1
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
3
|
Zhang Y, Cui Q, Xu M, Liu D, Yao S, Chen M. Current Advances in PD-1/PD-L1 Blockade in Recurrent Epithelial Ovarian Cancer. Front Immunol 2022; 13:901772. [PMID: 35833132 PMCID: PMC9271774 DOI: 10.3389/fimmu.2022.901772] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapies have revolutionized the treatment of a variety of cancers. Epithelial ovarian cancer is the most lethal gynecologic malignancy, and the rate of advanced tumor progression or recurrence is as high as 80%. Current salvage strategies for patients with recurrent ovarian cancer are rarely curative. Recurrent ovarian cancer is a “cold tumor”, predominantly due to a lack of tumor antigens and an immunosuppressive tumor microenvironment. In trials testing programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) blockade as a monotherapy, the response rate was only 8.0-22.2%. In this review, we illustrate the status of cold tumors in ovarian cancer and summarize the existing clinical trials investigating PD-1/PD-L1 blockade in recurrent ovarian cancer. Increasing numbers of immunotherapy combination trials have been set up to improve the response rate of EOC. The current preclinical and clinical development of immunotherapy combination therapy to convert an immune cold tumor into a hot tumor and their underlying mechanisms are also reviewed. The combination of anti-PD-1/PD-L1 with other immunomodulatory drugs or therapies, such as chemotherapy, antiangiogenic therapies, poly (ADP-ribose) polymerase inhibitors, adoptive cell therapy, and oncolytic therapy, could be beneficial. Further efforts are merited to transfer these results to a broader clinical application.
Collapse
Affiliation(s)
- Yuedi Zhang
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiulin Cui
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Manman Xu
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Duo Liu
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuzhong Yao
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ming Chen, ; Shuzhong Yao,
| | - Ming Chen
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ming Chen, ; Shuzhong Yao,
| |
Collapse
|
4
|
Berti C, Graciotti M, Boarino A, Yakkala C, Kandalaft LE, Klok HA. Polymer Nanoparticle-Mediated Delivery of Oxidized Tumor Lysate-Based Cancer Vaccines. Macromol Biosci 2021; 22:e2100356. [PMID: 34822219 DOI: 10.1002/mabi.202100356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Cancer vaccination is a powerful strategy to combat cancer. A very attractive approach to prime the immune system against cancer cells involves the use of tumor lysate as antigen source. The immunogenicity of tumor lysate can be further enhanced by treatment with hypochlorous acid. This study explores poly(lactic-co-glycolic acid) (PLGA) nanoparticles to enhance the delivery of oxidized tumor lysate to dendritic cells. Using human donor-derived dendritic cells, it is found that the use of PLGA nanoparticles enhances antigen uptake and dendritic cell maturation, as compared to the use of the free tumor lysate. The ability of the activated dendritic cells to stimulate autologous peripheral blood mononuclear cells (PBMCs) is assessed in vitro by coculturing PBMCs with A375 melanoma cells. Live cell imaging analysis of this experiment highlights the potential of nanoparticle-mediated dendritic-cell-based vaccination approaches. Finally, the efficacy of the PLGA nanoparticle formulation is evaluated in vivo in a therapeutic vaccination study using B16F10 tumor-bearing C57BL/6J mice. Animals that are challenged with the polymer nanoparticle-based oxidized tumor lysate formulation survive for up to 50 days, in contrast to a maximum of 41 days for the group that receives the corresponding free oxidized tumor lysate-based vaccine.
