1
|
Chiwoneso TC, Luo Y, Xu Y, Chen X, Chen L, Sun J. Kinases and their derived inhibitors from natural products. Bioorg Chem 2025; 156:108196. [PMID: 39908736 DOI: 10.1016/j.bioorg.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Protein kinase dysregulation is a hallmark of many cancers, yet their tumorigenic mechanisms remain elusive despite 60 years of study. Since learning that their mechanism includes catalyzing phosphorylation of amino acids in protein substrates, researchers began devising their inhibition strategies. Initially, protein kinase inhibitors (PKIs) derived from natural products were employed despite high cytotoxicity risks. While synthetic PKIs proved less toxic, they face significant drug resistance challenges. This review examines the progress in understanding protein kinases' role in cancer, their classification and modes of action since their discovery. To illuminate the path towards less toxic yet highly effective kinase inhibitors, this study analyzes the synthesis and modification of all FDA-approved natural product derived kinase inhibitors (NPDKIs) as well as those that failed clinical trials. By providing insights into successful and unsuccessful approaches, this review also aims to advance medicinal chemistry strategies for developing more effective and safer PKIs, potentially improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Takudzwa Chipeperengo Chiwoneso
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yajing Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Xinyu Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| |
Collapse
|
2
|
Rangaswamy R, Hemavathy N, Subramaniyan S, Vetrivel U, Jeyakanthan J. Harnessing allosteric inhibition: prioritizing LIMK2 inhibitors for targeted cancer therapy through pharmacophore-based virtual screening and essential molecular dynamics. J Biomol Struct Dyn 2025; 43:1129-1146. [PMID: 38063080 DOI: 10.1080/07391102.2023.2291171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/21/2023] [Indexed: 01/16/2025]
Abstract
The therapeutic potential of small molecule kinase inhibitors in cancer treatment is well recognized. However, achieving selectivity remains a formidable challenge, primarily due to the structural similarity of ATP binding pockets among kinases. Allosteric inhibition, which involves targeting binding pockets beyond the ATP-binding site, provides a promising alternative to overcome this challenge. In this study, a meticulous approach was implemented to prioritize type 3 inhibitors for LIMK2, employing a range of techniques including Molecular Dynamics (MD) simulations, e-pharmacophore-guided High Throughput Virtual Screening (HTVS), MM/GBSA and ADMETox analyses, Density Functional Theory (DFT) calculations, and MM/PBSA investigations. The e-pharmacophore model identifies a hypothesis featuring five essential pharmacophoric elements (RRRAH). Through virtual screening of the ZINC compound database, we identified only five compounds that align with all four pharmacophoric features: ZINC1044382792, ZINC1433610865, ZINC1044109145, ZINC952869440, and ZINC490621334. These compounds not only exhibit higher binding affinity but also demonstrate favorable ADME/Tox profiles. Molecular dynamics simulations underscore the stability of hydrogen bond interactions with critical cryptic LIMK2 pocket residues, Asp469 and Arg474, only for two compounds: ZINC143361086 and ZINC1044382792. These compounds also exhibit superior occupancy interactions, as indicated by HOMO-LUMO analysis. Additionally, binding free energy calculations highlight the significant affinities of these two compounds when complexed with LIMK2: -83.491 ± 1.230 kJ/mol and -90.122 ± 1.248 kJ/mol for ZINC1044382792 and ZINC1433610862, respectively. Hence, this comprehensive investigation identifies ZINC1433610862 and ZINC1044382792 as prospective hits, representing promising leads for targeting LIMK2 in cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raghu Rangaswamy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Nagarajan Hemavathy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sneha Subramaniyan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Umashankar Vetrivel
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
3
|
Zhao C, Wu Y, Li M, Tan W, Hu Y, Wang Y, Gao R, Hu L, Li Q. Allosteric site identification, virtual screening and discovery of a sulfonamide Hsp110-STAT3 interaction inhibitor for the treatment of hypoxic pulmonary arterial hypertension. Eur J Med Chem 2024; 279:116855. [PMID: 39260318 DOI: 10.1016/j.ejmech.2024.116855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe pulmonary vascular disorder marked by vascular remodeling, which is linked to the malignant phenotypes of pulmonary vascular cells. The prevailing therapeutic approaches for PAH tend to neglect the potential role of vascular remodeling, leading to the clinical prognosis remains poor. Previously, we first demonstrated that heat shock protein (Hsp110) was significantly activated to boost Hsp110-STAT3 interaction, which resulted in abnormal proliferation and migration of human pulmonary arterial endothelial cells (HPAECs) under hypoxia. In the present study, we initially postulated the allosteric site of Hsp110, performed a virtual screening and biological evaluation studies to discover novel Hsp110-STAT3 interaction inhibitors. Here, we identified compound 29 (AN-329/43448068) as the effective inhibitor of HPAECs proliferation and the Hsp110-STAT3 association with good druggability. In vitro, 29 significantly impeded the chaperone function of Hsp110 and the malignant phenotypes of HPAECs. In vivo, 29 remarkably attenuated pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-induced PAH rats (i.g). Altogether, our data support the conclusion that it not only provides a novel lead compound but also presents a promising approach for subsequent inhibitor development targeting Hsp110-STAT3 interaction.
