1
|
Rivera-Pérez C, Ponce González XP, Hernández-Savedra NY. Antimicrobial and anticarcinogenic activity of bioactive peptides derived from abalone viscera (Haliotis fulgens and Haliotis corrugata). Sci Rep 2023; 13:15185. [PMID: 37704667 PMCID: PMC10499822 DOI: 10.1038/s41598-023-41491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Bioactive peptides have been studied in several sources due to their valuable potential in the pharmaceutical and food industries. Abalone viscera, which are normally discarded as byproducts, are a rich source of protein. Thus, the aim of this study was to explore the potential bioactivity of peptides derived from abalone viscera (Haliotis fulgens and Haliotis corrugata) after hydrolysis with a commercial mixture of enzymes. The hydrolysates obtained were fractionated using gel filtration chromatography. The resulting hydrolysate fractions were investigated for their antimicrobial and cytotoxic activities, including the expression of gelatinases mmp-2 and mmp-9 in human prostate cancer cell lines (PC3). Results showed antimicrobial activity for protein fractions of H. corrugata against Proteus mirabilis and Pseudomona aeuroginosa (66.2-116.25 kDa), Bacillus subtilis (6.5-21.5 kDa), and Aspergillus niger (97.4-116.25 kDa), while H. fulgens peptide fractions (200-31 kDa) displayed activity against six bacterial strains, and fractions from 116.25 to 21.5 kDa had effects on the fungus A. niger, Alternaria alternata, and Aspergillus flavus. Additionally, protein fractions displayed cytotoxic activity, inhibiting 30.4-53.8% of PC3 cellular growth. Selected fractions decreased the PMA-induced and not-induced expressions of mmp-2 and mmp-9 in PC3 cells. Abalone viscera, as byproducts, can be used as a potential source of antimicrobial and anticancer peptides.
Collapse
Affiliation(s)
- Crisalejandra Rivera-Pérez
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, C.P. 23096, La Paz, BCS, México
| | - Xolotl Paloma Ponce González
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, C.P. 23096, La Paz, BCS, México
| | - Norma Yolanda Hernández-Savedra
- Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, C.P. 23096, La Paz, BCS, México.
| |
Collapse
|
2
|
Tian Z, Yao W. Chemotherapeutic drugs for soft tissue sarcomas: a review. Front Pharmacol 2023; 14:1199292. [PMID: 37637411 PMCID: PMC10450752 DOI: 10.3389/fphar.2023.1199292] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Despite the low incidence of soft tissue sarcomas (STSs), hundreds of thousands of new STS cases are diagnosed annually worldwide, and approximately half of them eventually progress to advanced stages. Currently, chemotherapy is the first-line treatment for advanced STSs. There are difficulties in selecting appropriate drugs for multiline chemotherapy, or for combination treatment of different STS histological subtypes. In this study, we first comprehensively reviewed the efficacy of various chemotherapeutic drugs in the treatment of STSs, and then described the current status of sensitive drugs for different STS subtypes. anthracyclines are the most important systemic treatment for advanced STSs. Ifosfamide, trabectedin, gemcitabine, taxanes, dacarbazine, and eribulin exhibit certain activities in STSs. Vinca alkaloid agents (vindesine, vinblastine, vinorelbine, vincristine) have important therapeutic effects in specific STS subtypes, such as rhabdomyosarcoma and Ewing sarcoma family tumors, whereas their activity in other subtypes is weak. Other chemotherapeutic drugs (methotrexate, cisplatin, etoposide, pemetrexed) have weak efficacy in STSs and are rarely used. It is necessary to select specific second- or above-line chemotherapeutic drugs depending on the histological subtype. This review aims to provide a reference for the selection of chemotherapeutic drugs for multi-line therapy for patients with advanced STSs who have an increasingly long survival.
Collapse
Affiliation(s)
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023; 16:299. [PMID: 37259442 PMCID: PMC9965678 DOI: 10.3390/ph16020299] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, β-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Veena Vijayan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jashwanth Naik
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jagat Pal Yadav
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
4
|
Marine Natural Products in Clinical Use. Mar Drugs 2022; 20:md20080528. [PMID: 36005531 PMCID: PMC9410185 DOI: 10.3390/md20080528] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
Marine natural products are potent and promising sources of drugs among other natural products of plant, animal, and microbial origin. To date, 20 drugs from marine sources are in clinical use. Most approved marine compounds are antineoplastic, but some are also used for chronic neuropathic pain, for heparin overdosage, as haptens and vaccine carriers, and for omega-3 fatty-acid supplementation in the diet. Marine drugs have diverse structural characteristics and mechanisms of action. A considerable increase in the number of marine drugs approved for clinical use has occurred in the past few decades, which may be attributed to increasing research on marine compounds in laboratories across the world. In the present manuscript, we comprehensively studied all marine drugs that have been successfully used in the clinic. Researchers and clinicians are hopeful to discover many more drugs, as a large number of marine natural compounds are being investigated in preclinical and clinical studies.