Collapse
Affiliation(s)
- Cristiana Berti
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Michele Graciotti
- Ludwig Cancer Research Center - Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Alice Boarino
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Chakradhar Yakkala
- Ludwig Cancer Research Center - Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Lana E Kandalaft
- Ludwig Cancer Research Center - Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
5
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
6
|
Raza F, Zafar H, Zhang S, Kamal Z, Su J, Yuan W, Mingfeng Q. Recent Advances in Cell Membrane-Derived Biomimetic Nanotechnology for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2002081. [PMID: 33586322 DOI: 10.1002/adhm.202002081] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy will significantly impact the standard of care in cancer treatment. Recent advances in nanotechnology can improve the efficacy of cancer immunotherapy. However, concerns regarding efficiency of cancer nanomedicine, complex tumor microenvironment, patient heterogeneity, and systemic immunotoxicity drive interest in more novel approaches to be developed. For this purpose, biomimetic nanoparticles are developed to make innovative changes in the delivery and biodistribution of immunotherapeutics. Biomimetic nanoparticles have several advantages that can advance the clinical efficacy of cancer immunotherapy. Thus there is a greater push toward the utilization of biomimetic nanotechnology for developing effective cancer immunotherapeutics that demonstrate increased specificity and potency. The recent works and state-of-the-art strategies for anti-tumor immunotherapeutics are highlighted here, and particular emphasis has been given to the applications of cell-derived biomimetic nanotechnology for cancer immunotherapy.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Hajra Zafar
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Shulei Zhang
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zul Kamal
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Pharmacy Shaheed Benazir Bhutto University Sheringal Dir (Upper) Khyber Pakhtunkhwa 18000 Pakistan
| | - Jing Su
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wei‐En Yuan
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Qiu Mingfeng
- School of Pharmacy Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
7
|
Kaboli PJ, Zhang L, Xiang S, Shen J, Li M, Zhao Y, Wu X, Zhao Q, Zhang H, Lin L, Yin J, Wu Y, Wan L, Yi T, Li X, Cho CH, Li J, Xiao Z, Wen Q. Molecular Markers of Regulatory T Cells in Cancer Immunotherapy with Special Focus on Acute Myeloid Leukemia (AML) - A Systematic Review. Curr Med Chem 2020; 27:4673-4698. [PMID: 31584362 DOI: 10.2174/0929867326666191004164041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
The next-generation immunotherapy can only be effective if researchers have an in-depth understanding of the function and regulation of Treg cells in antitumor immunity combined with the discovery of new immunity targets. This can enhance clinical efficacy of future and novel therapies and reduces any adverse reactions arising from the latter. This review discusses tumor treatment strategies using regulatory T (Treg) cell therapy in a Tumor Microenvironment (TME). It also discusses factors affecting TME instability as well as relevant treatments to prevent future immune disorders. It is prognosticated that PD-1 inhibitors are risky and their adverse effects should be taken into account when they are administered to treat Acute Myeloid Leukemia (AML), lung adenocarcinoma, and prostate adenocarcinoma. In contrast, Treg molecular markers FoxP3 and CD25 analyzed here have stronger expression in almost all kinds of cancers compared with normal people. However, CD25 inhibitors are more effective compared to FoxP3 inhibitors, especially in combination with TGF-β blockade, in predicting patient survival. According to the data obtained from the Cancer Genome Atlas, we then concentrate on AML immunotherapy and discuss different therapeutic strategies including anti-CD25/IL-2, anti-CTLA-4, anti-IDO, antityrosine kinase receptor, and anti-PI3K therapies and highlight the recent advances and clinical achievements in AML immunotherapy. In order to prognosticate the risk and adverse effects of key target inhibitors (namely against CTLA-4, FoxP3, CD25, and PD-1), we finally analyzed and compared the Cancer Genome Atlas derived from ten common cancers. This review shows that Treg cells are strongly increased in AML and the comparative review of key markers shows that Tregbased immunotherapy is not effective for all kinds of cancer. Therefore, blocking CD25(+)FoxP3(+) Treg cells is suggested in AML more than other kinds of cancer; meanwhile, Treg markers studied in other cancers have also great lessons for AML immunotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Lin Wan
- Department of Hematology and Oncology, The Children's Hospital of Soochow, Jiangsu, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
8
|
Guo Q, Yang Q, Li J, Liu G, Nikoulin I, Jia S. Advanced clinical trials of dendritic cell vaccines in ovarian cancer. J Investig Med 2020; 68:1223-1227. [PMID: 32718940 DOI: 10.1136/jim-2020-001355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most common and leading cause of death for gynecologic cancer in the western world. Current standard treatments with limited selection of chemotherapies cannot meet patients' urgent needs. Immunotherapies have recently demonstrated clinical benefits in a variety of solid tumors and may offer a promising frontier for treating EOC. Dendritic cells (DCs) are key coordinators of the innate and adaptive immune system in induction of antitumor immunity. DC-based vaccinations showed clinical benefits and encouraging safety profiles in a few phase II clinical trials for patients with EOC and currently are in a phase III double-blind, randomized, placebo-controlled clinical trial. In this review, we have searched Pubmed and Clinicaltrials. gov databases for past and current phase II or phase III clinical trials with focus on EOC and DC vaccines. Outcomes and implications of the completed and ongoing trials are discussed.