Collapse
Affiliation(s)
- Congke Zhao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yan Wu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Mengqi Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Wenhua Tan
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yuanbo Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yu Wang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Ruizhe Gao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
5
|
Naik RR, Shakya AK. Exploring the chemotherapeutic potential of currently used kinase inhibitors: An update. Front Pharmacol 2023; 13:1064472. [PMID: 36699049 PMCID: PMC9868582 DOI: 10.3389/fphar.2022.1064472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Protein kinases are enzymes that transfer phosphate to protein, resulting in the modification of the protein. The human genome encodes approximately 538 kinases. Kinases play a role in maintaining a number of cellular processes, including control of the cell cycle, metabolism, survival, and differentiation. Protein kinase dysregulation causes several diseases, and it has been shown that numerous kinases are deregulated in cancer. The oncogenic potential of these kinases is increased by a number of processes, including overexpression, relocation, fusion point mutations, and the disruption of upstream signaling. Understanding of the mechanism or role played by kinases has led to the development of a large number of kinase inhibitors with promising clinical benefits. In this review, we discuss FDA-approved kinase inhibitors and their mechanism, clinical benefits, and side effects, as well as the challenges of overcoming some of their side effects and future prospects for new kinase inhibitor discovery.
Collapse
Affiliation(s)
- Rajashri R. Naik
- Faculty of Allied Medical Sciences, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Ashok K. Shakya
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan,*Correspondence: Ashok K. Shakya,
| |
Collapse
|
6
|
Zhang B, Liu G, Wang X, Hu X. Identification of Molecular Targets and Potential Mechanisms of Yinchen Wuling San Against Head and Neck Squamous Cell Carcinoma by Network Pharmacology and Molecular Docking. Front Genet 2022; 13:914646. [PMID: 35873484 PMCID: PMC9306494 DOI: 10.3389/fgene.2022.914646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents one of the most malignant and heterogeneous tumors, and the patients have low 5-year survival. Traditional Chinese medicine (TCM) has been demonstrated as an effective complementary and/or alternative therapy for advanced malignancies including HNSCC. It has been noted that several herbs that are used for preparing Yinchen Wuling San (YWLS) have anti-tumor activities, whereas their mechanisms of action remain elusive. In this study, network pharmacology and molecular docking studies were employed to explore the underlying mechanisms of action of YWLS against HNSCC. The 58 active ingredients from six herbs used for YWLS and their 506 potential targets were screened from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and SwissTargetPrediction database. A total of 2,173 targets associated with HNSCC were mainly identified from the DisGeNET and GeneCards databases. An active components-targets-disease network was constructed in the Cytoscape. Top 20 hub targets, such as AKT1, EGFR, TNF, ESR1, SRC, HSP90AA1, MAPK3, ERBB2, and CCND1, were identified by a degree in the protein–protein interaction (PPI) network. Gene functional enrichment analysis showed that PI3K-AKT, MAPK, Ras, TNF, and EGFR were the main signaling pathways of YWLS in treating HNSCC. There were 48 intersected targets such as EGFR, AKT1, and TNF that were associated with patients’ outcomes by the univariate Cox analysis, and most of them had increased expression in the tumor as compared to normal tissues. The area under curves of receiver operating characteristic indicated their diagnostic potential. Inhibition of these survival-related targets and/or combination with EGFR or AKT inhibitors were promising therapeutic options in HNSCC. The partial active components of YWLS exhibited good binding with the hub targets, and ADME analysis further evaluated the drug-likeness of the active components. These compounds and targets identified in this study might provide novel treatment strategies for HNSCC patients, and the subsequent work is essential to verify the underlying mechanisms of YWLS against HNSCC.
