1
|
Wang W, Liu X, Li X, Geng B, Zhao E. Application of MRI imaging technology based on magnetic nanoparticles in diagnosis and prognosis evaluation of prostate cancer. SLAS Technol 2024; 29:100225. [PMID: 39581264 DOI: 10.1016/j.slast.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Objective: Prostate cancer is one of the most common malignant tumors in men. Early diagnosis and prognosis evaluation are of great significance for the treatment and prevention of prostate cancer. The purpose of this study was to explore the application of magnetic nanoparticle-based MRI imaging technology in the diagnosis and prognosis assessment of prostate cancer. A total of 81 patients in our hospital from September 2018 to January 2021 were selected as the study objects, all suspected prostate cancer patients, and prostate detection was performed under the guidance of MRI and rectal ultrasound.According to the pathological results, the patients were divided into prostate cancer cluster group and benign prostatic hyperplasia group. Imaging of prostate cancer is achieved by the response of magnetic nanoparticles to magnetic fields. MRI images of patients were collected and analyzed using professional software. It can provide high-resolution images that enable accurate detection and localization of tumors, and the technology can also assess the severity of prostate cancer and predict a patient's prognosis.
Collapse
Affiliation(s)
- Wanhui Wang
- Department of Urology, The Second Afffliated Hospital of Harbin Medical University, Harbin 150086, PR China.
| | - Xiaodan Liu
- Department of Clean Operation, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Xuedong Li
- Department of Urology, The Second Afffliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | - Bo Geng
- Department of Urology, The Second Afffliated Hospital of Harbin Medical University, Harbin 150086, PR China
| | - Enyang Zhao
- Department of Urology, The Second Afffliated Hospital of Harbin Medical University, Harbin 150086, PR China
| |
Collapse
|
2
|
Wu X, Zeng Z, Peng K, Ren D, Zhang L. Regulatory mechanism of DHRS2-modified human umbilical cord mesenchymal stem cells-derived exosomes in prostate cancer cell proliferation and apoptosis. Tissue Cell 2023; 82:102078. [PMID: 37060745 DOI: 10.1016/j.tice.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Prostate cancer (PCa) is a prevalent cause of morbidity and mortality. DHRS2-modified human umbilical cord mesenchymal stem cells-derived exosomes (hUC-MSCs-derived exos) function in PCa. We explored the mechanism of DHRS2-modified hUC-MSCs-derived exos in PCa cell malignant behaviors. DHRS2 expression levels in WPMY-1 cells and 4 PCa cell lines were detected by RT-qPCR and Western blot. 22Rv1/DU145 cells with high/low DHRS2 expression were selected to establish the low/high DHRS2 expression models by transfection. Cell proliferation and apoptosis were detected by CCK-8, colony formation assays, and flow cytometry. hUC-MSCs were identified by oil red O, alizarin staining, and flow cytometry. Exos were extracted from hUC-MSCs by ultracentrifugation and identified by transmission electron microscopy, Nano series-Nano-ZS, and Western blot. DU145 cells were selected for in vitro study to further study the effects of DHRS2-modified exos on cell proliferation and apoptosis. The effect of DHRS2-modified exos on cell cycle distribution was detected by flow cytometry. DHRS2 was repressed in PCa cells. DHRS2 overexpression suppressed PCa cell proliferation and promoted apoptosis. Exos were successfully isolated from hUC-MSC. DHRS2-modified hUC-MSCs-derived exos carried DHRS2 into PCa cells and blocked malignant behaviors. Briefly, DHRS2 was repressed in PCa cells. DHRS2-modified hUC-MSCs-derived exos blocked PCa cell proliferation and enhanced apoptosis.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China
| | - Zhongyi Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China
| | - Kai Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China
| | - Da Ren
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China
| | - Lei Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
3
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
4
|
Emanuel O, Liu J, Schartinger VH, Nei WL, Chan YY, Tsang CM, Riechelmann H, Masterson L, Haybaeck J, Oppermann U, Willems SM, Ooft ML, Wollmann G, Howard D, Vanhaesebroeck B, Lund VJ, Royle G, Chua MLK, Lo KW, Busson P, Lechner M. SSTR2 in Nasopharyngeal Carcinoma: Relationship with Latent EBV Infection and Potential as a Therapeutic Target. Cancers (Basel) 2021; 13:4944. [PMID: 34638429 PMCID: PMC8508244 DOI: 10.3390/cancers13194944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor, most commonly located in the pharyngeal recess and endemic to parts of Asia. It is often detected at a late stage which is associated with poor prognosis (5-year survival rate of 63%). Treatment for this malignancy relies predominantly on radiotherapy and/or systemic chemotherapy, which can be associated with significant morbidity and impaired quality of life. In endemic regions NPC is associated with infection by Epstein-Barr virus (EBV) which was shown to upregulate the somatostatin receptor 2 (SSTR2) cell surface receptor. With recent advances in molecular techniques allowing for an improved understanding of the molecular aetiology of this disease and its relation to SSTR2 expression, we provide a comprehensive and up-to-date overview of this disease and highlight the emergence of SSTR2 as a key tumor biomarker and promising target for imaging and therapy.