Collapse
Affiliation(s)
- Quan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guipeng Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Igor Nikoulin
- Research and Development, IriSys, LLC, San Diego, California, USA
| | - Steve Jia
- RD Center, Pacificbio Inc, Irvine, California, USA
| |
Collapse
|
9
|
Jin JO, Kim G, Hwang J, Han KH, Kwak M, Lee PCW. Nucleic acid nanotechnology for cancer treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188377. [PMID: 32418899 DOI: 10.1016/j.bbcan.2020.188377] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
Cancer is one of the most prevalent potentially lethal diseases. With the increase in the number of investigations into the uses of nanotechnology, many nucleic acid (NA)-based nanostructures such as small interfering RNA, microRNA, aptamers, and immune adjuvant NA have been applied to treat cancer. Here, we discuss studies on the applications of NA in cancer treatment, recent research trends, and the limitations and prospects of specific NA-mediated gene therapy and immunotherapy for cancer treatment. The NA structures used for cancer therapy consist only of NA or hybrids comprising organic or inorganic substances integrated with functional NA. We also discuss delivery vehicles for therapeutic NA and anti-cancer agents, and recent trends in NA-based gene therapy and immunotherapy against cancer.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea.
| | - Gyurin Kim
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Juyoung Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Kyung Ho Han
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea; DWI-Leibniz Institute for Interactive Materials, Aachen 52056, Germany.
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
10
|
Wang C, Huang X, Wu Y, Wang J, Li F, Guo G. Tumor Cell-associated Exosomes Robustly Elicit Anti-tumor Immune Responses through Modulating Dendritic Cell Vaccines in Lung Tumor. Int J Biol Sci 2020; 16:633-643. [PMID: 32025211 PMCID: PMC6990923 DOI: 10.7150/ijbs.38414] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/14/2019] [Indexed: 12/15/2022] Open
Abstract
DC vaccine-based immunotherapy is emerging as a novel therapeutic strategy for cancer treatment, however, antitumor effect of DC vaccines based on tumor cell lysates (TCLs) remains unsatisfactory due to poor immunogenicity of tumor antigens. Although tumor-associated exosomes (TAEs) have been reported as a promising antigen for DC vaccines, it remains unclear how TAE-based DC vaccine induced antitumor immunity in lung cancer. Methods: In the present study, we extracted TAEs from the supernatant of tumor cell culture medium, and compared the effect of TAEs with TCLs on DCs. To further evaluate the therapeutic effect of DCTAE, we used immunofluorescence and flow cytometry to evaluate the apoptosis of tumor tissue, tumor-infiltrating CD8+ T cells and Tregs in TDLNs and spleen. Then the levels of cytokines of IL-12, IFN-γ, L-10 and TGF-β were quantified by ELISA assays. Results: Our data showed that TAEs were more potent than TCLs to promote DC maturation and enhance MHC cross presentation, which directly contributed to more robust tumor-specific cytotoxic T lymphocyte (CTL) response. More importantly, TAEs reduced the expression of PD-L1 of DCs, thereby led to down-regulated population of Tregs in vitro. Moreover, DCTAE remarkably suppressed the tumor growth and prolonged survival rate in vivo, due to participance of CD8+ T cells and decreased Tregs in TDLNs and spleen. Conclusion: TAEs could serve to improve vaccine-elicited immunotherapy by triggering stronger DC-mediated immune responses and decreasing Tregs in the tumor microenvironment.