Collapse
Affiliation(s)
- Biyu Zhang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Genyan Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Xin Wang
- School of Medicine, Jiujiang University, Jiujiang, China
| | - Xuelei Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
7
|
Identification of a novel anticancer mechanism of Paeoniae Radix extracts based on systematic transcriptome analysis. Biomed Pharmacother 2022; 148:112748. [PMID: 35219117 DOI: 10.1016/j.biopha.2022.112748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Paeoniae Radix (PR) has a great therapeutic value in many clinical applications; however, the presence of various bioactive compounds and its complicated effects on human health makes its precise mechanisms of action unclear. This study investigated the effects of PR at the molecular pathway level by profiling genome-wide gene expression changes following dose-dependent treatment of human lung cancer cells (A549) with PR water extract (WPR), PR ethanol extracts (EPR), as well as their individual components. We found that PR exerts anticancer effects in A549 cells by regulating numerous pathways. Specifically, EPR and two compounds, namely, hederagenin (HG) and oleanolic acid (OA), significantly downregulate the Aurora B pathway. Furthermore, we generated an integrated PR extracts-compounds-target genes network in the Aurora B pathway to understand their interactions. Our findings reinforce that inhibiting Aurora kinase activity is a therapeutic target for treating cancers, providing the potential for novel mechanisms of action for PR and its components against lung cancer.
Collapse
|
8
|
Fasano M, Della Corte CM, Viscardi G, Di Liello R, Paragliola F, Sparano F, Iacovino ML, Castrichino A, Doria F, Sica A, Morgillo F, Colella G, Tartaro G, Cappabianca S, Testa D, Motta G, Ciardiello F. Head and neck cancer: the role of anti-EGFR agents in the era of immunotherapy. Ther Adv Med Oncol 2021; 13:1758835920949418. [PMID: 33767760 PMCID: PMC7953226 DOI: 10.1177/1758835920949418] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023] Open
Abstract
Head and neck cancers (HNC) represent the seventh most frequent cancer worldwide, with squamous cell carcinomas as the most frequent histologic subtype. Standard treatment for early stage diseases is represented by single modality surgery or radiotherapy, whereas in the locally advanced and recurrent or metastatic settings a more aggressive multi-modal approach is needed with locoregional intervention and/or systemic therapies. Epidermal Growth Factor Receptor (EGFR) plays an important role in HNC biology and has been studied extensively in preclinical and clinical settings. In this scenario, anti-EGFR targeted agent cetuximab, introduced in clinical practice a decade ago, represents the only approved targeted therapy to date, while the development of immune-checkpoint inhibitors has recently changed the available treatment options. In this review, we focus on the current role of anti-EGFR therapies in HNCs, underlying available clinical data and mechanisms of resistance, and highlight future perspectives regarding their role in the era of immunotherapy.