Collapse
|
5
|
Kaur M, Kaur M, Bandopadhyay T, Sharma A, Priya A, Singh A, Banerjee B. Naturally occurring, natural product inspired and synthetic heterocyclic anti-cancer drugs. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This chapter describes the importance and activity of a huge number of commercially available naturally occurring, natural product derived or synthetic heterocyclic anti-cancer drugs.
Collapse
Affiliation(s)
- Manmeet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Mandeep Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Tania Bandopadhyay
- Completed MBBS from North Bengal Medical College and Hospital , Darjeeling , West Bengal , Pin-734432 , India
| | - Aditi Sharma
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Anu Priya
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Arvind Singh
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Bubun Banerjee
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| |
Collapse
|
6
|
Misra SK, Pathak K. Naturally occurring heterocyclic anticancer compounds. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Naturally occurring heterocyclic scaffolds are key ingredients for the development of various therapeutics employed for biomedical applications. Heterocyclic pharmacophores are widely disseminated and have been befallen in almost all categories of drugs for the alleviation of myriad ailments including diabetes, neurodegenerative, psychiatric, microbial infections, disastrous cancers etc. Countless fused heterocyclic anticancerous templates are reported to display antimetabolite, antioxidant, antiproliferative, cytostatic etc. pharmacological actions via targeting different signaling pathways (cell cycle, PI-3kinase/Akt, p53, caspase extrinsic pathway etc.), overexpressive receptors (EGRF, HER2, EGF, VEGF etc.) and physiological enzymes (topoisomerase I and II, cyclin dependent kinase etc.). A compiled description on various natural sources (plants, microbes, marine) containing anticancer agents comprising heterocyclic ring specified with presence of nitrogen (vincristine, vinblastine, indole-3-carbinol, meridianins, piperine, lamellarins etc.), oxygen (paclitaxel, halichondrin B, quercetin, myricetin, kaempferol etc.) and sulphur atoms (brugine, fucoidan, carrageenan etc.) are displayed here along with their molecular level cytotoxic action and therapeutic applications.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University , Kanpur , 208026 , India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences , Saifai , Etawah , 206130 , Uttar Pradesh , India
| |
Collapse
|
7
|
Current Approaches for Personalized Therapy of Soft Tissue Sarcomas. Sarcoma 2020; 2020:6716742. [PMID: 32317857 PMCID: PMC7152984 DOI: 10.1155/2020/6716742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Soft tissue sarcomas (STS) are a highly heterogeneous group of cancers of mesenchymal origin with diverse morphologies and clinical behaviors. While surgical resection is the standard treatment for primary STS, advanced and metastatic STS patients are not eligible for surgery. Systemic treatments, including standard chemotherapy and newer chemical agents, still play the most relevant role in the management of the disease. Discovery of specific genetic alterations in distinct STS subtypes allowed better understanding of mechanisms driving their pathogenesis and treatment optimization. This review focuses on the available targeted drugs or drug combinations based on genetic aberration involved in STS development including chromosomal translocations, oncogenic mutations, gene amplifications, and their perspectives in STS treatment. Furthermore, in this review, we discuss the possible use of chemotherapy sensitivity and resistance assays (CSRA) for the adjustment of treatment for individual patients. In summary, current trends in personalized management of advanced and metastatic STS are based on combination of both genetic testing and CSRA.
