1
|
Identification of DDX60 as a Regulator of MHC-I Class Molecules in Colorectal Cancer. Biomedicines 2022; 10:biomedicines10123092. [PMID: 36551849 PMCID: PMC9775109 DOI: 10.3390/biomedicines10123092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapies induce durable responses in approximately 15% of colorectal cancer (CRC) patients who exhibit microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR). However, more than 80% of CRC patients do not respond to current immunotherapy. The main challenge with these patients is lack of MHC-I signaling to unmask their cancer cells so the immune cells can detect them. Here, we started by comparing IFNγ signature genes and MHC-I correlated gene lists to determine the potential candidates for MHC-I regulators. Then, the protein expression level of listed potential candidates in normal and cancer tissue was compared to select final candidates with enough disparity between the two types of tissues. ISG15 and DDX60 were further tested by wet-lab experiments. Overexpression of DDX60 upregulated the expression of MHC-I, while knockdown of DDX60 reduced the MHC-I expression in CRC cells. Moreover, DDX60 was downregulated in CRC tissues, and lower levels of DDX60 were associated with a poor prognosis. Our data showed that DDX60 could regulate MHC-I expression in CRC; thus, targeting DDX60 may improve the effects of immunotherapy in some patients.
Collapse
|
2
|
Liu L, Li H, Xu Q, Wu Y, Chen D, Yu F. Antitumor activity of recombinant oncolytic vaccinia virus with human IL2. Open Med (Wars) 2022; 17:1084-1091. [PMID: 35799600 PMCID: PMC9206501 DOI: 10.1515/med-2022-0496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
The tumor microenvironment is highly immunosuppressive. The genetically modified oncolytic vaccinia virus (OVV) is a promising vector for cancer immunotherapy. The aim of the present study was to assess the antitumor effects of human interleukin-2 (hIL2)-armed OVV in vitro. The hIL2 gene was inserted into a thymidine kinase and the viral growth factor double deleted oncolytic VV (VVDD) to generate recombinant hIL2-armed OVV (rVVDD-hIL2). Viral replication capacity in A549 cells was quantified by plaque titration on CV-1 cells. Production of hIL2 in cancer cells infected by rVVDD-hIL2 was measured by enzyme-linked immunosorbent assay. Finally, 3-(4,5-dimethylthiazol-2-yl)-5-(3-arboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay was performed to assess the antitumor effects of rVVDD-hIL2. The results showed that rVVDD-hIL2 viral particles expressed increasing levels of hIL2 in human and murine cancer cell lines with growing multiplicities of infection (MOIs). The insertion of the hIL2 gene did not impair the replication capacity of VV, and the rVVDD-hIL2 virus killed cancer cells efficaciously. The lytic effects of the recombinant oncolytic virus on tumor cells increased with the growing MOIs. In conclusion, these findings suggest that hIL2-armed VVDD effectively infects and lyses tumor cells, with high expression of hIL2.
Collapse
Affiliation(s)
- Liqiong Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong Province, 518052, P. R. China
| | - Huiqun Li
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong Province, 518052, P. R. China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yan Wu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Feng Yu
- School of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, P. R. China
| |
Collapse
|
3
|
Pecci F, Cantini L, Bittoni A, Lenci E, Lupi A, Crocetti S, Giglio E, Giampieri R, Berardi R. Beyond Microsatellite Instability: Evolving Strategies Integrating Immunotherapy for Microsatellite Stable Colorectal Cancer. Curr Treat Options Oncol 2021; 22:69. [PMID: 34110510 PMCID: PMC8192371 DOI: 10.1007/s11864-021-00870-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Advanced colorectal cancer (CRC) is a heterogeneous disease, characterized by several subtypes with distinctive genetic and epigenetic patterns. During the last years, immune checkpoint inhibitors (ICIs) have revamped the standard of care of several tumors such as non-small cell lung cancer and melanoma, highlighting the role of immune cells in tumor microenvironment (TME) and their impact on cancer progression and treatment efficacy. An "immunoscore," based on the percentage of two lymphocyte populations both at tumor core and invasive margin, has been shown to improve prediction of treatment outcome when added to UICC-TNM classification. To date, pembrolizumab, an anti-programmed death protein 1 (PD1) inhibitor, has gained approval as first-line therapy for mismatch-repair-deficient (dMMR) and microsatellite instability-high (MSI-H) advanced CRC. On the other hand, no reports of efficacy have been presented in mismatch-repair-proficient (pMMR) and microsatellite instability-low (MSI-L) or microsatellite stable (MSS) CRC. This group includes roughly 95% of all advanced CRC, and standard chemotherapy, in addition to anti-EGFR or anti-angiogenesis drugs, still represents first treatment choice. Hopefully, deeper understanding of CRC immune landscape and of the impact of specific genetic and epigenetic alterations on tumor immunogenicity might lead to the development of new drug combination strategies to overcome ICIs resistance in pMMR CRC, thus paving the way for immunotherapy even in this subgroup.