Collapse
Affiliation(s)
- Oscar Emanuel
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
| | - Jacklyn Liu
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
| | - Volker H. Schartinger
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.H.S.); (H.R.)
| | - Wen Long Nei
- National Cancer Centre, Divisions of Radiation Oncology and Medical Sciences, Singapore 169610, Singapore; (W.L.N.); (M.L.K.C.)
- Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yuk Yu Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China; (Y.Y.C.); (C.M.T.); (K.W.L.)
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China; (Y.Y.C.); (C.M.T.); (K.W.L.)
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.H.S.); (H.R.)
| | - Liam Masterson
- Department of Otolaryngology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Udo Oppermann
- Botnar Research Centre, University of Oxford, Oxford OX1 2JD, UK;
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79085 Freiburg, Germany
| | - Stefan M. Willems
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.M.W.); (M.L.O.)
- Department of Pathology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Marc L. Ooft
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.M.W.); (M.L.O.)
- King’s College Hospitals, NHS Foundation Trust, London SE5 9RS, UK
| | - Guido Wollmann
- Institute of Virology and Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David Howard
- ENT Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 9EP, UK;
- Royal National Throat, Nose and Ear Hospital, University College London Hospitals NHS Trust, London WC1E 6DG, UK
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
| | - Valerie J. Lund
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
- Royal National Throat, Nose and Ear Hospital, University College London Hospitals NHS Trust, London WC1E 6DG, UK
| | - Gary Royle
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
| | - Melvin L. K. Chua
- National Cancer Centre, Divisions of Radiation Oncology and Medical Sciences, Singapore 169610, Singapore; (W.L.N.); (M.L.K.C.)
- Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China; (Y.Y.C.); (C.M.T.); (K.W.L.)
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Pierre Busson
- CNRS-UMR 9018-Metsy, Gustave Roussy and Université Paris-Saclay, 94805 Villejuif, France
| | - Matt Lechner
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
- Rhinology & Endoscopic Skull Base Surgery, Department of Otolaryngology-H&N Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| |
Collapse
|
5
|
Bock N, Kryza T, Shokoohmand A, Röhl J, Ravichandran A, Wille ML, Nelson CC, Hutmacher DW, Clements JA. In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer. SCIENCE ADVANCES 2021; 7:eabg2564. [PMID: 34193425 PMCID: PMC8245033 DOI: 10.1126/sciadv.abg2564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
While androgen-targeted therapies are routinely used in advanced prostate cancer (PCa), their effect is poorly understood in treating bone metastatic lesions and ultimately results in the development of metastatic castrate resistant prostate cancer (mCRPC). Here, we used an all-human microtissue-engineered model of mineralized metastatic tissue combining human osteoprogenitor cells, 3D printing and prostate cancer cells, to assess the effects of the antiandrogens, bicalutamide, and enzalutamide in this microenvironment. We demonstrate that cancer/bone stroma interactions and antiandrogens drive cancer progression in a mineralized microenvironment. Probing the bone microenvironment with enzalutamide led to stronger cancer cell adaptive responses and osteomimicry than bicalutamide. Enzalutamide presented with better treatment response, in line with enzalutamide delaying time to bone-related events and enzalutamide extending survival in mCRPC. The all-human microtissue-engineered model of mineralized metastatic tissue presented here represents a substantial advance to dissect the role of the bone tumor microenvironment and responses to therapies for mCPRC.