Collapse
|
8
|
Pham LV, Pogue E, Ford RJ. The Role of Macrophage/B-Cell Interactions in the Pathophysiology of B-Cell Lymphomas. Front Oncol 2018; 8:147. [PMID: 29868471 PMCID: PMC5951963 DOI: 10.3389/fonc.2018.00147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
Macrophages (MPs) are heterogeneous, multifunctional, myeloid-derived leukocytes that are part of the innate immune system, playing wide-ranging critical roles in basic biological activities, including maintenance of tissue homeostasis involving clearance of microbial pathogens. Tumor-associated MPs (TAMs) are MPs with defined specific M2 phenotypes now known to play central roles in the pathophysiology of a wide spectrum of malignant neoplasms. Also, TAMs are often intrinsic cellular components of the essential tumor microenvironment (TME). In concert with lymphoid-lineage B and T cells at various developmental stages, TAMs can mediate enhanced tumor progression, often leading to poor clinical prognosis, at least partly through secretion of chemokines, cytokines, and various active proteases shown to stimulate tumor growth, angiogenesis, metastasis, and immunosuppression. Researchers recently showed that TAMs express certain key checkpoint-associated proteins [e.g., programmed cell death protein 1 (PD-1), programmed cell death-ligand 1 (PD-L1)] that appear to be involved in T-cell activation and that these proteins are targets of other specific checkpoint-blocking immunotherapies (anti-PD-1/PD-L1) currently part of new therapeutic paradigms for chemotherapy-resistant neoplasms. Although much is known about the wide spectrum and flexibility of MPs under many normal and neoplastic conditions, relatively little is known about the increasingly important interactions between MPs and B-lymphoid cells, particularly in the TME in patients with aggressive B-cell non-Hodgkin lymphoma (NHL-B). Normal and neoplastic lymphoid and myeloid cell/MP lineages appear to share many primitive cellular characteristics as well as transcriptional factor interactions in human and animal ontogenic studies. Such cells are capable of ectopic transcription factor-induced lineage reprogramming or transdifferentiation from early myeloid/monocytic lineages to later induce B-cell lymphomagenesis in experimental in vivo murine systems. Close cellular interactions between endogenous clonal neoplastic B cells and related aberrant myeloid precursor cells/MPs appear to be important interactive components of aggressive NHL-B that we discuss herein in the larger context of the putative role of B-cell/MP cellular lineage interactions involved in NHL-B pathophysiology during ensuing lymphoma development.
Collapse
Affiliation(s)
- Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth Pogue
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard J Ford
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Loss of CUL4A expression is underlying cisplatin hypersensitivity in colorectal carcinoma cells with acquired trabectedin resistance. Br J Cancer 2017; 116:489-500. [PMID: 28095394 PMCID: PMC5318979 DOI: 10.1038/bjc.2016.449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Colorectal carcinoma (CRC) is the third most common cancer worldwide. Platinum-based anticancer compounds still constitute one mainstay of systemic CRC treatment despite limitations due to adverse effects and resistance development. Trabectedin has shown promising antitumor effects in CRC, however, again resistance development may occur. In this study, we aimed to develop strategies to circumvent or even exploit acquired trabectedin resistance in novel CRC treatment regimens. Methods: Human HCT116 CRC cells were selected for acquired trabectedin resistance in vitro and characterised by cell biological as well as bioinformatic approaches. In vivo xenograft experiments were conducted. Results: Selection of HCT116 cells for trabectedin resistance resulted in p53-independent hypersensitivity of the selected subline against cisplatin. Bioinformatic analyses of mRNA microarray data suggested deregulation of nucleotide excision repair and particularly loss of the ubiquitin ligase CUL4A in trabectedin-selected cells. Indeed, transient knockdown of CUL4A sensitised parental HCT116 cells towards cisplatin. Trabectedin selected but not parental HCT116 xenografts were significantly responsive towards cisplatin treatment. Conclusions: Trabectedin selection-mediated CUL4A loss generates an Achilles heel in CRC cancer cells enabling effective cisplatin treatment. Hence, inclusion of trabectedin in cisplatin-containing cancer treatment regimens might cause profound synergism based on reciprocal resistance prevention.
Collapse
|
10
|
Yasui H, Imura Y, Outani H, Hamada KI, Nakai T, Yamada S, Takenaka S, Sasagawa S, Araki N, Itoh K, Myoui A, Yoshikawa H, Naka N. Trabectedin is a promising antitumour agent for synovial sarcoma. J Chemother 2016; 28:417-24. [PMID: 27077926 DOI: 10.1080/1120009x.2015.1133013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Synovial sarcoma (SS) is an aggressive soft tissue tumour with poor prognosis. Using five human SS cell lines, we examined the cytotoxic effects of trabectedin (ET-743; Yondelis(®)), a novel marine natural product, which was approved in Europe for the treatment of soft tissue sarcomas (STS). The significant growth inhibitory effects were observed in all SS cell lines below nanomolar concentration of trabectedin. Furthermore, trabectedin significantly suppressed the tumour growth in xenograft models. Flow cytometer analysis in vitro and immunohistochemical analysis in vivo revealed its effect of cell cycle inhibition and apoptosis induction. We also examined the expression of ERCC1, 5 and BRCA1 in SS cell lines and clinical samples, and majority of them showed highly trabectedin-sensitive pattern as previously reported in other cancers. Our preclinical data indicated that trabectedin could be a promising therapeutic option for patients with SS.