Collapse
Affiliation(s)
- Ce Wang
- Department of anatomy, School of Medicine, Jinan University, Guangzhou 510632, China.,Shenzhen Key Laboratory of Stem cell research and clinical transformation, Guangdong Engineering Technology Research Center of Stem cell and Cell therapy, Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Xue Huang
- Shenzhen Key Laboratory of Stem cell research and clinical transformation, Guangdong Engineering Technology Research Center of Stem cell and Cell therapy, Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Yingjuan Wu
- Shenzhen Key Laboratory of Stem cell research and clinical transformation, Guangdong Engineering Technology Research Center of Stem cell and Cell therapy, Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Jingbo Wang
- Shenzhen Key Laboratory of Stem cell research and clinical transformation, Guangdong Engineering Technology Research Center of Stem cell and Cell therapy, Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Furong Li
- Shenzhen Key Laboratory of Stem cell research and clinical transformation, Guangdong Engineering Technology Research Center of Stem cell and Cell therapy, Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Guoqing Guo
- Department of anatomy, School of Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Palata O, Podzimkova Hradilova N, Mysiková D, Kutna B, Mrazkova H, Lischke R, Spisek R, Adkins I. Detection of tumor antigens and tumor-antigen specific T cells in NSCLC patients: Correlation of the quality of T cell responses with NSCLC subtype. Immunol Lett 2020; 219:46-53. [PMID: 31931024 DOI: 10.1016/j.imlet.2020.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/29/2019] [Accepted: 01/07/2020] [Indexed: 11/15/2022]
Abstract
Allogeneic cancer cell lines serve as universal source of tumor-associated antigens in cancer vaccines. Immunogenic high hydrostatic pressure-killed cancer cells derived from cell lines can be used for the generation of dendritic cell (DC)-based active cellular immunotherapy of non-small cell lung cancer (NSCLC). We investigated the expression of 12 known NSCLC tumor-associated antigens (TAA) (CEA, MAGE-A1, MAGE-A3, MAGE-A4, PRAME, hTERT, HER2, MUC1, Survivin, STEAP1, SOX2 and NY-ESO-1) in 6 NSCLC cell lines as candidates for the generation of DC-based lung cancer vaccine. We showed that the selected antigenic profile of these cell lines overlaps to various degrees with that of primary NSCLC tumors (n = 52), indicating that 4 out of 6 NSCLC cell lines would be suitable for DC-based vaccine generation. We further investigated the presence of TAA-specific T cells in blood of NSCLC patients (n = 32) using commercially available peptide mixes in an in vitro stimulation assay. IFN-γ+CD8+ and IFN-γ+CD4+ T cell responses to all antigens were detected in NSCLC patients. Interestingly, despite higher TAA expression in squamous cell carcinoma (SCC) the responsiveness of patients' T cells to stimulation was significantly lower in SCC patients than in adenocarcinoma (AC) patients. This suggests qualitative differences in T cell functionality between NSCLC subtypes. Based on this study, and in order to maximize the amount of treatable patients, we selected a mix of H520 and H522 NSCLC cell lines for DC-based vaccine preparation. We also established a minimal panel of antigenic peptide mixes (CEA, hTERT, PRAME, HER2) for immunomonitoring of T cell responses during the DC-based lung cancer immunotherapy in Phase I lung cancer clinical trial (NCT02470468).
Collapse
Affiliation(s)
- Ondrej Palata
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Czech Republic
| | - Nada Podzimkova Hradilova
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Czech Republic
| | - Dagmar Mysiková
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, First Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Beata Kutna
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, First Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Hana Mrazkova
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, First Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Robert Lischke
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, First Faculty of Medicine, Charles University in Prague and University Hospital Motol, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Czech Republic
| | - Irena Adkins
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Czech Republic.
| |
Collapse
|
12
|
Sarivalasis A, Boudousquié C, Balint K, Stevenson BJ, Gannon PO, Iancu EM, Rossier L, Martin Lluesma S, Mathevet P, Sempoux C, Coukos G, Dafni U, Harari A, Bassani-Sternberg M, Kandalaft LE. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J Transl Med 2019; 17:391. [PMID: 31771601 PMCID: PMC6880492 DOI: 10.1186/s12967-019-02133-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Most ovarian cancer patients are diagnosed at a late stage with 85% of them relapsing after surgery and standard chemotherapy; for this reason, new treatments are urgently needed. Ovarian cancer has become a candidate for immunotherapy by reason of their expression of shared tumor-associated antigens (TAAs) and private mutated neoantigens (NeoAgs) and the recognition of the tumor by the immune system. Additionally, the presence of intraepithelial tumor infiltrating lymphocytes (TILs) is associated with improved progression-free and overall survival of patients with ovarian cancer. The aim of active immunotherapy, including vaccination, is to generate a new anti-tumor response and amplify an existing immune response. Recently developed NeoAgs-based cancer vaccines have the advantage of being more tumor specific, reducing the potential for immunological tolerance, and inducing robust immunogenicity. Methods We propose a randomized phase I/II study in patients with advanced ovarian cancer to compare the immunogenicity and to assess safety and feasibility of two personalized DC vaccines. After standard of care surgery and chemotherapy, patients will receive either a novel vaccine consisting of autologous DCs pulsed with up to ten peptides (PEP-DC), selected using an agnostic, yet personalized, epitope discovery algorithm, or a sequential combination of a DC vaccine loaded with autologous oxidized tumor lysate (OC-DC) prior to an equivalent PEP-DC vaccine. All vaccines will be administered in combination with low-dose cyclophosphamide. This study is the first attempt to compare the two approaches and to use NeoAgs-based vaccines in ovarian cancer in the adjuvant setting. Discussion The proposed treatment takes advantage of the beneficial effects of pre-treatment with OC-DC prior to PEP-DC vaccination, prompting immune response induction against a wide range of patient-specific antigens, and amplification of pre-existing NeoAgs-specific T cell clones. Trial registration This trial is already approved by Swissmedic (Ref.: 2019TpP1004) and will be registered at http://www.clinicaltrials.gov before enrollment opens.