Collapse
Affiliation(s)
- Nathalie Bock
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), QUT, Kelvin Grove, 4059 QLD, Australia
| | - Thomas Kryza
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| | - Ali Shokoohmand
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
| | - Joan Röhl
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| | - Akhilandeshwari Ravichandran
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
| | - Marie-Luise Wille
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), QUT, Kelvin Grove, 4059 QLD, Australia
- Bone and Joint Disorders Program, School of Mechanical Medical, and Process Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, 4000 QLD, Australia
| | - Colleen C Nelson
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| | - Dietmar W Hutmacher
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia.
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), QUT, Kelvin Grove, 4059 QLD, Australia
- Bone and Joint Disorders Program, School of Mechanical Medical, and Process Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, 4000 QLD, Australia
- ARC Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, 4059 QLD, Australia
| | - Judith A Clements
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia.
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| |
Collapse
|
6
|
Shokoohmand A, Ren J, Baldwin J, Atack A, Shafiee A, Theodoropoulos C, Wille ML, Tran PA, Bray LJ, Smith D, Chetty N, Pollock PM, Hutmacher DW, Clements JA, Williams ED, Bock N. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials 2019; 220:119402. [PMID: 31400612 DOI: 10.1016/j.biomaterials.2019.119402] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023]
Abstract
Representative in vitro models that mimic the native bone tumor microenvironment are warranted to support the development of more successful treatments for bone metastases. Here, we have developed a primary cell 3D model consisting of a human osteoblast-derived tissue-engineered construct (hOTEC) indirectly co-cultured with patient-derived prostate cancer xenografts (PDXs), in order to study molecular interactions in a patient-derived microenvironment context. The engineered biomimetic microenvironment had high mineralization and embedded osteocytes, and supported a high degree of cancer cell osteomimicry at the gene, protein and mineralization levels when co-cultured with prostate cancer PDXs from a lymph node metastasis (LuCaP35) and bone metastasis (BM18) from patients with primary prostate cancer. This fully patient-derived model is a promising tool for the assessment of new molecular mechanisms and as a personalized pre-clinical platform for therapy testing for patients with prostate cancer bone metastases.
Collapse
Affiliation(s)
- Ali Shokoohmand
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Jiongyu Ren
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Jeremy Baldwin
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Anthony Atack
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Abbas Shafiee
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Christina Theodoropoulos
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Marie-Luise Wille
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Phong A Tran
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Deborah Smith
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia; Department of Anatomical Pathology, Mater Hospital Brisbane, QLD, Australia
| | - Naven Chetty
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia; Department of Anatomical Pathology, Mater Hospital Brisbane, QLD, Australia
| | - Pamela M Pollock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Judith A Clements
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Elizabeth D Williams
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Nathalie Bock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Bock N, Shokoohmand A, Kryza T, Röhl J, Meijer J, Tran PA, Nelson CC, Clements JA, Hutmacher DW. Engineering osteoblastic metastases to delineate the adaptive response of androgen-deprived prostate cancer in the bone metastatic microenvironment. Bone Res 2019; 7:13. [PMID: 31044095 PMCID: PMC6486620 DOI: 10.1038/s41413-019-0049-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/13/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
While stromal interactions are essential in cancer adaptation to hormonal therapies, the effects of bone stroma and androgen deprivation on cancer progression in bone are poorly understood. Here, we tissue-engineered and validated an in vitro microtissue model of osteoblastic bone metastases, and used it to study the effects of androgen deprivation in this microenvironment. The model was established by culturing primary human osteoprogenitor cells on melt electrowritten polymer scaffolds, leading to a mineralized osteoblast-derived microtissue containing, in a 3D setting, viable osteoblastic cells, osteocytic cells, and appropriate expression of osteoblast/osteocyte-derived mRNA and proteins, and mineral content. Direct co-culture of androgen receptor-dependent/independent cell lines (LNCaP, C4-2B, and PC3) led cancer cells to display functional and molecular features as observed in vivo. Co-cultured cancer cells showed increased affinity to the microtissues, as a function of their bone metastatic potential. Co-cultures led to alkaline phosphatase and collagen-I upregulation and sclerostin downregulation, consistent with the clinical marker profile of osteoblastic bone metastases. LNCaP showed a significant adaptive response under androgen deprivation in the microtissues, with the notable appearance of neuroendocrine transdifferentiation features and increased expression of related markers (dopa decarboxylase, enolase 2). Androgen deprivation affected the biology of the metastatic microenvironment with stronger upregulation of androgen receptor, alkaline phosphatase, and dopa decarboxylase, as seen in the transition towards resistance. The unique microtissues engineered here represent a substantial asset to determine the involvement of the human bone microenvironment in prostate cancer progression and response to a therapeutic context in this microenvironment.