Collapse
Affiliation(s)
- Hirohiko Yasui
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan
| | - Yoshinori Imura
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan
| | - Hidetatsu Outani
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan
| | - Ken-Ichiro Hamada
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan
| | - Takaaki Nakai
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan
| | - Shutaro Yamada
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan
| | - Satoshi Takenaka
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan
| | - Satoru Sasagawa
- b Department of Biology , Osaka Medical Center for Cancer and Cardiovascular Diseases , 1-3-2 Nakamichi, Higashinari-ku, Osaka 537 8511 , Japan
| | - Nobuhito Araki
- c Musculoskeletal Oncology Service , Osaka Medical Center for Cancer and Cardiovascular Diseases , 1-3-2 Nakamichi, Higashinari-ku, Osaka 537 8511 , Japan
| | - Kazuyuki Itoh
- b Department of Biology , Osaka Medical Center for Cancer and Cardiovascular Diseases , 1-3-2 Nakamichi, Higashinari-ku, Osaka 537 8511 , Japan
| | - Akira Myoui
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan
| | - Hideki Yoshikawa
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan
| | - Norifumi Naka
- a Department of Orthopaedic Surgery , Osaka University Graduate School of Medicine , 2-2 Yamadaoka, Suita, Osaka 565 0871 , Japan.,b Department of Biology , Osaka Medical Center for Cancer and Cardiovascular Diseases , 1-3-2 Nakamichi, Higashinari-ku, Osaka 537 8511 , Japan
| |
Collapse
|
11
|
Kawano M, Mabuchi S, Kishimoto T, Hisamatsu T, Matsumoto Y, Sasano T, Takahashi R, Sawada K, Takahashi K, Takahashi T, Hamasaki T, Kimura T. Combination treatment with trabectedin and irinotecan or topotecan has synergistic effects against ovarian clear cell carcinoma cells. Int J Gynecol Cancer 2014; 24:829-37. [PMID: 24844217 DOI: 10.1097/igc.0000000000000143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The objective of this study was to investigate the chemotherapeutic agents that produce the strongest synergistic effects when combined with trabectedin against ovarian clear cell carcinoma (CCC), which is regarded as an aggressive chemoresistant histological subtype. METHODS Using 4 human CCC cell lines (RMG1, RMG2, KOC7C, and HAC2), the cytotoxicities of trabectedin, SN-38, topotecan, doxorubicin, cisplatin, and paclitaxel as single agents were first assessed using the MTS assay. Then, the cytotoxicities of combination treatments involving trabectedin and 1 of the other 4 agents were evaluated by isobologram analysis to examine whether these combinations displayed synergistic, additive, or antagonistic effects. The antitumor activities of the combination treatments were also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines, which were derived from the parental CCC cells by continuously exposing them to cisplatin or paclitaxel. Finally, we determined the effect of everolimus on the antitumor efficacy of trabectedin-based combination chemotherapy. RESULTS Concurrent exposure to trabectedin and SN-38 or topotecan resulted in synergistic interactions in all 4 CCC cell lines. Among the tested combinations, trabectedin plus SN-38 was the most effective cytotoxic regimen. The combination of trabectedin plus SN-38 also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Treatment with everolimus significantly enhanced the antitumor activity of trabectedin plus SN-38 or topotecan. CONCLUSIONS Combination treatment with trabectedin and SN-38 displays the greatest cytotoxic effect against ovarian CCC. Our in vitro study provides the rationale for future clinical trials of trabectedin plus irinotecan with or without everolimus in patients with ovarian CCC in both the front-line chemotherapy setting and as a second-line treatment of recurrent CCC that had previously been treated with cisplatin or paclitaxel.