Collapse
Affiliation(s)
- Federica Pecci
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Luca Cantini
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Alessandro Bittoni
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Edoardo Lenci
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Alessio Lupi
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Sonia Crocetti
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Enrica Giglio
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Riccardo Giampieri
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| | - Rossana Berardi
- Clinical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy
| |
Collapse
|
4
|
Ji L, Shen W, Zhang F, Qian J, Jiang J, Weng L, Tan J, Li L, Chen Y, Cheng H, Sun D. Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1α. Cell Mol Biol Lett 2021; 26:19. [PMID: 34006215 PMCID: PMC8130299 DOI: 10.1186/s11658-021-00263-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background Some natural compounds inhibit cancer cell growth in various cancer cell lines with fewer side effects than traditional chemotherapy. Here, we explore the pharmacological effects and mechanisms of worenine (isolated from Coptis chinensis) against colorectal cancer. Methods The effects of worenine on colorectal cancer cell proliferation, colony formation and cell cycle distribution were measured. Glycolysis was investigated by examining glucose uptake and consumption, lactate production, and the activities and expressions of glycolysis enzymes (PFK-L, HK2 and PKM2). HIF-1α was knocked down and stimulated in vitro to investigate the underlying mechanisms. Results Worenine somewhat altered the glucose metabolism and glycolysis (Warburg effect) of cancer cells. Its anti-cancer effects and capability to reverse the Warburg effect were similar to those of HIF-1α siRNA and weakened by deferoxamine (an HIF-1α agonist). Conclusion It is suggested that worenine targets HIF-1α to inhibit colorectal cancer cell growth, proliferation, cell cycle progression and the Warburg effect. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-021-00263-y.
Collapse
Affiliation(s)
- Lijiang Ji
- Changshu TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China.,Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China
| | - Weixing Shen
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China.,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Feng Zhang
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China
| | - Jie Qian
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China
| | - Jie Jiang
- Changshu TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China.,Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China
| | - Liping Weng
- Changshu TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Jiani Tan
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China.,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Liu Li
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China.,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yugen Chen
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China.,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Haibo Cheng
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China. .,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Dongdong Sun
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China. .,School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Zhao Q, Guo J, Zhao Y, Shen J, Kaboli PJ, Xiang S, Du F, Wu X, Li M, Wan L, Li X, Wen Q, Li J, Zou C, Xiao Z. Comprehensive assessment of PD-L1 and PD-L2 dysregulation in gastrointestinal cancers. Epigenomics 2020; 12:2155-2171. [PMID: 33337915 DOI: 10.2217/epi-2020-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.