Collapse
Affiliation(s)
- Nathalie Bock
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia
- Translational Research Institute (TRI), Woolloongabba, QLD 4102 Australia
- Centre in Regenerative Medicine, QUT, Kelvin Grove, QLD 4059 Australia
| | - Ali Shokoohmand
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia
- Translational Research Institute (TRI), Woolloongabba, QLD 4102 Australia
- Centre in Regenerative Medicine, QUT, Kelvin Grove, QLD 4059 Australia
| | - Thomas Kryza
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia
- Translational Research Institute (TRI), Woolloongabba, QLD 4102 Australia
| | - Joan Röhl
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia
- Translational Research Institute (TRI), Woolloongabba, QLD 4102 Australia
| | - Jonelle Meijer
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia
- Translational Research Institute (TRI), Woolloongabba, QLD 4102 Australia
- Centre in Regenerative Medicine, QUT, Kelvin Grove, QLD 4059 Australia
| | - Phong A. Tran
- Centre in Regenerative Medicine, QUT, Kelvin Grove, QLD 4059 Australia
- Bone and Joint Disorders Program, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD 4000 Australia
| | - Colleen C. Nelson
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia
- Translational Research Institute (TRI), Woolloongabba, QLD 4102 Australia
| | - Judith A. Clements
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia
- Translational Research Institute (TRI), Woolloongabba, QLD 4102 Australia
| | - Dietmar W. Hutmacher
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD 4000 Australia
- Translational Research Institute (TRI), Woolloongabba, QLD 4102 Australia
- Centre in Regenerative Medicine, QUT, Kelvin Grove, QLD 4059 Australia
- Bone and Joint Disorders Program, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD 4000 Australia
- Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, QLD 4059 Australia
| |
Collapse
|
8
|
Sung E, Kwon OK, Lee JM, Lee S. Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells. Electrophoresis 2017. [PMID: 28627741 DOI: 10.1002/elps.201700052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer is the leading type of cancer diagnosed, and the most frequent cause of worldwide male cancer-related deaths annually. The limitations of current prostate cancer screening tests demand the identification of novel biomarkers for the early diagnosis of prostate cancer bone metastasis. In the present study, we performed a proteomic analysis of secreted proteins from the prostate cancer bone metastasis cell line, PC-3, and the normal prostate cell line, RWPE-1. We thus quantified 917 proteins, of which 68 were found to be secreted at higher levels by PC-3 than by RWPE-1 cells via LC-MS/MS. To characterize the highly secreted proteins in the PC-3 cell line and thereby identify biomarker proteins, we divided the quantifiable proteins into four quantitative categories (Q1-Q4). The KEGG lysine degradation and osteoclast differentiation pathways were demonstrated to be enriched in the highly secreted Q4 protein group. Transforming growth factor (TGF) beta family proteins related to osteoclast differentiation were identified as key regulators of PC-3 cell proliferation. Immunoblotting was used to confirm the observed high level of pentraxin, follistatin, TGF-beta family members, and serpin B3 secretion by PC-3 cells. From the collective results of the present study, we suggest that serpin B3 is a promising novel biomarker candidate for the diagnosis of prostate cancer bone metastasis.