Collapse
Affiliation(s)
- Morena Fasano
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli. Via Sergio Pansini 5, Naples, 80131, Italy
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Viscardi
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Raimondo Di Liello
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fernando Paragliola
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Sparano
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Lucia Iacovino
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Francesca Doria
- Centro radiologico Vega, Centro radiologico fisica e terapia fisica Morrone, Caserta, Italy
| | - Antonello Sica
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Colella
- Maxillo-Facial Surgery Department, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giampaolo Tartaro
- Maxillo-Facial Surgery Department, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, Radiology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Domenico Testa
- Department of Anesthesiology, Surgical and Emergency Science, Clinic of Otorhinolaryngology, Head and Neck Surgery Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gaetano Motta
- Department of Anesthesiology, Surgical and Emergency Science, Clinic of Otorhinolaryngology, Head and Neck Surgery Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, Medical Oncology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
9
|
Brear P, Ball D, Stott K, D'Arcy S, Hyvönen M. Proposed Allosteric Inhibitors Bind to the ATP Site of CK2α. J Med Chem 2020; 63:12786-12798. [PMID: 33119282 DOI: 10.1021/acs.jmedchem.0c01173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CK2α is a ubiquitous, well-studied kinase that is a target for small-molecule inhibition, for treatment of cancers. While many different classes of adenosine 5'-triphosphate (ATP)-competitive inhibitors have been described for CK2α, they tend to suffer from significant off-target activity and new approaches are needed. A series of inhibitors of CK2α has recently been described as allosteric, acting at a previously unidentified binding site. Given the similarity of these inhibitors to known ATP-competitive inhibitors, we have investigated them further. In our thorough structural and biophysical analyses, we have found no evidence that these inhibitors bind to the proposed allosteric site. Rather, we report crystal structures, competitive isothermal titration calorimetry (ITC) and NMR, hydrogen-deuterium exchange (HDX) mass spectrometry, and chemoinformatic analyses that all point to these compounds binding in the ATP pocket. Comparisons of our results and experimental approach with the data presented in the original report suggest that the primary reason for the disparity is nonspecific inhibition by aggregation.
Collapse
Affiliation(s)
- Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Darby Ball
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| | - Sheena D'Arcy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K
| |
Collapse
|
10
|
Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Avoiding or Co-Opting ATP Inhibition: Overview of Type III, IV, V, and VI Kinase Inhibitors. NEXT GENERATION KINASE INHIBITORS 2020. [PMCID: PMC7359047 DOI: 10.1007/978-3-030-48283-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As described in the previous chapter, most kinase inhibitors that have been developed for use in the clinic act by blocking ATP binding; however, there is growing interest in identifying compounds that target kinase activities and functions without interfering with the conserved features of the ATP-binding site. This chapter will highlight alternative approaches that exploit unique kinase structural features that are being targeted to identify more selective and potent inhibitors. The figure below, adapted from (Sammons et al., Molecular Carcinogenesis 58:1551–1570, 2019), provides a graphical description of the various approaches to manipulate kinase activity. In addition to the type I and II inhibitors, type III kinase inhibitors have been identified to target sites adjacent to the ATP-binding site in the catalytic domain. New information on kinase structure and substrate-binding sites has enabled the identification of type IV kinase inhibitor compounds that target regions outside the catalytic domain. The combination of targeting unique allosteric sites outside the catalytic domain with ATP-targeted compounds has yielded a number of novel bivalent type V kinase inhibitors. Finally, emerging interest in the development of irreversible compounds that form selective covalent interactions with key amino acids involved in kinase functions comprise the class of type VI kinase inhibitors.
