1
|
Leong YQ, Ng KY, Chye SM, Ling APK, Koh RY. Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metab Brain Dis 2020; 35:11-30. [PMID: 31811496 DOI: 10.1007/s11011-019-00516-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
Extracellular senile plaques and intracellular neurofibrillary tangles are the neuropathological findings of the Alzheimer's disease (AD). Based on the amyloid cascade hypothesis, the main component of senile plaques, the amyloid-beta (Aβ) peptide, and its derivative called amyloid precursor protein (APP) both have been found to place their central roles in AD development for years. However, the recent therapeutics have yet to reverse or halt this disease. Previous evidence demonstrates that the accumulation of Aβ peptides and APP can exert neurotoxicity and ultimately neuronal cell death. Hence, we discuss the mechanisms of excessive production of Aβ peptides and APP serving as pathophysiologic stimuli for the initiation of various cell signalling pathways including apoptosis, necrosis, necroptosis and autophagy which lead to neuronal cell death. Conversely, the activation of such pathways could also result in the abnormal generation of APP and Aβ peptides. An elucidation of actions of APP and its metabolite, Aβ, could be vital in suggesting novel therapeutic opportunities.
Collapse
Affiliation(s)
- Yong Qi Leong
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci 2019; 20:E558. [PMID: 30696107 PMCID: PMC6386861 DOI: 10.3390/ijms20030558] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Its pathogenesis is characterized by the aggregation of the amyloid-β (Aβ) protein in senile plaques and the hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Current medications for AD can provide temporary help with the memory symptoms and other cognitive changes of patients, however, they are not able to stop or reverse the progression of AD. New medication discovery and the development of a cure for AD is urgently in need. In this review, we summarized drugs for AD treatments and their recent updates, and discussed the potential of microglia induced neuroinflammation as a target for anti-AD drug development.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Claes C, Van Den Daele J, Boon R, Schouteden S, Colombo A, Monasor LS, Fiers M, Ordovás L, Nami F, Bohrmann B, Tahirovic S, De Strooper B, Verfaillie CM. Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimers Dement 2018; 15:453-464. [PMID: 30442540 DOI: 10.1016/j.jalz.2018.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/25/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Murine microglia expressing the Alzheimer's disease-linked TREM2R47H mutation display variable decrease in phagocytosis, while impaired phagocytosis is reported following loss of TREM2. However, no data exist on TREM2+/R47H human microglia. Therefore, we created human pluripotent stem cell (hPSC) monocytes and transdifferentiated microglia-like cells (tMGs) to examine the effect of the TREM2+/R47H mutation and loss of TREM2 on phagocytosis. METHODS We generated isogenic TREM2+/R47H, TREM2+/-, and TREM2-/- hPSCs using CRISPR/Cas9. Following differentiation to monocytes and tMGs, we studied the uptake of Escherichia coli fragments and analyzed amyloid plaque clearance from cryosections of APP/PS1+/- mouse brains. RESULTS We demonstrated that tMGs resemble cultured human microglia. TREM2+/- and TREM2-/- hPSC monocytes and tMGs phagocytosed significantly less E. coli fragments and cleared less amyloid plaques than wild-type hPSC progeny, with no difference for TREM2+/R47H progeny. DISCUSSION In vitro phagocytosis of hPSC monocytes and tMGs was not affected by the TREM2+/R47H mutation but was significantly impaired in TREM2+/- and TREM2-/- progeny.
Collapse
Affiliation(s)
- Christel Claes
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Johanna Van Den Daele
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ruben Boon
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Sarah Schouteden
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Mark Fiers
- Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Laura Ordovás
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - FatemehArefeh Nami
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Bernd Bohrmann
- Roche Pharmaceutical Research and Early Development NORD Discovery & Translational Area, Roche Innovation Center Basel, Basel, Switzerland
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium.
