1
|
He JG, Li HR, Li BB, Xie QL, Yan D, Wang XJ. Bone marrow mesenchymal stem cells overexpressing GATA-4 improve cardiac function following myocardial infarction. Perfusion 2019; 34:696-704. [PMID: 31090492 DOI: 10.1177/0267659119847442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The present study aimed to examine whether GATA-4 overexpressing bone marrow mesenchymal stem cells can improve cardiac function in a murine myocardial infarction model compared with bone marrow mesenchymal stem cells alone. METHODS A lentiviral-based transgenic system was used to generate bone mesenchymal stem cells which stably expressed GATA-4 (GATA-4-bone marrow mesenchymal stem cells). Apoptosis and the myogenic phenotype of the bone marrow mesenchymal stem cells were measured using Western blot and immunofluorescence assays co-cultured with cardiomyocytes. Cardiac function, bone marrow mesenchymal stem cell homing, cardiac cell apoptosis, and vessel number following transplantation were assessed, as well as the expression of c-Kit. RESULTS In GATA-4-bone marrow mesenchymal stem cells-cardiomyocyte co-cultures, expression of myocardial-specific antigens, cTnT, connexin-43, desmin, and α-actin was increased compared with bone marrow mesenchymal stem cells alone. Caspase 8 and cytochrome C expression was lower, and the apoptotic rate was significantly lower in GATA-4 bone marrow mesenchymal stem cells. Cardiac function following myocardial infarction was also increased in the GATA-4 bone marrow mesenchymal stem cell group as demonstrated by enhanced ejection fraction and left ventricular fractional shortening. Analysis of the cardiac tissue revealed that the GATA-4 bone marrow mesenchymal stem cell group had a greater number of DiR-positive cells suggestive of increased homing and/or survival. Transplantation with GATA-4-bone marrow mesenchymal stem cells significantly increased the number of blood vessels, decreased the proportion of apoptotic cells, and increased the mean number of cardiac c-kit-positive cells. CONCLUSION GATA-4 overexpression in bone marrow mesenchymal stem cells exerts anti-apoptotic effects by targeting cytochrome C and Fas pathways, promotes the aggregation of bone marrow mesenchymal stem cells in cardiac tissue, facilitates angiogenesis, and effectively mobilizes c-kit-positive cells following myocardial infarction, leading to the improvement of cardiac function after MI.
Collapse
Affiliation(s)
- Ji-Gang He
- Department of Cardiovascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Hong-Rong Li
- Department of Cardiovascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Bei-Bei Li
- Department of Cardiovascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Qiao-Li Xie
- Department of Cardiovascular Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Dan Yan
- Department of Emergency Intensive Care Unit, First People's Hospital of Yunnan Province, Kunming, China
| | - Xue-Juan Wang
- Department of Emergency Intensive Care Unit, First People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
2
|
Rozman JZ, Jez M, Malicev E, Krasna M, Vrtovec B, Cukjati M, Rozman P. CD34+ enriched cell products intended for autologous transendocardial CD34+ cell transplantation release significant amounts of angiopoietin-1. Transfus Clin Biol 2019; 26:273-278. [PMID: 30709720 DOI: 10.1016/j.tracli.2019.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/04/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Cell-based therapy has emerged as a promising strategy for the treatment of patients with heart failure. Increasing evidence supports the hypothesis that paracrine mechanisms mediated by soluble factors released by the cells play a predominate role in reparative processes. The aim of our study was to analyze which cytokines are released by CD34+ enriched cell products intended for autologous transendocardial CD34+ cell transplantation in patients with cardiomyopathy. MATERIAL AND METHODS The peripheral blood CD34+ cells from 12 patients were mobilized with granulocyte colony-stimulating factor, collected via apheresis and enriched by immunoselection. RESULTS In CD34+ enriched cell population, hematopoietic, but not mesenchymal or endothelial, progenitors were detected. Except for angiopoietin-1, other measured cytokines (FGF1, FGF2, VEGF, PDGF, IL-6, HGH, SDF-1α/CXCL12, NRG1) were not released by CD34+ cells. The average concentration of angiopoietin-1 released by 5×106 CD34+ cells grown in neutral DMEM medium was 213.6±130.0pg/mL (range: 74-448pg/mL). Angiopoietin-1 secretion correlated well with CD34+ cell's capacity for generating colonies derived from hematopoietic progenitors (Pearson's correlation=0.964; P<0.001). CONCLUSION Our study presents angiopoietin-1 as an interesting candidate and suggests future studies to explore how its release by CD34+ cells might impact the success of autologous CD34+ cell transplantation.