Collapse
Affiliation(s)
- Qijie Zhao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jinan Guo
- The department of urology, The Second Clinical Medical college of Jinan University (Shenzhen people's Hospital), The First Affiliated Hospital of South University of Science & Technology of China, Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, Guangdong, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| | - Lin Wan
- Department of Hematology & Oncology, The Children's Hospital of Soochow, Jiangsu, PR China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Jing Li
- Department of Oncology & Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, PR China.,Shenzhen Public Service Platform on Tumor Precision Medicine & Molecular Diagnosis, Shenzhen, Guangdong, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, PR China.,South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, PR China
| |
Collapse
|
6
|
Zhao X, Qi X, Lian W, Tong X, Wang H, Su L, Wei P, Zhuang Z, Gong J, Bai L. Trichomicin Suppresses Colorectal Cancer via Comprehensive Regulation of IL-6 and TNFα in Tumor Cells, TAMs, and CAFs. Front Pharmacol 2020; 11:386. [PMID: 32317968 PMCID: PMC7146085 DOI: 10.3389/fphar.2020.00386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Trichomicin, a small-molecule compound isolated from fungi, has been identified with bioactivity of antitumor. In this study, a colon cancer subcutaneous mice model was used to evaluate the antitumor effects of Trichomicin in vivo. Treatment with Trichomicin significantly inhibited tumor growth in a xenograft mouse colon cancer model. The underlying molecular mechanism has also been investigated through the quantification of relevant proteins. The expression levels of IL-6 and TNFα were reduced in tumor tissues of mice treated with Trichomicin, which was consistent with results of in vitro experiments in which Trichomicin suppressed the expression of IL-6 and TNFα in tumor and stromal cells. In addition, Trichomicin inhibited TNFα-induced activation of NF-κB and basal Stat3 signaling in vitro, which resulted in reduced expression of the immune checkpoint protein PD-L1 in tumor and stromal cells. Conclusively, Trichomicin, a promising new drug candidate with antitumor activity, exerted antitumor effects against colon cancer through inhibition of the IL-6 and TNFα signaling pathways.
Collapse
Affiliation(s)
- Xi Zhao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqiang Qi
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Surgery and Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Wenrui Lian
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastrointestinal Surgery & Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin Tong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastrointestinal Surgery & Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hua Wang
- Department of Gastrointestinal Surgery & Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Liya Su
- Department of Gastrointestinal Surgery & Clinical Medicine Research Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ping Wei
- Department of Medical Immunology, Basic Medical College, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Zhuochen Zhuang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhua Gong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Bai
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Zhang Y, Diao N, Lee CK, Chu HW, Bai L, Li L. Neutrophils Deficient in Innate Suppressor IRAK-M Enhances Anti-tumor Immune Responses. Mol Ther 2020; 28:89-99. [PMID: 31607540 PMCID: PMC6953792 DOI: 10.1016/j.ymthe.2019.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated immune-suppressive neutrophils are prevalent in various cancers, including colorectal cancer. However, mechanisms of immune-suppressive neutrophils are not well understood. We report that a key innate suppressor, IRAK-M (interleukin-1 receptor-associated kinase M), is critically involved in the establishment of immune-suppressive neutrophils. In contrast to the wild-type (WT) neutrophils exhibiting immune-suppressive signatures of CD11bhighPD-L1highCD80low, IRAK-M-deficient neutrophils are rewired with reduced levels of inhibitory molecules PD-L1 and CD11b, as well as enhanced expression of stimulatory molecules CD80 and CD40. The reprogramming of IRAK-M-deficient neutrophils is mediated by reduced activation of STAT1/3 and enhanced activation of STAT5. As a consequence, IRAK-M-deficient neutrophils demonstrate enhanced capability to promote, instead of suppress, the proliferation and activation of effector T cells both in vitro and in vivo. Functionally, we observed that the transfusion of IRAK-M-/- neutrophils can potently render an enhanced anti-tumor immune response in the murine inflammation-induced colorectal cancer model. Collectively, our study defines IRAK-M as an innate suppressor for neutrophil function and reveals IRAK-M as a promising target for rewiring neutrophils in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Na Diao
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Christina K Lee
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
8
|
Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. J Control Release 2019; 307:108-138. [DOI: 10.1016/j.jconrel.2019.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/15/2022]
|
9
|