| |
Collapse
|
4
|
Novel Protein Kinase Inhibitors Related to Tau Pathology Modulate Tau Protein-Self Interaction Using a Luciferase Complementation Assay. Molecules 2018; 23:molecules23092335. [PMID: 30213139 PMCID: PMC6225193 DOI: 10.3390/molecules23092335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 02/03/2023] Open
Abstract
The current number of drugs available for the treatment of Alzheimer’s disease (AD) is strongly limited and their benefit for therapy is given only in the early state of the disease. An effective therapy should affect those processes which mainly contribute to the neuronal decay. There have been many approaches for a reduction of toxic Aβ peptides which mostly failed to halt cognitive deterioration in patients. The formation of neurofibrillary tangles (NFT) and its precursor tau oligomers have been suggested as main cause of neuronal degeneration because of a direct correlation of their density to the degree of dementia. Reducing of tau aggregation may be a viable approach for the treatment of AD. NFT consist of hyperphosphorylated tau protein and tau hyperphosphorylation reduces microtubule binding. Several protein kinases are discussed to be involved in tau hyperphosphorylation. We developed novel inhibitors of three protein kinases (gsk-3β, cdk5, and cdk1) and discussed their activity in relation to tau phosphorylation and on tau–tau interaction as a nucleation stage of a tau aggregation in cells. Strongest effects were observed for those inhibitors with effects on all the three kinases with emphasis on gsk-3β in nanomolar ranges.
Collapse
|
5
|
Mo J, Li J, Yang Z, Liu Z, Feng J. Efficacy and safety of anti-amyloid- β immunotherapy for Alzheimer's disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol 2017; 4:931-942. [PMID: 29296624 PMCID: PMC5740249 DOI: 10.1002/acn3.469] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023] Open
Abstract
To review the optimality and safety of different anti-Amyloid-β(Aβ) immunotherapies for Alzheimer's disease (AD). Published randomized controlled trials were comprehensively reviewed from electronic databases (Cochrane library, Embase, Pubmed, and Google scholar). Pooled outcomes as mean difference or odds ratio values with 95% confidence interval were reported. The network estimates with confidence and predictive intervals for all pairwise relative effects was evaluated. Optimal intervention was ranked by benefit-risk ratio based on the surface under the cumulative ranking curve. Eleven eligible RCTs from 9 literatures, including 5141 patients and 5 interventions were included. The quality of evidence was rated low in comparisons. For efficacy, in terms of Mini-Mental State Examination, aducanumab and solanezumab are significantly effective than placebo. For safety, in terms of Amyloid-Related Imaging Abnormalities (ARIA), bapineuzumab and aducanumab are significantly worse than placebo. There were no significant differences in outcomes of Alzheimer's disease Assessment Scale-Cognitive subscale, Disability Assessment for Dementia, Adverse Events, and mortality. Given the clinical therapeutic effects of anti-Aβ immunotherapies for AD, aducanumab and solanezumab improve the cognitive function, while aducanumab and bapineuzumab may increase the risks of ARIA.
Collapse
Affiliation(s)
- Jia‐Jie Mo
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijing100061China
| | - Jin‐yu Li
- Department of General Surgerythe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Zheng Yang
- Department of PsychologyGuangdong Medical UniversityZhanjiang524023China
| | - Zhou Liu
- Department of NeurologyAffiliated Hospital of Guangdong Medical UniversityZhanjiang524023China
| | - Jin‐Shan Feng
- Scientific Research Center (Campus Zhanjiang)Guangdong Medical UniversityZhanjiang524023China
| |
Collapse
|
6
|
Patel P, Shah J. Role of Vitamin D in Amyloid clearance via LRP-1 upregulation in Alzheimer's disease: A potential therapeutic target? J Chem Neuroanat 2017; 85:36-42. [PMID: 28669880 DOI: 10.1016/j.jchemneu.2017.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/22/2017] [Accepted: 06/27/2017] [Indexed: 12/18/2022]
Abstract
Amyloid beta (Aβ) deposition is considered to be one of the primary reason to trigger Alzheimer's disease (AD). Literature clearly suggests decline in Aβ clearance to be accountable for progression of late onset AD as compared to augmented Aβ production. There may be several pathways for Aβ clearance out of which one of the major pathway is the vascular-mediated removal of Aβ from the brain across the blood-brain barrier (BBB) via efflux pumps or receptors. Among Aβ scavenger receptors, low density lipoprotein receptor related protein (LRP-1) has been most extensively studied. LRP-1, is highly expressed in neurons and located on abluminal side of the brain capillaries whose expression decreases in AD patients which give rise to increased cerebral Aβ deposition. Recent evidences reveal that post 1,25-(OH)2D3 treatment, LRP1 expression increases significantly for both in-vivo and in-vitro studies, since Vitamin D receptors (VDR) are broadly expressed in brain. Biological actions of Vitamin D are mediated via its nuclear hormone receptor vitamin D receptor (VDR) and is found to regulate many genes. Several lines of evidence suggest that VDR deficiency/inhibition can be a potential risk factor for AD and sufficient Vitamin D supplementation is beneficial to prevent AD onset/pathology or slow down the progression of disease. The present review establishes a strong correlation between Vitamin D and LRP-1 and their possible involvement in Aβ clearance and thereby emerging as new therapeutic target.