Collapse
Affiliation(s)
- Mahiru Kawano
- *Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka; †Department of Obstetrics and Gynecology, Yamagata University Graduate School of Medicine, Yamagata; and ‡Department of Biomedical Statistics, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Clinical trials with pegylated liposomal Doxorubicin in the treatment of ovarian cancer. JOURNAL OF DRUG DELIVERY 2013; 2013:898146. [PMID: 23577259 PMCID: PMC3612436 DOI: 10.1155/2013/898146] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 11/17/2022]
Abstract
Among the pharmaceutical options available for treatment of ovarian cancer, increasing attention has been progressively focused on pegylated liposomal doxorubicin (PLD), whose unique formulation prolongs the persistence of the drug in the circulation and potentiates intratumor accumulation. Pegylated liposomal doxorubicin (PLD) has become a major component in the routine management of epithelial ovarian cancer. In 1999 it was first approved for platinum-refractory ovarian cancer and then received full approval for platinum-sensitive recurrent disease in 2005. PLD remains an important therapeutic tool in the management of recurrent ovarian cancer in 2012. Recent interest in PLD/carboplatin combination therapy has been the object of phase III trials in platinum-sensitive and chemonaïve ovarian cancer patients reporting response rates, progressive-free survival, and overall survival similar to other platinum-based combinations, but with a more favorable toxicity profile and convenient dosing schedule. This paper summarizes data clarifying the role of pegylated liposomal doxorubicin (PLD) in ovarian cancer, as well as researches focusing on adding novel targeted drugs to this cytotoxic agent.
Collapse
|
13
|
Chuang YT, Chang CL. Extending platinum-free interval in partially platinum-sensitive recurrent ovarian cancer by a non-platinum regimen: Its possible clinical significance. Taiwan J Obstet Gynecol 2012; 51:336-41. [DOI: 10.1016/j.tjog.2012.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2012] [Indexed: 10/27/2022] Open
|
14
|
Gronchi A, Bui BN, Bonvalot S, Pilotti S, Ferrari S, Hohenberger P, Hohl RJ, Demetri GD, Le Cesne A, Lardelli P, Pérez I, Nieto A, Tercero JC, Alfaro V, Tamborini E, Blay JY. Phase II clinical trial of neoadjuvant trabectedin in patients with advanced localized myxoid liposarcoma. Ann Oncol 2012; 23:771-776. [PMID: 21642514 DOI: 10.1093/annonc/mdr265] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To evaluate neoadjuvant trabectedin (1.5 mg/m(2) 24-h i.v. infusion every 3 weeks; three to six cycles) in patients with locally advanced myoxid liposarcoma (ML) previously untreated with chemotherapy or radiation. PATIENTS AND METHODS Primary efficacy end point was pathological complete response (pCR) or tumoral regression rate. Objective response according to RECIST (v.1.0) was a secondary end point. RESULTS Three of 23 assessable patients had pCR [13%; 95% confidence interval (CI), 3% to 34%]. Furthermore, very good and moderate histological responses were observed in another 2 and 10 patients, respectively. Histological decrement in the cellular and vascular tumor component and maturation of tumor cells to lipoblasts were observed in both myoxid and myoxid/round cell variants. Seven patients had partial response according to RECIST (objective response rate of 24%; 95% CI, 10% to 44%). No disease progression was reported. Neoadjuvant trabectedin was usually well tolerated, with a safety profile similar to that described in patients with soft tissue sarcoma or other tumor types. CONCLUSION Trabectedin 1.5 mg/m(2) given as a 24-h i.v. infusion every 3 weeks is a therapeutic option in the neoadjuvant setting of ML.
Collapse
Affiliation(s)
- A Gronchi
- Department of Surgery, National Cancer Institute, Milano, Italy.