Collapse
Affiliation(s)
- Apostolos Sarivalasis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Caroline Boudousquié
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Philippe O Gannon
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Emanuela Marina Iancu
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Laetitia Rossier
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Silvia Martin Lluesma
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Patrice Mathevet
- Women-Mother-Child Department, Service of Gynecology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Christine Sempoux
- Department of Pathology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Urania Dafni
- Laboratory of Biostatistics, School of Health Sciences, National and Kapodistrian, University of Athens, Athens, Greece
| | - Alexandre Harari
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Huai Y, Hossen MN, Wilhelm S, Bhattacharya R, Mukherjee P. Nanoparticle Interactions with the Tumor Microenvironment. Bioconjug Chem 2019; 30:2247-2263. [PMID: 31408324 PMCID: PMC6892461 DOI: 10.1021/acs.bioconjchem.9b00448] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compared to normal tissues, the tumor microenvironment (TME) has a number of aberrant characteristics including hypoxia, acidosis, and vascular abnormalities. Many researchers have sought to exploit these anomalous features of the TME to develop anticancer therapies, and several nanoparticle-based cancer therapeutics have resulted. In this Review, we discuss the composition and pathophysiology of the TME, introduce nanoparticles (NPs) used in cancer therapy, and address the interaction between the TME and NPs. Finally, we outline both the potential problems that affect TME-based nanotherapy and potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Yanyan Huai
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Md Nazir Hossen
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Stefan Wilhelm
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Resham Bhattacharya
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Priyabrata Mukherjee
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
14
|
DE Wolf C, VAN DE Bovenkamp M, Hoefnagel M. Regulatory perspective on in vitro potency assays for human dendritic cells used in anti-tumor immunotherapy. Cytotherapy 2018; 20:1289-1308. [PMID: 30327247 DOI: 10.1016/j.jcyt.2018.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/25/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are key connectors between the innate and adaptive immune system and have an important role in modulating other immune cells. Therefore, their therapeutic application to steer immune responses is considered in various disorders, including cancer. Due to differences in the cell source and manufacturing process, each DC medicinal product is unique. Consequently, release tests to ensure consistent quality need to be product-specific. Although general guidance concerning quality control testing of cell-based therapies is available, cell type-specific regulation is still limited. Especially guidance related to potency testing is needed, because developing an in vitro assay measuring cell properties relevant for in vivo functionality is challenging. In this review, we provide DC-specific guidance for development of in vitro potency assays for characterisation and release. We present a broad overview of in vitro potency assays suggested for DC products to determine their anti-tumor functionality. Several advantages and limitations of these assays are discussed. Also, we provide some points to consider for selection and design of a potency test. The ideal functionality assay for anti-tumor products evaluates the capacity of DCs to stimulate antigen-specific T cells. Because this approach may not be feasible for release, use of surrogate potency markers could be considered, provided that these markers are sufficiently linked to the in vivo DC biological activity and clinical response. Further elucidation of the involvement of specific DC subsets in anti-tumor responses will result in improved manufacturing processes for DC-based products and should be considered during potency assay development.
Collapse
Affiliation(s)
- Charlotte DE Wolf
- Medicines Evaluation Board College ter Beoordeling van Geneesmiddelen-Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, The Netherlands
| | - Marja VAN DE Bovenkamp
- Medicines Evaluation Board College ter Beoordeling van Geneesmiddelen-Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands
| | - Marcel Hoefnagel
- Medicines Evaluation Board College ter Beoordeling van Geneesmiddelen-Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands.