Collapse
Affiliation(s)
- Parmi Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India.
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India.
| |
Collapse
|
7
|
|
8
|
Panza F, Solfrizzi V, Imbimbo BP, Giannini M, Santamato A, Seripa D, Logroscino G. Efficacy and safety studies of gantenerumab in patients with Alzheimer's disease. Expert Rev Neurother 2014; 14:973-86. [PMID: 25081412 DOI: 10.1586/14737175.2014.945522] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among active and passive anti-β-amyloid (Aβ) immunotherapies for Alzheimer's disease (AD), bapineuzumab and solanezumab, two humanized monoclonal antibodies, failed to show significant clinical benefits in mild-to-moderate AD patients in large Phase III clinical trials. Another ongoing Phase III trial of solanezumab aims to confirm positive findings in mild AD patients. Gantenerumab is the first fully human anti-Aβ monoclonal antibody directed to both N-terminal and central regions of Aβ. A 6-month PET study in 16 AD patients showed that gantenerumab treatment dose-dependently reduced brain Aβ deposition, possibly stimulating microglial-mediated phagocytosis. Two ongoing Phase III trials of gantenerumab in patients with prodromal or mild dementia due to AD will determine if any reduction in brain Aβ levels will translate into clinical benefits. An ongoing secondary prevention trial of gantenerumab in presymptomatic subjects with genetic mutations for autosomal-dominant AD will verify the utility of anti-Aβ monoclonal antibodies as prevention therapy.
Collapse
Affiliation(s)
- Francesco Panza
- Department of Basic Medicine, Neuroscience, and Sense Organs, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Berk C, Sabbagh MN. Successes and failures for drugs in late-stage development for Alzheimer's disease. Drugs Aging 2014; 30:783-92. [PMID: 23943247 DOI: 10.1007/s40266-013-0108-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To date, symptomatic medications prevail as the mainstay of treatment options for Alzheimer's disease (AD). There have been tremendous investments made to increase the numbers of drugs approved and the targets engaged, in an effort to alter the disease course or pathophysiology of AD. Unfortunately, almost all studies have not met expectations and no new drug (beyond medical foods) has been approved for the treatment of AD in the last decade. This review is a comparison of novel AD therapies in the late phases of clinical testing, including recent high-profile clinical failures, and agents in development with relatively unexplored mechanisms of action, with a focus on their potential as therapeutic agents and their proposed advantages over the treatments currently in use.
Collapse
Affiliation(s)
- Camryn Berk
- The Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ, 85351, USA
| | | |
Collapse
|
10
|
Panza F, Solfrizzi V, Imbimbo BP, Logroscino G. Amyloid-directed monoclonal antibodies for the treatment of Alzheimer's disease: the point of no return? Expert Opin Biol Ther 2014; 14:1465-76. [PMID: 24981190 DOI: 10.1517/14712598.2014.935332] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Two humanized monoclonal antibodies, bapineuzumab and solanezumab, directed against the N terminus and mid-region of β-amyloid (Aβ), respectively, were recently tested in large, long-term Phase III trials in patients with mild-to-moderate Alzheimer's disease (AD). AREAS COVERED This review discusses current clinical data on solanezumab, bapineuzumab and their failure in Phase III trials to show significant clinical benefits, as well as other monoclonal antibodies under investigation for AD. EXPERT OPINION Solanezumab showed some beneficial cognitive effects in mildly affected AD patients and this subgroup of AD patients is currently being tested in another Phase III trial to this subgroup of AD patients to confirm previous encouraging observations. Two other monoclonal antibodies, gantenerumab, which preferentially binds to fibrillar Aβ, and crenezumab, which preferentially binds to soluble, oligomeric and fibrillar Aβ deposits, are being tested in secondary prevention trials in presymptomatic subjects with autosomal dominant AD mutations. Solanezumab is also being tested in a prevention study in asymptomatic older subjects, who have positive positron emission tomography scans for brain amyloid deposits. These ongoing secondary prevention trials will tell us if Aβ really plays a crucial role in the pathophysiology of AD.