| | - B N Bui
- Department of Medical Oncology, Institute Bergonié, Bourdaux
| | - S Bonvalot
- Departments of Surgery; Medical Oncology, Institute Gustave Roussy, Paris, France
| | - S Pilotti
- Department of Surgery, National Cancer Institute, Milano, Italy
| | - S Ferrari
- Department of Chemotherapy, Orthopedic Institute Rizzoli, Bologna, Italy
| | - P Hohenberger
- Division of Surgical Oncology and Thoracic Surgery, Mannheim University Medical Center, University of Heidelberg, Germany
| | - R J Hohl
- Department of Internal Medicine, Carver College of Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, Iowa
| | - G D Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - A Le Cesne
- Departments of Surgery; Medical Oncology, Institute Gustave Roussy, Paris, France
| | - P Lardelli
- Department of Clinical R&D, PharmaMar, Colmenar Viejo, Madrid, Spain
| | - I Pérez
- Department of Clinical R&D, PharmaMar, Colmenar Viejo, Madrid, Spain
| | - A Nieto
- Department of Clinical R&D, PharmaMar, Colmenar Viejo, Madrid, Spain
| | - J C Tercero
- Department of Clinical R&D, PharmaMar, Colmenar Viejo, Madrid, Spain
| | - V Alfaro
- Department of Clinical R&D, PharmaMar, Colmenar Viejo, Madrid, Spain
| | - E Tamborini
- Department of Surgery, National Cancer Institute, Milano, Italy
| | - J Y Blay
- Department of Medical Oncology; Léon Bérard Cancer Center, Lyon, France
| |
Collapse
|
15
|
Nagle DG, Zhou YD. Mechanism-based Screening for Cancer Therapeutics with Examples from the Discovery of Marine Natural Product-based HIF-1 Inhibitors. HANDBOOK OF MARINE NATURAL PRODUCTS 2012. [PMCID: PMC7119942 DOI: 10.1007/978-90-481-3834-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent advances in cancer genetics combined with an increasing number of new methods in molecular and cell biology provide exciting new antitumor drug targets and a wide array of means to design bioassay systems for the discovery of novel cancer chemotherapeutics. Marine natural products continue to play a vital role in molecular-targeted antitumor drug discovery. Although most recognize the critical and expanding role mechanism-based antitumor bioassays play in modern anticancer drug discovery, few natural products chemists have specific training in bioassay technology. Critical bioassay development factors are outlined and introduced at a level intended to provide a basic understanding to a general audience. These include molecular target identification, antitumor target validation, selection of assayable biochemical processes, data acquisition methods, experimental controls, bioassay validation and statistical methods, experimental artifacts, active compound identification, and the dereplication of nuisance compounds. Marine natural products have been identified that inhibit the activation of the anticancer drug target hypoxia-inducible factor-1 (HIF-1). Bioassay systems and recent results from marine HIF-1 inhibitor discovery programs are used to illustrate important factors that must be considered when using molecular-targeted antitumor bioassay methods.
Collapse
|
16
|
Massuti B, Cobo M, Camps C, Dómine M, Provencio M, Alberola V, Viñolas N, Rosell R, Tarón M, Gutiérrez-Calderón V, Lardelli P, Alfaro V, Nieto A, Isla D. Trabectedin in patients with advanced non-small-cell lung cancer (NSCLC) with XPG and/or ERCC1 overexpression and BRCA1 underexpression and pretreated with platinum. Lung Cancer 2011; 76:354-61. [PMID: 22197612 DOI: 10.1016/j.lungcan.2011.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous studies in sarcoma found that a composite gene signature, including high expression of nucleotide excision repair (NER) genes (XPG and/or ERCC1) and low expression of homologous recombination repair (HR) genes (BRCA1), identifies a highly sensitive population of patients with significantly improved outcome to trabectedin. This exploratory phase II trial evaluated a customized trabectedin treatment according to this gene signature in patients with non-small cell lung cancer (NSCLC) after the failure of standard platinum-based treatment. METHODS Patients were selected according to their mRNA expression (elevated XPG and/or ERCC1, with low BRCA1) using the following values as cutoff: XPG=0.99, ERCC1=3.47 and BRCA1=12.00. Trabectedin was administered as a 1.3mg/m(2) 3-hour intravenous infusion every 3 weeks (q3wk). The primary efficacy endpoint was the progression-free survival rate at 3 months. Objective response according to the Response Evaluation Criteria in Solid Tumors (RECIST) was a secondary efficacy endpoint. RESULTS Two of 18 evaluable patients (11.1%; 95% CI, 1.38-34.7%) achieved progression-free survival rate at 3 months. The primary efficacy objective (at least 3 of 18 patients being progression-free at 3 months) was not met, and therefore the trial was early finalized. No objective responses per RECIST were achieved. Four patients had stable disease. Median PFS was 1.3 months, and median overall survival was 5.9 months. Trabectedin was usually well tolerated, with a safety profile similar to that described in patients with other tumor types. CONCLUSIONS Customized treatment with trabectedin 1.3mg/m(2) 3-h q3wk according to composite gene signature (XPG and/or ERCC1 overexpression, and BRCA1 underexpression) was well tolerated, but had modest activity in NSCLC patients pretreated with platinum. Therefore, further clinical trials with trabectedin as single agent in this indication are not warranted.