Collapse
|
12
|
Lu X, Smaill JB, Ding K. New Promise and Opportunities for Allosteric Kinase Inhibitors. Angew Chem Int Ed Engl 2020; 59:13764-13776. [PMID: 31889388 DOI: 10.1002/anie.201914525] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
13
|
Balasubramaniam M, Lakkaniga NR, Dera AA, Fayi MA, Abohashrh M, Ahmad I, Chandramoorthy HC, Nalini G, Rajagopalan P. FCX-146, a potent allosteric inhibitor of Akt kinase in cancer cells: Lead optimization of the second-generation arylidene indanone scaffold. Biotechnol Appl Biochem 2020; 68:82-91. [PMID: 32067263 DOI: 10.1002/bab.1896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Akt, a serine-threonine protein kinase, is regulated by class-I PI3K signaling. Akt regulates a wide variety of cell processes including cell proliferation, survival, and angiogenesis through serine/threonine phosphorylation of downstream targets including mTOR and glycogen-synthase-kinase-3-beta (GSK3β). Targeting cancer-specific overexpression of Akt protein could be an efficient way to control cancer-cell proliferation. However, the ATP-competitive inhibitors are challenged by the highly conserved ATP binding site, and by competition with high cellular concentrations of ATP. We previously developed an allosteric inhibitor, 2-arylidene-4, 7-dimethyl indan-1-one (FXY-1) that showed promising activity against several lung cancer models. In this work, we designed a congeneric series of molecules based on FXY-1 and optimized lead based on computational, in vitro assays. Computational screening followed by enzyme-inhibition and cell-proliferation assays identified a derivative (FCX-146) as a new lead molecule with threefold greater potency than the parent compound. FCX-146 increased apoptosis in HL-60 cells, mediated in part through decreased expression of antiapoptotic Bcl-2 protein and increased levels of Bax-2 and Caspase-3. Molecular-dynamic simulations showed stable binding of FCX-146 to an allosteric (i.e., noncatalytic) pocket in Akt. Together, we propose FCX-146 as a potent second-generation arylidene indanone compound that binds to the allosteric pocket of Akt and potently inhibits its activation.
Collapse
Affiliation(s)
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research and Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ganesan Nalini
- Department of Chemistry, Pachaiyappas College, Chennai, Tamil Nadu, India
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0035-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractBackgroundReceptor tyrosine kinases (RTKs) are signaling enzymes responsible for the transfer of Adenosine triphosphate (ATP) γ-phosphate to the tyrosine residues substrates. RTKs demonstrate essential roles in cellular growth, metabolism, differentiation, and motility. Anomalous expression of RTK customarily leads to cell growth dysfunction, which is connected to tumor takeover, angiogenesis, and metastasis. Understanding the structure, mechanisms of adaptive and acquired resistance, optimizing inhibition of RTKs, and eradicating cum minimizing the havocs of quiescence cancer cells is paramount.MainTextTyrosine kinase inhibitors (TKIs) vie with RTKs ATP-binding site for ATP and hitherto reduce tyrosine kinase phosphorylation, thus hampering the growth of cancer cells. TKIs can either be monoclonal antibodies that compete for the receptor’s extracellular domain or small molecules that inhibit the tyrosine kinase domain and prevent conformational changes that activate RTKs. Progression of cancer is related to aberrant activation of RTKs due to due to mutation, excessive expression, or autocrine stimulation.ConclusionsUnderstanding the modes of inhibition and structures of RTKs is germane to the design of novel and potent TKIs. This review shed light on the structures of tyrosine kinases, receptor tyrosine kinases, tyrosine kinase inhibitors, minimizing imatinib associated toxicities, optimization of tyrosine kinase inhibition in curtailing quiescence in cancer cells and the prospects of receptor tyrosine kinase based treatments.
Collapse
|
15
|
Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis. Bioorg Chem 2019; 85:253-273. [DOI: 10.1016/j.bioorg.2018.12.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022]
|
16
|
Astl L, Tse A, Verkhivker GM. Interrogating Regulatory Mechanisms in Signaling Proteins by Allosteric Inhibitors and Activators: A Dynamic View Through the Lens of Residue Interaction Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:187-223. [DOI: 10.1007/978-981-13-8719-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Meng Y, Gao C, Clawson D, Atwell S, Russell M, Vieth M, Roux B. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. J Chem Theory Comput 2018; 14:2721-2732. [PMID: 29474075 PMCID: PMC6317529 DOI: 10.1021/acs.jctc.7b01170] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding protein conformational variability remains a challenge in drug discovery. The issue arises in protein kinases, whose multiple conformational states can affect the binding of small-molecule inhibitors. To overcome this challenge, we propose a comprehensive computational framework based on Markov state models (MSMs). Our framework integrates the information from explicit-solvent molecular dynamics simulations to accurately rank-order the accessible conformational variants of a target protein. We tested the methodology using Abl kinase with a reference and blind-test set. Only half of the Abl conformational variants discovered by our approach are present in the disclosed X-ray structures. The approach successfully identified a protein conformational state not previously observed in public structures but evident in a retrospective analysis of Lilly in-house structures: the X-ray structure of Abl with WHI-P154. Using a MSM-derived model, the free energy landscape and kinetic profile of Abl was analyzed in detail highlighting opportunities for targeting the unique metastable states.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Cen Gao