Collapse
Affiliation(s)
- Francesco Panza
- University of Bari Aldo Moro, Department of Basic Medicine, Neuroscience, and Sense Organs, Neurodegenerative Disease Unit , Bari , Italy
| | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW We reviewed clinical trials on active and passive anti-β-amyloid (Aβ) immunotherapy for the treatment of Alzheimer's disease with a particular focus on monoclonal antibodies against Aβ. RECENT FINDINGS Studies on anti-Alzheimer's disease immunotherapy published in the period from January 2012 to October 2013 were reviewed. SUMMARY Both active and passive anti-Aβ immunotherapies were shown to clear brain Aβ deposits. However, an active anti-Aβ vaccine (AN1792) has been discontinued because it caused meningoencephalitis in 6% of Alzheimer's disease patients treated. Among passive immunotherapeutics, two Phase III clinical trials in mild-to-moderate Alzheimer's disease patients with bapineuzumab, a humanized monoclonal antibody directed at the N-terminal sequence of Aβ, were disappointing. Another antibody, solanezumab, directed at the mid-region of Aβ, failed in two Phase III clinical trials in mild-to-moderate Alzheimer's disease patients. A third Phase III study with solanezumab is ongoing in mildly affected Alzheimer's disease patients based on encouraging results in this subgroup of patients. Second-generation active Aβ vaccines (ACC-001, CAD106, and Affitope AD02) and new passive anti-Aβ immunotherapies (gantenerumab and crenezumab) are being tested in prodromal Alzheimer's disease patients, in presymptomatic individuals with Alzheimer's disease-related mutations, or in asymptomatic individuals at risk of developing Alzheimer's disease to definitely test the Aβ cascade hypothesis of Alzheimer's disease.
Collapse
|
12
|
Davtyan H, Bacon A, Petrushina I, Zagorski K, Cribbs DH, Ghochikyan A, Agadjanyan MG. Immunogenicity of DNA- and recombinant protein-based Alzheimer disease epitope vaccines. Hum Vaccin Immunother 2014; 10:1248-55. [PMID: 24525778 DOI: 10.4161/hv.27882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ. Data from the recent passive vaccination trials with bapineuzumab and solanezumab also indicated that anti-Aβ immunotherapy might be effective in reduction of the AD pathology and even improvement of cognitive and/or functional performance in patients when administered early in the course of the disease. For the prevention of AD the active immunization strategy may be more desirable than passive immunotherapy protocol and it can offer the potential for sustainable clinical and commercial advantages. Here we discuss the active vaccine approaches, which are still in preclinical development and vaccines that are already in clinical trials.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA USA
| | | | - Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders; University of California at Irvine; Irvine, CA USA
| | - Karen Zagorski
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders; University of California at Irvine; Irvine, CA USA; Department of Neurology; University of California at Irvine; Irvine, CA USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA USA
| | - Michael G Agadjanyan
- Department of Molecular Immunology; Institute for Molecular Medicine; Huntington Beach, CA USA; Institute for Memory Impairments and Neurological Disorders; University of California at Irvine; Irvine, CA USA
| |
Collapse
|
13
|
Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G. Amyloid-based immunotherapy for Alzheimer's disease in the time of prevention trials: the way forward. Expert Rev Clin Immunol 2014; 10:405-19. [DOI: 10.1586/1744666x.2014.883921] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Léger GC, Massoud F. Novel disease-modifying therapeutics for the treatment of Alzheimer’s disease. Expert Rev Clin Pharmacol 2014; 6:423-42. [DOI: 10.1586/17512433.2013.811237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Blennow K, Hampel H, Zetterberg H. Biomarkers in amyloid-β immunotherapy trials in Alzheimer's disease. Neuropsychopharmacology 2014; 39:189-201. [PMID: 23799530 PMCID: PMC3857643 DOI: 10.1038/npp.2013.154] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 12/21/2022]