Collapse
|
17
|
Mabuchi S, Hisamatsu T, Kawase C, Hayashi M, Sawada K, Mimura K, Takahashi K, Takahashi T, Kurachi H, Kimura T. The activity of trabectedin as a single agent or in combination with everolimus for clear cell carcinoma of the ovary. Clin Cancer Res 2011; 17:4462-73. [PMID: 21622721 DOI: 10.1158/1078-0432.ccr-10-2987] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The objective of this study was to evaluate the antitumor efficacy of trabectedin in clear cell carcinoma (CCC) of the ovary, which is regarded as an aggressive, chemoresistant, histologic subtype. EXPERIMENTAL DESIGN Using 6 human ovarian cancer cell lines (3 CCC and 3 serous adenocarcinomas), the antitumor effects of trabectedin were examined in vitro, and we compared its activity according to histology. We next examined the antitumor activity of trabectedin in both cisplatin-resistant and paclitaxel-resistant CCC cells in vitro. Then, the in vivo effects of trabectedin were evaluated using mice inoculated with CCC cell lines. Using 2 pairs of trabectedin-sensitive parental and trabectedin-resistant CCC sublines, we investigated the role of mTOR in the mechanism of acquired resistance to trabectedin. Finally, we determined the effect of mTOR inhibition by everolimus on the antitumor efficacy of trabectedin in vitro and in vivo. RESULTS Trabectedin showed significant antitumor activity toward chemosensitive and chemoresistant CCC cells in vitro. Mouse xenografts of CCC cells revealed that trabectedin significantly inhibits tumor growth. Greater activation of mTOR was observed in trabectedin-resistant CCC cells than in their respective parental cells. The continuous inhibition of mTOR significantly enhanced the therapeutic efficacy of trabectedin and prevented CCC cells from acquiring resistance to trabectedin. CONCLUSION Trabectedin is a promising agent for CCC as a first-line chemotherapy and as a second-line treatment of recurrent CCC that had previously been treated with cisplatin or paclitaxel. Moreover, trabectedin combined with everolimus may be more efficacious for the management of CCC.
Collapse
Affiliation(s)
- Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaye SB, Colombo N, Monk BJ, Tjulandin S, Kong B, Roy M, Chan S, Filipczyk-Cisarz E, Hagberg H, Vergote I, Lebedinsky C, Parekh T, Santabárbara P, Park YC, Nieto A, Poveda A. Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer delays third-line chemotherapy and prolongs the platinum-free interval. Ann Oncol 2011; 22:49-58. [PMID: 20643863 PMCID: PMC3003617 DOI: 10.1093/annonc/mdq353] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND OVA-301 is a large randomized trial that showed superiority of trabectedin plus pegylated liposomal doxorubicin (PLD; CentoCor Ortho Biotech Products L.P., Raritan, NJ, USA). over single-agent PLD in 672 patients with relapsed ovarian cancer, particularly in the partially platinum-sensitive subgroup [platinum-free interval (PFI) of 6-12 months]. This superiority has been suggested to be due to the differential impact of subsequent (platinum) therapy. PATIENTS AND METHODS a detailed analysis of subsequent therapies and survival outcomes in the overall population and in the subsets according to platinum sensitivity was therefore conducted. RESULTS similar proportions of patients received subsequent therapy in each arm (76% versus 77%), including further platinum-based regimens (49% versus 55%). Patients in the trabectedin/PLD arm received subsequent chemotherapy at a later time (median delay 2.5 months versus PLD arm). Overall survival from subsequent platinum was significantly prolonged in the partially platinum-sensitive disease subset (hazard ratio = 0.63; P = 0.0357). CONCLUSION the superiority of trabectedin/PLD over single-agent PLD in OVA-301 cannot be explained by differences in the extent or nature of subsequent therapies administered to these patients. On the other hand, these exploratory analyses support the hypothesis that the enhanced survival benefits in the partially platinum-sensitive subset might be due to an extended PFI leading to longer survival with subsequent platinum.