Collapse
Affiliation(s)
- EunJi Sung
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Koo KC, Park SU, Kim KH, Rha KH, Hong SJ, Yang SC, Chung BH. Prognostic Impacts of Metastatic Site and Pain on Progression to Castrate Resistance and Mortality in Patients with Metastatic Prostate Cancer. Yonsei Med J 2015; 56:1206-12. [PMID: 26256961 PMCID: PMC4541648 DOI: 10.3349/ymj.2015.56.5.1206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate predictors of progression to castration-resistant prostate cancer (CRPC) and cancer-specific mortality (CSM) in patients with metastatic prostate cancer (mPCa). MATERIALS AND METHODS A retrospective analysis was performed on 440 consecutive treatment-naïve patients initially diagnosed with mPCa between August 2000 and June 2012. Patient age, body mass index (BMI), Gleason score, prostate-specific antigen (PSA), PSA nadir, American Joint Committee on Cancer stage, Visual Analogue Scale pain score, Eastern Cooperative Oncology Group performance score (ECOG PS), PSA response to hormone therapy, and metastatic sites were assessed. Cox-proportional hazards regression analyses were used to evaluate survivals and predictive variables of men with bone metastasis stratified according to the presence of pain, compared to men with visceral metastasis. RESULTS Metastases were most often found in bone (75.4%), followed by lung (16.3%) and liver (8.3%) tissues. Bone metastasis, pain, and high BMI were associated with increased risks of progression to CRPC, and bone metastasis, pain, PSA nadir, and ECOG PS≥1 were significant predictors of CSM. During the median follow-up of 32.0 (interquartile range 14.7-55.9) months, patients with bone metastasis with pain and patients with both bone and visceral metastases showed the worst median progression to CRPC-free and cancer-specific survivals, followed by men with bone metastasis without pain. Patients with visceral metastasis had the best median survivals. CONCLUSION Metastatic spread and pain patterns confer different prognosis in patients with mPCa. Bone may serve as a crucial microenvironment in the development of CRPC and disease progression.
Collapse
Affiliation(s)
- Kyo Chul Koo
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Un Park
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ki Hong Kim
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Koon Ho Rha
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Joon Hong
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Choul Yang
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Ha Chung
- Department of Urology and Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Pienta KJ, Walia G, Simons JW, Soule HR. Beyond the androgen receptor: new approaches to treating metastatic prostate cancer. Report of the 2013 Prouts Neck Prostate Cancer Meeting. Prostate 2014; 74:314-20. [PMID: 24249419 PMCID: PMC4253084 DOI: 10.1002/pros.22753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 10/30/2013] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The Prouts Neck Meetings on Prostate Cancer began in 1985 through the efforts of the Organ Systems Branch of the National Cancer Institute to stimulate new research and focused around specific questions in prostate tumorigenesis and therapy. METHODS These meetings were think tanks, composed of around 75 individuals, and divided equally between young investigators and senior investigators. Over the years, many new concepts related to prostate cancer resulted from these meetings and the prostate cancer community has sorely missed them since the last one in 2007. RESULTS We report here the first of a new series of meetings. The 2013 meeting focused on defining how the field of treatment for metastatic prostate cancer needs to evolve to impact survival and was entitled: "Beyond AR: New Approaches to Treating Metastatic Prostate Cancer." As castrate resistant prostate cancers escape second generation anti-androgen agents, three phenotypes/genotypes of CRPC appear to be increasing in prevalence and remain resistant to treatment: NeuroEndocrine Prostate Cancer, Persistent AR-Dependent Prostate Cancer, and Androgen Receptor Pathway Independent Prostate Cancer. DISCUSSION It is clear that new treatment paradigms need to be developed for this diverse group of diseases. The Prouts Neck 2013 Meeting on Prostate Cancer helped to frame the current state of the field and jumpstart ideas for new avenues of treatment.
Collapse
Affiliation(s)
- Kenneth J Pienta
- Department of Urology, The James Buchanan Brady Urological InstituteBaltimore, Maryland
- Department of Oncology, The Johns Hopkins School of MedicineBaltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of MedicineBaltimore, Maryland
| | - Guneet Walia
- Prostate Cancer FoundationSanta Monica, California
| | | | | |
Collapse
|