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - David Clawson
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Shane Atwell
- Applied Molecular Evolution, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Marijane Russell
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Michal Vieth
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
18
|
A multistep docking and scoring protocol for congeneric series: Implementation on kinase DFG-out type II inhibitors. Future Med Chem 2018; 10:297-318. [PMID: 29338349 DOI: 10.4155/fmc-2017-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Rescoring of docking-binding poses can significantly improve molecular docking results. Our aim was to evaluate postprocessing docking protocols in order to determine the most suitable methodology for the study of the binding of congeneric compounds to protein kinases. MATERIALS & METHODS Diverse ligand-receptor poses generated after docking were submitted to different relaxation protocols. The Molecular Mechanics Poisson-Boltzmann (Generalized Born) Surface Area approach was applied for the evaluation of the binding affinity of complexes obtained. The performance of various Molecular Mechanics Poisson-Boltzmann (Generalized Born) Surface Area methodologies was compared. RESULTS The inclusion of a postprocessing protocol after docking enhances the quality of the results, although the best methodology is system dependent. CONCLUSION An examination of the interactions established has allowed us to suggest useful modifications for the design of new type II inhibitors.
Collapse
|
19
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
20
|
Albanaz ATS, Rodrigues CHM, Pires DEV, Ascher DB. Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design. Expert Opin Drug Discov 2017; 12:553-563. [PMID: 28490289 DOI: 10.1080/17460441.2017.1322579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Mutations introduce diversity into genomes, leading to selective changes and driving evolution. These changes have contributed to the emergence of many of the current major health concerns of the 21st century, from the development of genetic diseases and cancers to the rise and spread of drug resistance. The experimental systematic testing of all mutations in a system of interest is impractical and not cost-effective, which has created interest in the development of computational tools to understand the molecular consequences of mutations to aid and guide rational experimentation. Areas covered: Here, the authors discuss the recent development of computational methods to understand the effects of coding mutations to protein function and interactions, particularly in the context of the 3D structure of the protein. Expert opinion: While significant progress has been made in terms of innovative tools to understand and quantify the different range of effects in which a mutation or a set of mutations can give rise to a phenotype, a great gap still exists when integrating these predictions and drawing causality conclusions linking variants. This often requires a detailed understanding of the system being perturbed. However, as part of the drug development process it can be used preemptively in a similar fashion to pharmacokinetics predictions, to guide development of therapeutics to help guide the design and analysis of clinical trials, patient treatment and public health policy strategies.
Collapse
Affiliation(s)
- Amanda T S Albanaz
- a Centro de Pesquisas René Rachou, FIOCRUZ , Belo Horizonte , MG , Brazil.,b Department of Biochemistry and Immunology , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Carlos H M Rodrigues
- a Centro de Pesquisas René Rachou, FIOCRUZ , Belo Horizonte , MG , Brazil.,b Department of Biochemistry and Immunology , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Douglas E V Pires
- a Centro de Pesquisas René Rachou, FIOCRUZ , Belo Horizonte , MG , Brazil
| | - David B Ascher
- a Centro de Pesquisas René Rachou, FIOCRUZ , Belo Horizonte , MG , Brazil.,c Department of Biochemistry , University of Cambridge , Cambridge , Cambridgeshire , UK.,d Department of Biochemistry and Molecular Biology , University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
21
|
Yan M, Wang H, Wang Q, Zhang Z, Zhang C. Allosteric inhibition of c-Met kinase in sub-microsecond molecular dynamics simulations induced by its inhibitor, tivantinib. Phys Chem Chem Phys 2016; 18:10367-74. [DOI: 10.1039/c5cp07001e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular dynamics simulations showed that conformation transition of c-Met from DFG-in to DFG-out may accomplish rapidly in the presence of tivantinib. A unique binding mode of tivantinib was found to be critical for this “DFG-flip”.