Sun Y, Wang S, Yang H, Wu J, Li S, Qiao G, Wang S, Wang X, Zhou X, Osada T, Hobeika A, Morse MA, Ren J, Lyerly HK. Impact of synchronized anti-PD-1 with Ad-CEA vaccination on inhibition of colon cancer growth. Immunotherapy 2019; 11:953-966. [PMID: 31192764 DOI: 10.2217/imt-2019-0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The purpose of this study was to determine whether addition of anti-PD-1 antibody increased the immunogenicity and anti-tumor activity of Ad-CEA vaccination in a murine model of colon cancer. Methods: Ad-CEA was administered prior to implantation of MC-38-CEA cells followed by administration of anti-PD-1 antibody. CEA-specific T-cell responses were measured by flow cytometry and ELISPOT. Dynamic co-culture of splenocytes with tumor cells was conducted to analyze anti-tumor activities. Tumor infiltration by lymphocytes was measured by IHC. Tumor volume and overall survival were also recorded. Results: Ad-CEA combined with anti-PD-1 antibody showed greater anti-tumor activity compared with either alone. The combination also increased T-cell infiltration but decreased Tregs. Conclusion: Combining Ad-CEA vaccination with anti-PD-1 antibody enhanced anti-tumor activity and immune responses.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Suya Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Hainan Yang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jiangping Wu
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Sha Li
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Guoliang Qiao
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Shuo Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiaoli Wang
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xinna Zhou
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Ren
- Department of Medical Oncology, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Low miR200c expression in tumor budding of invasive front predicts worse survival in patients with localized colon cancer and is related to PD-L1 overexpression. Mod Pathol 2019; 32:306-313. [PMID: 30206410 DOI: 10.1038/s41379-018-0124-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
At the histological level, tumor budding in colon cancer is the result of cells undergoing at least partial epithelial-to-mesenchymal transition. The microRNA 200 family is an important epigenetic driver of this process, mainly by downregulating zinc-finger E-box binding homeobox (ZEB) and transforming growth factor beta (TGF-β) expression. We retrospectively explored the expression of the miR200 family, and ZEB1 and ZEB2, and their relationship with immune resistance mediated through PD-L1 overexpression. For this purpose, we analyzed a series of 125 colon cancer cases and took samples from two different tumor sites: the area of tumor budding at the invasive front and from the tumor center. We found significant ZEB overexpression and a reduction in miR200 in budding areas, a profile compatible with epithelial-to-mesenchymal transition. In multivariate analysis of the cases with localized disease, low miR200c expression in budding areas, but not at the tumor center, was an adverse tumor-specific survival factor (hazard ratio: 0.12; 95% confidence interval: 0.03-0.81; p = 0.02) independent of the clinical stage of the disease. PD-L1 was significantly overexpressed in the budding areas and its levels correlated with a mesenchymal transition profile. These results highlight the importance of including budding areas among the samples used for biomarker evaluation and provides relevant data on the influence of mesenchymal transition in the immune resistance mediated by PD-L1 overexpression.
Collapse
|
11
|
Upregulation of MicroRNA 18b Contributes to the Development of Colorectal Cancer by Inhibiting CDKN2B. Mol Cell Biol 2017; 37:MCB.00391-17. [PMID: 28784723 DOI: 10.1128/mcb.00391-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) exhibit aberrant expression in the initiation and progression of a variety of human cancers, including colorectal cancer (CRC). However, the exact mechanisms are not well defined. miRNA expression profiles were characterized by microarrays in CRC samples, and miRNA 18b (miR-18b) was increased significantly in tumor tissues. The expression of miR-18b was confirmed in the CRC cell lines SW480 and HCT116 and 44 clinical specimens by quantitative real-time PCR (qRT-PCR). Multiple linear regression analysis showed a strong correlation of miR-18b expression with lymph node and distant metastasis. Overexpression of miR-18b promoted cell proliferation by facilitating cell cycle progression, and knockdown of miR-18b significantly suppressed migration in CRC cells. CDKN2B was identified as a target of miR-18b by high-throughput RNA sequencing and bioinformatics. After transfection with a miR-18b mimic, expression of CDKN2B was reduced significantly in CRC cells, and the effect was restored when a miR-18b inhibitor was transfected. A luciferase assay indicated miR-18b directly binds to the 3' untranslated region (UTR) of CDKN2B. Expression of CDKN2B was downregulated in patient cancer tissues and negatively correlated with miR-18b. In a model of ectopic expression of miR-18b and CDKN2B, CDKN2B overexpression antagonized the effects of miR-18b in vitro and in vivo The data show that miR-18b is involved in CRC carcinogenesis through targeting CDKN2B.