| |
Collapse
|
15
|
Yoon HY, Selvan ST, Yang Y, Kim MJ, Yi DK, Kwon IC, Kim K. Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials 2018; 178:597-607. [DOI: 10.1016/j.biomaterials.2018.03.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
|
16
|
Subbiah V, Murthy R, Hong DS, Prins RM, Hosing C, Hendricks K, Kolli D, Noffsinger L, Brown R, McGuire M, Fu S, Piha-Paul S, Naing A, Conley AP, Benjamin RS, Kaur I, Bosch ML. Cytokines Produced by Dendritic Cells Administered Intratumorally Correlate with Clinical Outcome in Patients with Diverse Cancers. Clin Cancer Res 2018; 24:3845-3856. [PMID: 30018119 DOI: 10.1158/1078-0432.ccr-17-2707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/05/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023]
Abstract
Purpose: Dendritic cells (DC) initiate adaptive immune responses through the uptake and presentation of antigenic material. In preclinical studies, intratumorally injected activated DCs (aDCs; DCVax-Direct) were superior to immature DCs in rejecting tumors from mice.Experimental Design: This single-arm, open-label phase I clinical trial evaluated the safety and efficacy of aDCs, administered intratumorally, in patients with solid tumors. Three dose levels (2 million, 6 million, and 15 million aDCs per injection) were tested using a standard 3 + 3 dose-escalation trial design. Feasibility, immunogenicity, changes to the tumor microenvironment after direct injection, and survival were evaluated. We also investigated cytokine production of aDCs prior to injection.Results: In total, 39 of the 40 enrolled patients were evaluable. The injections of aDCs were well tolerated with no dose-limiting toxicities. Increased lymphocyte infiltration was observed in 54% of assessed patients. Stable disease (SD; best response) at week 8 was associated with increased overall survival. Increased secretion of interleukin (IL)-8 and IL12p40 by aDCs was significantly associated with survival (P = 0.023 and 0.024, respectively). Increased TNFα levels correlated positively with SD at week 8 (P < 0.01).Conclusions: Intratumoral aDC injections were feasible and safe. Increased production of specific cytokines was correlated with SD and prolonged survival, demonstrating a link between the functional profile of aDCs prior to injection and patient outcomes. Clin Cancer Res; 24(16); 3845-56. ©2018 AACR.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ravi Murthy
- Department of Interventional Radiology, Division of Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert M Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Chitra Hosing
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Robert Brown
- Department of Pathology and Laboratory Medicine, UT Health, University of Texas Health Science Center, Houston, Texas
| | - Mary McGuire
- Department of Pathology and Laboratory Medicine, UT Health, University of Texas Health Science Center, Houston, Texas
| | - Siquing Fu
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarina Piha-Paul
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert S Benjamin
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Indreshpal Kaur
- Cell Therapy Labs, GMP Laboratory, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
17
|
Marques GS, Silva Z, Videira PA. Antitumor Efficacy of Human Monocyte-Derived Dendritic Cells: Comparing Effects of two Monocyte Isolation Methods. Biol Proced Online 2018; 20:4. [PMID: 29434528 PMCID: PMC5796591 DOI: 10.1186/s12575-018-0069-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023] Open
Abstract
Background Dendritic cells (DCs), which can be used as anti-cancer vaccines, are generally obtained in vitro from isolated CD14+ monocytes (MoDCs). This generates high cell numbers and allows instructing DCs to guarantee effective antitumor responses. However, the impact of the monocyte isolation step in the antitumor effectiveness of the generated MoDCs is still unknown. Here, we compared the most used immunomagnetic technologies for monocyte isolation: magnetic activated cell sorting (MACS) from Miltenyi Biotec and EasySep from STEM CELL. Results MACS technology allowed a higher monocyte yield and purity and, by flow cytometry, monocytes displayed higher size and lower granularity. In the resting state, EasySep_MoDCs showed a higher basal expression of HLA-DR, and no significant response to stimulation by LPS and TNF-α. When stimulated with whole tumor cells lysates, both MoDCs expressed similar levels of maturation and co-stimulatory markers. However, when cultured with autologous T cells, MACS_MoDCs induced significantly higher IFN-γ secretion than EasySep_MoDCs, indicating a stronger induction of Th1 cell response profile. Concordantly, T cells induced by MACS_MoDCs also showed a higher release of cytotoxic granules when in contact with tumor cells. Conclusions Overall, both the MACS and the EasySep isolation immunomagnetic technologies provide monocytes that differentiate into viable and functional MoDCs. In our experimental settings, resting EasySep_MoDCs showed a higher basal level of maturation but show less responsivity to stimuli. On the other hand, MACS_MoDCs, when stimulated with tumor antigens, showed better ability to stimulate Th1 responses and to induce T cell cytotoxicity against tumor cells. Thus, monocyte isolation techniques crucially affect MoDCs’ function and, therefore, should be carefully selected to obtain the desired functionality.