Abstract
Drug candidates directed against amyloid-β (Aβ) are mainstream in Alzheimer's disease (AD) drug development. Active and passive Aβ immunotherapy is the principle that has come furthest, both in number and in stage of clinical trials. However, an increasing number of reports on major difficulties in identifying any clinical benefit in phase II-III clinical trials on this type of anti-Aβ drug candidates have caused concern among researchers, pharmaceutical companies, and other stakeholders. This has provided critics of the amyloid cascade hypothesis with fire for their arguments that Aβ deposition may merely be a bystander, and not the cause, of the disease or that the amyloid hypothesis may only be valid for the familial form of AD. On the other hand, most researchers argue that it is the trial design that will need refinement to allow for identifying a positive clinical effect of anti-Aβ drugs. A consensus in the field is that future trials need to be performed in an earlier stage of the disease and that biomarkers are essential to guide and facilitate drug development. In this context, it is reassuring that, in contrast to most brain disorders, research advances in the AD field have led to both imaging (magnetic resonance imaging (MRI) and PET) and cerebrospinal fluid (CSF) biomarkers for the central pathogenic processes of the disease. AD biomarkers will have a central role in future clinical trials to enable early diagnosis, and Aβ biomarkers (CSF Aβ42 and amyloid PET) may be essential to allow for testing a drug on patients with evidence of brain Aβ pathology. Pharmacodynamic Aβ and amyloid precursor protein biomarkers will be of use to verify target engagement of a drug candidate in humans, thereby bridging the gap between mechanistic data from transgenic AD models (that may not be relevant to the neuropathology of human AD) and large and expensive phase III trials. Last, downstream biomarker evidence (CSF tau proteins and MRI volumetry) that the drug ameliorates neurodegeneration will, together with beneficial clinical effects on cognition and functioning, be essential for labeling an anti-Aβ drug as disease modifying.
Collapse
Affiliation(s)
- Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Harald Hampel
- Department of Psychiatry, University of Frankfurt, Frankfurt, Germany
- Department of Neurology, University of Belgrade, Belgrade, Serbia
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
- University College London Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
16
|
Prins ND, Scheltens P. Treating Alzheimer's disease with monoclonal antibodies: current status and outlook for the future. ALZHEIMERS RESEARCH & THERAPY 2013; 5:56. [PMID: 24216217 PMCID: PMC3978826 DOI: 10.1186/alzrt220] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the past decade, Alzheimer's disease drug discovery has been directed at 'disease modifying drugs' that are able to counteract the progression of Alzheimer's disease by intervening in specific parts of its neuropathological process. Passive immunization with monoclonal antibodies (mAbs) may be able to clear toxic amyloid-β species either directly or through microglia or complement activation, thereby halting the amyloid cascade and preventing neurodegeneration and cognitive and functional decline. Thus far, results from two large phase 3 trial programs with bapineuzumab and solaneuzumab, respectively, have brought rather disappointing results. Possible explanations could be that these compounds were either targeting the wrong amyloid-β species, or were given too late in the disease process. Several new mAbs targeting various amyloid-β epitopes are now being tested in ongoing phase 2 and 3 clinical trials. The present review discusses the various mAbs aimed at amyloid-β, summarizes trial results and provides an outlook for the future.