Collapse
|
12
|
Rangel-Sosa MM, Aguilar-Córdova E, Rojas-Martínez A. Immunotherapy and gene therapy as novel treatments for cancer. COLOMBIA MEDICA (CALI, COLOMBIA) 2017; 48:138-147. [PMID: 29213157 PMCID: PMC5687866 DOI: 10.25100/cm.v48i3.2997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The immune system interacts closely with tumors during the disease development and progression to metastasis. The complex communication between the immune system and the tumor cells can prevent or promote tumor growth. New therapeutic approaches harnessing protective immunological mechanisms have recently shown very promising results. This is performed by blocking inhibitory signals or by activating immunological effector cells directly. Immune checkpoint blockade with monoclonal antibodies directed against the inhibitory immune receptors CTLA-4 and PD-1 has emerged as a successful treatment approach for patients with advanced melanoma. Ipilimumab is an anti-CTLA-4 antibody which demonstrated good results when administered to patients with melanoma. Gene therapy has also shown promising results in clinical trials. Particularly, Herpes simplex virus (HSV)-mediated delivery of the HSV thymidine kinase (TK) gene to tumor cells in combination with ganciclovir (GCV) may provide an effective suicide gene therapy for destruction of glioblastomas, prostate tumors and other neoplasias by recruiting tumor-infiltrating lymphocytes into the tumor. The development of new treatment strategies or combination of available innovative therapies to improve cell cytotoxic T lymphocytes trafficking into the tumor mass and the production of inhibitory molecules blocking tumor tissue immune-tolerance are crucial to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Martha Montserrat Rangel-Sosa
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León. Nuevo León, México
| | | | | |
Collapse
|
13
|
Correale P, Botta C, Ciliberto D, Pastina P, Ingargiola R, Zappavigna S, Tassone P, Pirtoli L, Caraglia M, Tagliaferri P. Immunotherapy of colorectal cancer: new perspectives after a long path. Immunotherapy 2017; 8:1281-1292. [PMID: 27993089 DOI: 10.2217/imt-2016-0089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although significant therapeutic improvement has been achieved in the last 10 years, the survival of metastatic colorectal cancer patients remains in a range of 28 to 30 months. Presently, systemic treatment includes combination chemotherapy with oxaliplatin and/or irinotecan together with a backbone of 5-fluorouracil/levofolinate, alone or in combination with monoclonal antibodies to VEGFA (bevacizumab) or EGF receptor (cetuximab and panitumumab). The recent rise of immune checkpoint inhibitors in the therapeutic scenario has renewed scientific interest in the investigation of immunotherapy in metastatic colorectal cancer patients. According to our experience and view, here, we review the immunological strategies investigated for the treatment of this disease, including the use of tumor target-specific cancer vaccines, chemo-immunotherapy and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Unit of Radiotherapy, Department of Medicine, Surgery & Neuroscience, Siena University School of Medicine, Viale Bracci 11, 53100 Siena, Italy
| | - Cirino Botta
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Domenico Ciliberto
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Pierpaolo Pastina
- Unit of Radiotherapy, Department of Medicine, Surgery & Neuroscience, Siena University School of Medicine, Viale Bracci 11, 53100 Siena, Italy
| | - Rossana Ingargiola
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics & General Pathology, Second Naples University, Naples, Italy
| | - Pierfrancesco Tassone
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| | - Luigi Pirtoli
- Unit of Radiotherapy, Department of Medicine, Surgery & Neuroscience, Siena University School of Medicine, Viale Bracci 11, 53100 Siena, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics & General Pathology, Second Naples University, Naples, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit & Medical Oncology Unit, AUO 'Materdomini', Magna Grecia University, Catanzaro, Italy