Collapse
Affiliation(s)
- Graça S Marques
- 1CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Zélia Silva
- 1CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,2UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paula A Videira
- 1CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,2UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal.,3CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Frizzell H, Park J, Comandante Lou N, Woodrow KA. Role of heterogeneous cell population on modulation of dendritic cell phenotype and activation of CD8 T cells for use in cell-based immunotherapies. Cell Immunol 2017; 311:54-62. [PMID: 27793335 PMCID: PMC5283719 DOI: 10.1016/j.cellimm.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 02/05/2023]
Abstract
Dendritic cell (DC)-based immunotherapies have much utility in their ability to prime antigen-specific adaptive immune responses. However, there does not yet exist a consensus standard to how DCs should be primed. In this study, we aimed to determine the role of heterogeneous co-cultures, composed of both CD11c+ (DCs) and CD11c- cells, in combination with monophosphoryl lipid A (MPLA) stimulation on DC phenotype and function. Upon DC priming in different co-culture ratios, we observed reduced expression of MHCII and CD86 and increased antigen uptake among CD11c+ cells in a CD11c- dependent manner. DCs from all culture conditions were induced to mature by MPLA treatment, as determined by secretion of pro-inflammatory cytokines IL-12 and TNF-α. Antigen-specific stimulation of CD4+ T cells was not modulated by co-culture composition, in terms of proliferation nor levels of IFN-γ. However, the presence of CD11c- cells enhanced cross-presentation to CD8+ T cells compared to purified CD11c+ cells, resulting in increased cell proliferation along with higher IFN-γ production. These findings demonstrate the impact of cell populations present during DC priming, and point to the use of heterogeneous cultures of DCs and innate immune cells to enhance cell-mediated immunity.
Collapse
Affiliation(s)
- Hannah Frizzell
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Jaehyung Park
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Natacha Comandante Lou
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105, USA.
| |
Collapse
|
19
|
Han HD, Byeon Y, Kang TH, Jung ID, Lee JW, Shin BC, Lee YJ, Sood AK, Park YM. Toll-like receptor 3-induced immune response by poly(d,l-lactide-co-glycolide) nanoparticles for dendritic cell-based cancer immunotherapy. Int J Nanomedicine 2016; 11:5729-5742. [PMID: 27843314 PMCID: PMC5098754 DOI: 10.2147/ijn.s109001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DCs) are potent professional antigen-presenting cells that are capable of initiating a primary immune response and activating T cells, and they play a pivotal role in the immune responses of the host to cancer. Prior to antigen presentation, efficient antigen and adjuvant uptake by DCs is necessary to induce their maturation and cytokine generation. Nanoparticles (NPs) are capable of intracellular delivery of both antigen and adjuvant to DCs. Here, we developed an advanced poly(d,l-lactide-co-glycolide) (PLGA)-NP encapsulating both ovalbumin (OVA) as a model antigen and polyinosinic-polycytidylic acid sodium salt (Toll-like receptor 3 ligand) as an adjuvant to increase intracellular delivery and promote DC maturation. The PLGA-NPs were taken up by DCs, and their uptake greatly facilitated major histocompatibility class I antigen presentation in vitro. Moreover, vaccination with PLGA-NP-treated DCs led to the generation of ovalbumin-specific CD8+ T cells, and the resulting antitumor efficacy was significantly increased in EG.7 and TC-1 tumor-bearing mice compared to control mice (P<0.01). Taken together, these findings demonstrated that the PLGA-NP platform may be an effective method for delivering tumor-specific antigens or adjuvants to DCs.