Collapse
Affiliation(s)
- Niels D Prins
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands ; Alzheimer Research Center, Gebouw Cronenburg, Cronenburg 75, 1081 GM, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Shang YC, Chong ZZ, Wang S, Maiese K. Wnt1 inducible signaling pathway protein 1 (WISP1) targets PRAS40 to govern β-amyloid apoptotic injury of microglia. Curr Neurovasc Res 2013; 9:239-49. [PMID: 22873724 DOI: 10.2174/156720212803530618] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Given the present challenges to attain effective treatment for β-amyloid (Aβ) toxicity in neurodegenerative disorders such as Alzheimer's disease, development of novel cytoprotective pathways that can assist immune mediated therapies through the preservation of central nervous system microglia could offer significant promise. We show that the CCN4 protein, Wnt1 inducible signaling pathway protein 1 (WISP1), is initially up-regulated by Aβ and can modulate its endogenous expression for the protection of microglia during Aβ mediated apoptosis. WISP1 activates mTOR and phosphorylates p70S6K and 4EBP1 through the control of the regulatory mTOR component PRAS40. Loss of PRAS40 through gene reduction or inhibition by WISP1 is cytoprotective. WISP1 ultimately governs PRAS40 by sequestering PRAS40 intracellularly through post-translational phosphorylation and binding to protein 14-3-3. Our work identifies WISP1, mTOR signaling, and PRAS40 as targets for new strategies directed against Alzheimer's disease and related disorders.
Collapse
Affiliation(s)
- Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
18
|
Shang YC, Chong ZZ, Wang S, Maiese K. Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 2013; 10:29-38. [PMID: 23244622 DOI: 10.2174/156720213804806007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 12/15/2022]
Abstract
More than 110 million individuals will suffer from cognitive loss worldwide by the year 2050 with a majority of individuals presenting with Alzheimer's disease (AD). Yet, successful treatments for etiologies that involve β.-amyloid (Aβ.) toxicity in AD remain elusive and await novel avenues for drug development. Here we show that Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4) controls the post-translational phosphorylation of Akt1, p70S6K, and AMP activated protein kinase (AMPK) to the extent that tuberous sclerosis complex 2 (TSC2) (Ser1387) phosphorylation, a target of AMPK, is decreased and TSC2 (Thr1462) phosphorylation, a target of Akt1, is increased. The ability of WISP1 to limit TSC2 activity allows WISP1 to increase the activity of p70S6K, since gene silencing of TSC2 further enhances WISP1 phosphorylation of p70S6K. However, a minimal level of TSC2 activity is necessary to modulate WISP1 cytoprotection that may require modulation of mTOR activity, since gene knockdown of TSC2 impairs the ability of WISP1 to protect microglia against apoptotic membrane phosphatidylserine (PS) exposure, nuclear DNA degradation, mitochondrial membrane depolarization, and cytochrome c release during Aβ. exposure.
Collapse
Affiliation(s)
- Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, New Jersey Health Sciences University, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Effective treatments of Alzheimer disease (AD) dementia are an urgent necessity. There is a growing consensus that effective disease-modifying treatment before the onset of clinical dementia and slowing the progression of mild symptoms are needed after recent setbacks in AD therapeutics. The identification of at-risk and preclinical AD populations is becoming important for targeting primary and secondary prevention clinical trials in AD. This article reviews the strategies and challenges in targeting at-risk and preclinical AD populations for a new generation of AD clinical trials. Design, outcome measures, and complexities in successfully completing a clinical trial targeting this population are reviewed.
Collapse
Affiliation(s)
- Jagan A Pillai
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
20
|
Vanderstichele H, Stoops E, Vanmechelen E, Jeromin A. Potential sources of interference on Abeta immunoassays in biological samples. ALZHEIMERS RESEARCH & THERAPY 2012; 4:39. [PMID: 23082750 PMCID: PMC3580396 DOI: 10.1186/alzrt142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Therapeutic products that depend on the use of an in vitro diagnostic biomarker test to confirm their effectiveness are increasingly being developed. Use of biomarkers is particularly meaningful in the context of selecting the patient population where the therapeutic treatment is believed to be efficacious (patient enrichment). Currently available 'research-use-only' assays for Alzheimer's disease diagnosis all suffer from non-analyte and analyte-specific interferences. The impact of these interferences on the outcome of the assays is not well understood. The confounding factors are hampering correct value determination in biological samples and are intrinsic to the assay concept, the assay design, the presence in the sample of heterophilic antibodies and auto-antibodies, or might be the result of the therapeutic approach. This review focuses on the importance of assay interferences and considers how these might be minimized with the final aim of making the assays more acceptable as in vitro diagnostic biomarker tests for theranostic use.
Collapse
Affiliation(s)
| | - Erik Stoops
- ADxNeurosciences, Technologiepark 4, 9052, Gent, Belgium
| | | | | |
Collapse
|