| |
Collapse
|
14
|
Yin L, Zhao C, Han J, Li Z, Zhen Y, Xiao R, Xu Z, Sun Y. Antitumor effects of oncolytic herpes simplex virus type 2 against colorectal cancer in vitro and in vivo. Ther Clin Risk Manag 2017; 13:117-130. [PMID: 28223815 PMCID: PMC5308569 DOI: 10.2147/tcrm.s128575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The incidence of colorectal cancer (CRC) is on the rise. Furthermore, late-stage diagnoses and limited efficacious treatment options make CRC a complex clinical challenge. Therefore, a new therapeutic regimen with a completely novel therapeutic mechanism is necessary for CRC. In the present study, the therapeutic efficacy of oncolytic herpes simplex virus type 2 (oHSV2) in CRC was assessed in vitro and in vivo. oHSV2 is an oncolytic agent derived from herpes simplex virus type 2 that encodes granulocyte-macrophage colony-stimulating factor. Materials and methods We investigated the cytopathic effects of oHSV2 in CRC cell lines using the MTT assay. Then, cell cycle progression and apoptosis of oHSV2 were examined by flow cytometry. We generated a model of CRC with mouse CRC cell CT26 in BALB/c mice. The antitumor effects and adaptive immune response of oHSV2 were assessed in tumor-bearing mice. The therapeutic efficacy of oHSV2 was compared with the traditional chemotherapeutic agent, 5-fluorouracil. Results The in vitro data showed that oHSV2 infected the CRC cell lines successfully and that the tumor cells formed a significant number of syncytiae postinfection. The oHSV2 killed cancer cells independent of the cell cycle and mainly caused tumor cells necrosis. The in vivo results showed that oHSV2 significantly inhibited tumor growth and prolonged survival of tumor-bearing mice without weight loss. With virus replication, oHSV2 not only resulted in a reduction of myeloid-derived suppressor cells and regulatory T cells in the spleen, but also increased the number of mature dendritic cells in tumor-draining lymph nodes and the effective CD4+T and CD8+T-cells in the tumor microenvironment. Conclusion Our study provides the first evidence that oHSV2 induces cell death in CRC in vitro and in vivo. These findings indicate that oHSV2 is an effective therapeutic cancer candidate that causes an oncolytic effect and recruits adaptive immune responses for an enhanced therapeutic impact, thus providing a potential therapeutic tool for treatment of CRC.
Collapse
Affiliation(s)
- Lei Yin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan; Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan; Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Chunhong Zhao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Jixia Han
- Department of General Surgery, The Sixth People's Hospital of Jinan, Jinan, People's Republic of China
| | - Zengjun Li
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan
| | - Yanan Zhen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Ruixue Xiao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Zhongfa Xu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Yanlai Sun
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan
| |
Collapse
|
15
|
Li H, Zhang P. Role of intestinal microecology in precision treatment of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:4354-4361. [DOI: 10.11569/wcjd.v24.i32.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, the role of intestinal microecology in diseases has attracted increasing attention. Some progress has been achieved in the study of the colorectum, which is the carrier of intestinal microecology, and the role of intestinal microecology in colorectal cancer (CRC) formation and progression has been clarified gradually. More and more studies show that intestinal microecology plays a key role in CRC related precision treatments, such as tumor immunotherapy, chemotherapy and probiotic intervention, which have achieved certain curative effects in clinical treatment, although the mechanism still needs further study. This review briefly discusses the intestinal microecology related precision treatments for CRC and their potential mechanisms.