Collapse
Affiliation(s)
- S B Kaye
- Section of Medicine, Institute of Cancer Research, The Royal Marsden Hospital, Sutton, Surrey, UK.
| | - N Colombo
- Medical Gynecologic Oncology Unit, European Institute of Oncology, Milan, Italy
| | - B J Monk
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of California Irvine Medical Center, Orange, CA, USA
| | - S Tjulandin
- Department of Clinical Pharmacology and Chemotherapy, Russian Cancer Research Center, Moscow, Russia
| | - B Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, China
| | - M Roy
- Department of Gynecologic Oncology, University Hospital Center, Quebec, Canada
| | - S Chan
- Department of Clinical Oncology, Nottingham University Hospital, Nottingham, UK
| | | | - H Hagberg
- Department of Oncology, Akademiska Sjukhuset, Uppsala, Sweden
| | - I Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University Hospital, Leuven, Belgium
| | - C Lebedinsky
- Clinical R&D and Medical Affairs Department, Pharma Mar, Madrid, Spain
| | - T Parekh
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Raritan, NJ, USA
| | - P Santabárbara
- Clinical R&D and Medical Affairs Department, Pharma Mar, Madrid, Spain
| | - Y C Park
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Raritan, NJ, USA
| | - A Nieto
- Clinical R&D and Medical Affairs Department, Pharma Mar, Madrid, Spain
| | - A Poveda
- Department of Medical Oncology, Valencian Institute of Oncology, Valencia, Spain
| |
Collapse
|
19
|
Ferrandina G, Corrado G, Licameli A, Lorusso D, Fuoco G, Pisconti S, Scambia G. Pegylated liposomal doxorubicin in the management of ovarian cancer. Ther Clin Risk Manag 2010; 6:463-83. [PMID: 20957139 PMCID: PMC2952486 DOI: 10.2147/tcrm.s3348] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Among the pharmaceutical options available for treatment of ovarian cancer, much attention has been progressively focused on pegylated liposomal doxorubicin (PLD), whose unique formulation, which entraps conventional doxorubicin in a bilayer lipidic sphere surrounded by a polyethylene glycol layer, prolongs the persistence of the drug in the circulation and potentiates intratumor drug accumulation. These properties enable this drug to sustain its very favorable toxicity profile and to be used safely in combination with other drugs. PLD has been already approved for treatment of advanced ovarian cancer patients failing first-line platinum-based treatment. Moreover, phase III trials have been already completed, and results are eagerly awaited, which hopefully will expand the range of PLD clinical application in this neoplasia both in front-line treatment, and in the salvage setting in combination with other drugs. Moreover, attempts are continuing to enable this drug to be combined with novel cytotoxic drugs and target-based agents. This review aims at summarizing the available evidence and the new perspectives for the clinical role of PLD in the management of patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Gabriella Ferrandina
- Gynecologic Oncology Unit, Department of Oncology, Catholic University of Campobasso, Campobasso, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Soini EJO, García San Andrés B, Joensuu T. Trabectedin in the treatment of metastatic soft tissue sarcoma: cost-effectiveness, cost-utility and value of information. Ann Oncol 2010; 22:215-223. [PMID: 20627875 PMCID: PMC3003615 DOI: 10.1093/annonc/mdq339] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: To assess the cost-effectiveness of trabectedin compared with end-stage treatment (EST) after failure with anthracycline and/or ifosfamide in metastatic soft tissue sarcoma (mSTS). Design: Analysis was carried out using a probabilistic Markov model with trabectedin → EST and EST arms, three health states (stable disease, progressive disease and death) and a lifetime perspective (3% annual discount rate). Finnish resources (drugs, mSTS, adverse events and travelling) and costs (year 2008) were used. Efficacy was based on an indirect comparison of the STS-201 and European Organisation for Research and Treatment of Cancer trials. QLQ-C30 scale scores were mapped to 15D, Short Form 6D and EuroQol 5D utilities. The outcome measures were the cost-effectiveness acceptability frontier, incremental cost per life year gained (LYG) and quality-adjusted life year (QALY) gained and the expected value of perfect information (EVPI). Results: Trabectedin → EST was associated with 14.0 (95% confidence interval 9.1–19.2) months longer survival, €36 778 higher costs (€32 816 using hospital price for trabectedin) and €31 590 (€28 192) incremental cost per LYG with an EVPI of €3008 (€3188) compared with EST. With a threshold of €50 000 per LYG, trabectedin → EST had 98.5% (98.2%) probability of being cost-effective. The incremental cost per QALY gained with trabectedin → EST was €42 633–47 735 (€37 992–42 819) compared with EST. The results were relatively insensitive to changes. Conclusion: Trabectedin is a potentially cost-effective treatment of mSTS patients.
Collapse
Affiliation(s)
| | | | - T Joensuu
- International Comprehensive Cancer Centre Docrates, Helsinki, Finland
| |
Collapse
|