought to play a key role in the pathophysiology of chronic heart failure, driving both symptomatic presentation and disease progression. We propose that this proinflammatory state, in turn, may be sustained through a chronic release of enterically derived bacterial endotoxin. Human trials have indicated that bacterial decontamination of the gut with concomitant decrease in lipopolysaccharide (LPS) has a positive outcome on heart disease patients. Antiendotoxin antibodies may thus represent therapeutic agents in this setting. Previously, antiendotoxin antibodies were targeted to the inner hydrophobic lipid A moiety of endotoxin in an attempt to neutralize its toxicity. These antibodies failed because they lacked specificity and bound to LPS weakly. In contrast, our studies on antiendotoxin antibodies have revealed that antibodies targeted to the hydrophilic oligosaccharides of the endotoxin have the potential to bind specifically with high affinity. Development of immunotherapeutics that can reduce systemic LPS or other agents, such as bactericidal/permeability-increasing protein that can neutralize LPS and limit inflammation safely, will enable the role of LPS in chronic heart failure to be elucidated and may pave the way to develop a new generation of effective therapeutic agents that may be directed to the treatment of chronic heart failure.
Collapse
|
20
|
Gallardo JM, de Carmen Prado-Uribe M, Amato D, Paniagua R. Inflammation and Oxidative Stress Markers by Pentoxifylline Treatment in Rats with Chronic Renal Failure and High Sodium Intake. Arch Med Res 2007; 38:34-8. [PMID: 17174720 DOI: 10.1016/j.arcmed.2006.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/16/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Inflammation is a risk factor for mortality in patients with chronic renal failure (CRF). Prevention of extracellular fluid volume expansion and the use of certain drugs such as pentoxifylline (PF) may reduce inflammation and oxidative stress. The aim of this study is to analyze the effect of dietary sodium and PF treatment on the levels of inflammation and oxidative stress markers in rats with CRF. METHODS CRF was induced in rats by 5/6 nephrectomy. Different groups of rats with CRF received low sodium (LNa, 0.01% sodium chloride [NaCl] in the diet), normal sodium (NNa, 0.05% NaCl in the diet), or high sodium diet (HNa, as in NNa plus 0.015% NaCl in the drinking water). An additional group received HNa plus PF treatment (25 mg/kg in the drinking water) for 60 days. Circulating creatinine, tumor necrosis factor alpha (TNF-alpha), nitrites, thiols, malondialdehyde (MDA), and advanced oxidation protein products (AOPP) were measured. RESULTS Higher sodium intake was associated with higher serum creatinine levels (median; interquartile range), LNa, 1.255; 0.715, NNa, 1.305; 0.495, HNa, 2.015; 1.115 mg/dL (p < 0.05), TNF-alpha levels, LNa, 2.7; 23.6, NNa, 36.7; 47.7, HNa, 263.7; 126.5 pg/mL, and AOPP, LNa, 31.72; 7.55, NNa, 45.89; 9.38, HNa, 60.41; 37.42 microg/mL. MDA was not modified by sodium intake. PF treatment decreased serum TNF-alpha (151.7 pg/mL, p < 0.5) and AOPP (49.83 micromol/L, p < 0.03), and increased nitrites and thiols levels when compared with HNa rats. CONCLUSIONS High sodium intake increases the serum concentration of inflammation and oxidative stress markers; these changes are prevented by PF treatment.
Collapse
Affiliation(s)
- Juan M Gallardo
- Unidad de Investigación Médica en Enfermedades Nefrológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, DF, México. jmgallardo2salud.gob.mx
| | | | | | | |
Collapse
|