Collapse
Affiliation(s)
- J-Z Rozman
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, Ljubljana, Slovenia.
| | - M Jez
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, Ljubljana, Slovenia
| | - E Malicev
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, Ljubljana, Slovenia
| | - M Krasna
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, Ljubljana, Slovenia
| | - B Vrtovec
- Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - M Cukjati
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, Ljubljana, Slovenia
| | - P Rozman
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, Ljubljana, Slovenia
| |
Collapse
|
3
|
Luc JGY, Tchantchaleishvili V. Update on Stem Cell-Based Therapy and Mechanical Cardiac Support: A North American Perspective. Artif Organs 2018; 42:866-870. [PMID: 30328627 DOI: 10.1111/aor.13334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Jessica G Y Luc
- Division of Cardiovascular Surgery, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
4
|
Engraftment and morphological development of vascularized human iPS cell-derived 3D-cardiomyocyte tissue after xenotransplantation. Sci Rep 2017; 7:13708. [PMID: 29057926 PMCID: PMC5651879 DOI: 10.1038/s41598-017-14053-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
One of the major challenges in cell-based cardiac regenerative medicine is the in vitro construction of three-dimensional (3D) tissues consisting of induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) and a blood vascular network supplying nutrients and oxygen throughout the tissue after implantation. We have successfully built a vascularized iPSC-CM 3D-tissue using our validated cell manipulation technique. In order to evaluate an availability of the 3D-tissue as a biomaterial, functional morphology of the tissues was examined by light and transmission electron microscopy through their implantation into the rat infarcted heart. Before implantation, the tissues showed distinctive myofibrils within iPSC-CMs and capillary-like endothelial tubes, but their profiles were still like immature. In contrast, engraftment of the tissues to the rat heart led the iPSC-CMs and endothelial tubes into organization of cell organelles and junctional apparatuses and prompt development of capillary network harboring host blood supply, respectively. A number of capillaries in the implanted tissues were derived from host vascular bed, whereas the others were likely to be composed by fusion of host and implanted endothelial cells. Thus, our vascularized iPSC-CM 3D-tissues may be a useful regenerative paradigm which will require additional expanded and long-term studies.
Collapse
|
5
|
Sex Differences of Human Cardiac Progenitor Cells in the Biological Response to TNF- α Treatment. Stem Cells Int 2017; 2017:4790563. [PMID: 29104594 PMCID: PMC5623773 DOI: 10.1155/2017/4790563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 01/25/2023] Open
Abstract
Adult cardiac progenitor cells (CPCs), isolated as cardiosphere-derived cells (CDCs), represent promising candidates for cardiac regenerative therapy. CDCs can be expanded in vitro manyfolds without losing their differentiation potential, reaching numbers that are appropriate for clinical applications. Since mechanisms of successful CDC survival and engraftment in the damaged myocardium are still critical and unresolved issues, we aimed at deciphering possible key factors capable of bolstering CDC function. In particular, the response and the phenotype of CDCs exposed to low concentrations of the multifunctional cytokine tumor necrosis factor α (TNF-α), known to be capable of activating cell survival pathways, have been investigated. Furthermore, differential biological responses of CDCs from male and female donors, in terms of cell cycle progression and cell spreading, have also been assessed. The results obtained indicate that (i) the intracellular signaling activated in our experimental conditions is most likely due to the prosurvival and proliferative signaling of TNF-α receptor 2 and that (ii) cells from female patients appear more responsive to TNF-α treatment in terms of cell cycle progression and migration ability. In conclusion, the present report highlights the hypothesis that TNF-stimulated CDCs isolated from females may represent a promising candidate for cardiac regenerative therapy applications.