Collapse
|
16
|
McCann KJ, Mander A, Cazaly A, Chudley L, Stasakova J, Thirdborough S, King A, Lloyd-Evans P, Buxton E, Edwards C, Halford S, Bateman A, O'Callaghan A, Clive S, Anthoney A, Jodrell DI, Weinschenk T, Simon P, Sahin U, Thomas GJ, Stevenson FK, Ottensmeier CH. Targeting Carcinoembryonic Antigen with DNA Vaccination: On-Target Adverse Events Link with Immunologic and Clinical Outcomes. Clin Cancer Res 2016; 22:4827-4836. [PMID: 27091407 PMCID: PMC5330406 DOI: 10.1158/1078-0432.ccr-15-2507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE We have clinically evaluated a DNA fusion vaccine to target the HLA-A*0201-binding peptide CAP-1 from carcinoembryonic antigen (CEA605-613) linked to an immunostimulatory domain (DOM) from fragment C of tetanus toxin. EXPERIMENTAL DESIGN Twenty-seven patients with CEA-expressing carcinomas were recruited: 15 patients with measurable disease (arm-I) and 12 patients without radiological evidence of disease (arm-II). Six intramuscular vaccinations of naked DNA (1 mg/dose) were administered up to week 12. Clinical and immunologic follow-up was up to week 64 or clinical/radiological disease. RESULTS DOM-specific immune responses demonstrated successful vaccine delivery. All patients without measurable disease compared with 60% with advanced disease responded immunologically, while 58% and 20% expanded anti-CAP-1 CD8+ T cells, respectively. CAP-1-specific T cells were only detectable in the blood postvaccination but could also be identified in previously resected cancer tissue. The gastrointestinal adverse event diarrhea was reported by 48% of patients and linked to more frequent decreases in CEA (P < 0.001) and improved global immunologic responses [anti-DOM responses of greater magnitude (P < 0.001), frequency (P = 0.004), and duration] compared with patients without diarrhea. In advanced disease patients, decreases in CEA were associated with better overall survival (HR = 0.14, P = 0.017). CAP-1 peptide was detectable on MHC class I of normal bowel mucosa and primary colorectal cancer tissue by mass spectrometry, offering a mechanistic explanation for diarrhea through CD8+ T-cell attack. CONCLUSIONS Our data suggest that DNA vaccination is able to overcome peripheral tolerance in normal and tumor tissue and warrants testing in combination studies, for example, by vaccinating in parallel to treatment with an anti-PD1 antibody. Clin Cancer Res; 22(19); 4827-36. ©2016 AACR.
Collapse
Affiliation(s)
- Katy J McCann
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Ann Mander
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Angelica Cazaly
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Lindsey Chudley
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Jana Stasakova
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Stephen Thirdborough
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Andrew King
- University Hospital Southampton NHS Trust, Southampton, UK
| | - Paul Lloyd-Evans
- NHS Blood and Transplant, Clinical Biotechnology Centre, University of Bristol, Bristol, UK
| | - Emily Buxton
- Cancer Research UK Centre for Drug Development, London, UK
| | - Ceri Edwards
- Cancer Research UK Centre for Drug Development, London, UK
| | - Sarah Halford
- Cancer Research UK Centre for Drug Development, London, UK
| | - Andrew Bateman
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Trust, Southampton, UK
| | | | | | | | - Duncan I Jodrell
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Petra Simon
- TRON gGmbH, Translational Oncology at the University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Ugur Sahin
- TRON gGmbH, Translational Oncology at the University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Gareth J Thomas
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Trust, Southampton, UK
| | - Freda K Stevenson
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Christian H Ottensmeier
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Trust, Southampton, UK
| |
Collapse
|
17
|
Taylor ES, McCall JL, Girardin A, Munro FM, Black MA, Kemp RA. Functional impairment of infiltrating T cells in human colorectal cancer. Oncoimmunology 2016; 5:e1234573. [PMID: 27999752 PMCID: PMC5139627 DOI: 10.1080/2162402x.2016.1234573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022] Open
Abstract
T cells play a crucial role in preventing the growth and spread of colorectal cancer (CRC). However, immunotherapies against CRC have only shown limited success, which may be due to lack of understanding about the effect of the local tumor microenvironment (TME) on T cell function. The goal of this study was to determine whether T cells in tumor tissue were functionally impaired compared to T cells in non-tumor bowel (NTB) tissue from the same patients. We showed that T cell populations are affected differently by the TME. In the tumor, T cells produced more IL-17 and less IL-2 per cell than their counterparts from NTB tissue. T cells from tumor tissue also had impaired proliferative ability compared to T cells in NTB tissue. This impairment was not related to the frequency of IL-2 producing T cells or regulatory T cells, but T cells from the TME had a higher co-expression of inhibitory receptors than T cells from NTB. Overall, our data indicate that T cells in tumor tissue are functionally altered by the CRC TME, which is likely due to cell intrinsic factors. The TME is therefore an important consideration in predicting the effect of immune modulatory therapies.