Collapse
Affiliation(s)
- Maocai Yan
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| | - Huiyun Wang
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| | - Qibao Wang
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| | - Zhen Zhang
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| | - Chunyan Zhang
- School of Pharmacy
- Jining Medical University
- Rizhao
- P. R. China
| |
Collapse
|
22
|
Abstract
Small-molecule kinase inhibitors are invaluable targeted therapeutics for the treatment of various human diseases, especially cancers. While the majority of approved and developed preclinical small-molecule inhibitors are characterized as type I or type II inhibitors that target the ATP-binding pocket of kinases, the remarkable sequential and structural similarity among ATP pockets renders the selective inhibition of kinases a daunting challenge. Therefore, targeting allosteric pockets of kinases outside the highly conversed ATP pocket has been proposed as a promising alternative to overcome current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small-molecule allosteric inhibitor trametinib in 2013, the progress of more than 10 other allosteric inhibitors in clinical trials, and the emergence of a pipeline of highly selective and potent preclinical molecules, have been reported in the past decade. In this article, we present the current knowledge on allosteric inhibition in terms of conception, classification, potential advantages, and summarized debatable topics in the field. Recent progress and allosteric inhibitors that were identified in the past three years are highlighted in this paper.
Collapse
Affiliation(s)
- Peng Wu
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Mads H Clausen
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark; Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Thomas E Nielsen
- Protein and Peptide Chemistry, Novo Nordisk A/S, Måløv DK-2760, Denmark
| |
Collapse
|
23
|
Goodwin NC, Cianchetta G, Burgoon HA, Healy J, Mabon R, Strobel ED, Allen J, Wang S, Hamman BD, Rawlins DB. Discovery of a Type III Inhibitor of LIM Kinase 2 That Binds in a DFG-Out Conformation. ACS Med Chem Lett 2015; 6:53-7. [PMID: 25589930 PMCID: PMC4291701 DOI: 10.1021/ml500242y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022] Open
Abstract
The first allosteric, type III inhibitor of LIM-kinase 2 (LIMK2) is reported. A series of molecules that feature both an N-phenylsulfonamide and tertiary amide were not only very potent at LIMK2 but also were extremely selective against a panel of other kinases. Enzymatic kinetic studies showed these molecules to be noncompetitive with ATP, suggesting allosteric inhibition. X-ray crystallography confirmed that these sulfonamides are a rare example of a type III kinase inhibitor that binds away from the highly conserved hinge region and instead resides in the hydrophobic pocket formed in the DFG-out conformation of the kinase, thus accounting for the high level of selectivity observed.
Collapse
Affiliation(s)
- Nicole C. Goodwin
- Lexicon
Pharmaceuticals, 350
Carter Road, Princeton, New
Jersey 08540, United
States
| | - Giovanni Cianchetta
- Lexicon
Pharmaceuticals, 350
Carter Road, Princeton, New
Jersey 08540, United
States
| | - Hugh A. Burgoon
- Lexicon
Pharmaceuticals, 350
Carter Road, Princeton, New
Jersey 08540, United
States
| | - Jason Healy
- Lexicon
Pharmaceuticals, 350
Carter Road, Princeton, New
Jersey 08540, United
States
| | - Ross Mabon
- Lexicon
Pharmaceuticals, 350
Carter Road, Princeton, New
Jersey 08540, United
States
| | - Eric D. Strobel
- Lexicon
Pharmaceuticals, 350
Carter Road, Princeton, New
Jersey 08540, United
States
| | - Jason Allen
- Lexicon
Pharmaceuticals, 8800
Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Shuli Wang
- Lexicon
Pharmaceuticals, 8800
Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Brian D. Hamman
- Lexicon
Pharmaceuticals, 8800
Technology Forest Place, The Woodlands, Texas 77381, United States
| | - David B. Rawlins
- Lexicon
Pharmaceuticals, 350
Carter Road, Princeton, New
Jersey 08540, United
States
| |
Collapse
|