Collapse
|
6
|
The effect of CD34 + cell telomere length and hTERT expression on the outcome of autologous CD34 + cell transplantation in patients with chronic heart failure. Mech Ageing Dev 2017. [DOI: 10.1016/j.mad.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Rozman JZ, Pohar Perme M, Jez M, Malicev E, Krasna M, Vrtovec B, Rozman P. DNA Methylation and Hydroxymethylation Profile of CD34 +-Enriched Cell Products Intended for Autologous CD34 + Cell Transplantation. DNA Cell Biol 2017; 36:737-746. [PMID: 28613929 DOI: 10.1089/dna.2017.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epigenetic dysregulation has been shown to limit functional capacity of aging hematopoietic stem cells, which may contribute to impaired outcome of hematopoietic stem cell-based therapies. The aim of our study was to gain better insight into the epigenetic profile of CD34+-enriched cell products intended for autologous CD34+ cell transplantation in patients with cardiomyopathy. We found global DNA methylation content significantly higher in immunoselected CD34+ cells compared to leukocytes in leukapheresis products (2.33 ± 1.03% vs. 1.84 ± 0.86%, p = 0.04). Global DNA hydroxymethylation content did not differ between CD34+ cells and leukocytes (p = 0.30). By measuring methylation levels of 94 stem cell transcription factors on a ready-to-use array, we identified 15 factors in which average promoter methylation was significantly different between leukocytes and CD34+ cells. The difference was highest for HOXC12 (58.18 ± 6.47% vs. 13.34 ± 24.18%, p = 0.0009) and NR2F2 (51.65 ± 25.89% vs. 7.66 ± 21.43%, p = 0.0045) genes. Our findings suggest that global DNA methylation and hydroxymethylation patterns as well as target methylation profile of selected genes in CD34+-enriched cell products do not differ significantly compared to leukapheresis products and, thus, can tell us little about the functional capacity and regenerative properties of CD34+ cells. Future studies should examine other CD34+ cell graft characteristics, which may serve as prognostic tools for autologous CD34+ cell transplantation.
Collapse
Affiliation(s)
| | - Maja Pohar Perme
- 2 Institute for Biostatistics and Medical Informatics , Faculty of Medicine Ljubljana, Ljubljana, Slovenia
| | - Mojca Jez
- 1 Blood Transfusion Centre of Slovenia , Ljubljana, Slovenia
| | - Elvira Malicev
- 1 Blood Transfusion Centre of Slovenia , Ljubljana, Slovenia
| | - Metka Krasna
- 1 Blood Transfusion Centre of Slovenia , Ljubljana, Slovenia
| | - Bojan Vrtovec
- 3 Advanced Heart Failure and Transplantation Center, University Medical Center Ljubljana , Ljubljana, Slovenia
- 4 Stanford Cardiovascular Institute, Stanford University School of Medicine , Stanford, California
| | - Primoz Rozman
- 1 Blood Transfusion Centre of Slovenia , Ljubljana, Slovenia
| |
Collapse
|
8
|
Gowran A, Rasponi M, Visone R, Nigro P, Perrucci GL, Righetti S, Zanobini M, Pompilio G. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells. Stem Cells Int 2016; 2016:4287158. [PMID: 27110250 PMCID: PMC4823509 DOI: 10.1155/2016/4287158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/09/2016] [Indexed: 01/01/2023] Open
Abstract
A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Aoife Gowran
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Building No. 21, 20133 Milan, Italy
| | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Gianluca L. Perrucci
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Stefano Righetti
- Cardiology Unit, San Gerardo Hospital, Via Giambattista Pergolesi 33, 20052 Monza, Italy
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138 Milan, Italy
| |
Collapse
|
9
|
Bartolini E, Manoli H, Costamagna E, Jeyaseelan HA, Hamad M, Irhimeh MR, Khademhosseini A, Abbas A. Population balance modelling of stem cell culture in 3D suspension bioreactors. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|