Collapse
Affiliation(s)
- Edward S. Taylor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John L. McCall
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Adam Girardin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Fran M. Munro
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Roslyn A. Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Li X, Nie J, Mei Q, Han WD. MicroRNAs: Novel immunotherapeutic targets in colorectal carcinoma. World J Gastroenterol 2016; 22:5317-5331. [PMID: 27340348 PMCID: PMC4910653 DOI: 10.3748/wjg.v22.i23.5317] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common types of cancer worldwide and the prognosis for CRC patients with recurrence or metastasis is extremely poor. Although chemotherapy and radiation therapy can improve survival, there are still numerous efforts to be performed. Immunotherapy is frequently used, either alone or in combination with other therapies, for the treatment of CRC and is a safe and feasible way to improve CRC treatment. Furthermore, the significance of the immune system in the biology of CRC has been demonstrated by retrospective assessments of immune infiltrates in resected CRC tumors. MicroRNAs (miRNAs) are short, non-coding RNAs that can regulate multiple target genes at the post-transcriptional level and play critical roles in cell proliferation, differentiation and apoptosis. MiRNAs are required for normal immune system development and function. Nevertheless, aberrant expression of miRNAs is often observed in various tumor types and leads to immune disorders or immune evasion. The immunomodulatory function of miRNAs indicates that miRNAs may ultimately be part of the portfolio of anti-cancer targets. Herein, we will review the potential roles of miRNAs in the regulation of the immune response in CRC and then move on to discuss how to utilize different miRNA targets to treat CRC. We also provide an overview of the major limitations and challenges of using miRNAs as immunotherapeutic targets.
Collapse
|
19
|
Immune Checkpoint Modulation in Colorectal Cancer: What's New and What to Expect. J Immunol Res 2015; 2015:158038. [PMID: 26605342 PMCID: PMC4641952 DOI: 10.1155/2015/158038] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC), as one of the most prevalent types of cancer worldwide, is still a leading cause of cancer related mortality. There is an urgent need for more efficient therapies in metastatic disease. Immunotherapy, a rapidly expanding field of oncology, is designed to boost the body's natural defenses to fight cancer. Of the many approaches currently under study to improve antitumor immune responses, immune checkpoint inhibition has thus far been proven to be the most effective. This review will outline the treatments that take advantage of our growing understanding of the role of the immune system in cancer, with a particular emphasis on immune checkpoint molecules, involved in CRC pathogenesis.
Collapse
|
20
|
Zhou L, Lu L, Wicha MS, Chang AE, Xia JC, Ren X, Li Q. Promise of cancer stem cell vaccine. Hum Vaccin Immunother 2015; 11:2796-9. [PMID: 26337078 PMCID: PMC5054775 DOI: 10.1080/21645515.2015.1083661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Dendritic cell (DC)-based vaccines designed to target cancer stem cells (CSC) can induce significant antitumor responses via conferring host anti-CSC immunity. Our recent studies have demonstrated that CSC-DC vaccine could inhibit metastasis of primary tumors and induce humoral immune responses against cancer stem cells. This approach highlights the promise of cancer stem cell vaccine in cancer immunotherapy.
Collapse
Affiliation(s)
- Li Zhou
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
- Department of Biotherapy; Tianjin University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Tianjin, China
| | - Lin Lu
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research; Sun Yat-sen University Cancer Center; Guangzhou, China
- Present affiliation: Department of Medical Oncology; Guangzhou First People’s Hospital; Guangzhou Medical University; Guangzhou, China
| | - Max S Wicha
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
| | - Alfred E Chang
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
| | - Jian-chuan Xia
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Xiubao Ren
- Department of Biotherapy; Tianjin University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Immunology and Biotherapy; Tianjin, China
| | - Qiao Li
- Comprehensive Cancer Center; University of Michigan; Ann Arbor, MI USA
| |
Collapse
|