Collapse
Affiliation(s)
- Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungwondaero, Chungju-Si, Chungcheongbuk-Do
| | - Yeongseon Byeon
- Department of Immunology, School of Medicine, Konkuk University, Chungwondaero, Chungju-Si, Chungcheongbuk-Do
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, Chungwondaero, Chungju-Si, Chungcheongbuk-Do
| | - In Duk Jung
- Department of Immunology, School of Medicine, Konkuk University, Chungwondaero, Chungju-Si, Chungcheongbuk-Do
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - Byung Cheol Shin
- Bio/Drug Discovery Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon
| | - Young Joo Lee
- Department of Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul, South Korea
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine; Department of Cancer Biology; Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, TX, USA
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungwondaero, Chungju-Si, Chungcheongbuk-Do
| |
Collapse
|
20
|
Kotteas EA, Syrigos KN. The expanding new era of cancer immunotherapy. FORUM OF CLINICAL ONCOLOGY 2016. [DOI: 10.1515/fco-2016-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elias A. Kotteas
- Oncology Unit, 3 rd Department of Internal Medicine, Athens School of Medicine, Sotiria General Hospital, Athens, Greece
| | - Konstantinos N. Syrigos
- Oncology Unit, 3 rd Department of Internal Medicine, Athens School of Medicine, Sotiria General Hospital, Athens, Greece
| |
Collapse
|
21
|
Abstract
Immunotherapy has great potential to treat cancer and prevent future relapse by activating the immune system to recognize and kill cancer cells. A variety of strategies are continuing to evolve in the laboratory and in the clinic, including therapeutic noncellular (vector-based or subunit) cancer vaccines, dendritic cell vaccines, engineered T cells, and immune checkpoint blockade. Despite their promise, much more research is needed to understand how and why certain cancers fail to respond to immunotherapy and to predict which therapeutic strategies, or combinations thereof, are most appropriate for each patient. Underlying these challenges are technological needs, including methods to rapidly and thoroughly characterize the immune microenvironment of tumors, predictive tools to screen potential therapies in patient-specific ways, and sensitive, information-rich assays that allow patient monitoring of immune responses, tumor regression, and tumor dissemination during and after therapy. The newly emerging field of immunoengineering is addressing some of these challenges, and there is ample opportunity for engineers to contribute their approaches and tools to further facilitate the clinical translation of immunotherapy. Here we highlight recent technological advances in the diagnosis, therapy, and monitoring of cancer in the context of immunotherapy, as well as ongoing challenges.
Collapse
Affiliation(s)
- Laura Jeanbart
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melody A Swartz
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Institute for Molecular Engineering and Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| |
Collapse
|
22
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [PMID: 26240218 DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Sébastien Anguille
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Evelien L Smits
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Christian Bryant
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Heleen H Van Acker
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Herman Goossens
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Eva Lion
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Phillip D Fromm
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | | | - Viggo F Van Tendeloo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Zwi N Berneman
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| |
Collapse
|
23
|
Bhome R, Bullock MD, Al Saihati HA, Goh RW, Primrose JN, Sayan AE, Mirnezami AH. A top-down view of the tumor microenvironment: structure, cells and signaling. Front Cell Dev Biol 2015; 3:33. [PMID: 26075202 PMCID: PMC4448519 DOI: 10.3389/fcell.2015.00033] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022] Open
Abstract
It is well established that the tumor microenvironment (TME) contributes to cancer progression. Stromal cells can be divided into mesenchymal, vascular, and immune. Signaling molecules secreted by the tumor corrupts these cells to create "activated" stroma. Equally, the extracellular matrix (ECM) contributes to tumor development and invasion by forming a biologically active scaffold. In this review we describe the key structural, cellular and signaling components of the TME with a perspective on stromal soluble factors and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Rahul Bhome
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
- University Surgery, University of Southampton, Southampton General HospitalSouthampton, UK
| | - Marc D. Bullock
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
- Department of Experimental Therapeutics, MD Anderson Cancer CenterHouston, TX, USA
| | - Hajir A. Al Saihati
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
| | - Rebecca W. Goh
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
| | - John N. Primrose
- University Surgery, University of Southampton, Southampton General HospitalSouthampton, UK
| | - A. Emre Sayan
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
| | - Alex H. Mirnezami
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
- University Surgery, University of Southampton, Southampton General HospitalSouthampton, UK
| |
Collapse
|
24
|
Song L, Zhuo M, Tang Y, Chen X, Yu Y, Tang Z, Zang G. Ubiquitin-modified hepatitis B virus core antigen effectively facilitates antigen presentation and enhances cytotoxic T lymphocyte activity via the cytoplasmic transduction peptide in vitro. Mol Med Rep 2015; 12:289-96. [PMID: 25684256 DOI: 10.3892/mmr.2015.3352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)8+ cytotoxic T lymphocytes (CTLs) have a key role in the elimination of hepatitis B virus (HBV)-infected cells. Ubiquitin (Ub) functions as a marker for protein degradation, which may promote the generation of peptides appropriate for major histocompatibility complex class I presentation, while the HBV core antigen (HBcAg) possesses marked immunogenic properties. However, it remains to be elucidated whether Ub-modified HBcAg is able to effectively elicit significant CD8+ CTL activity. In order to address this issue, a prokaryotic vector was constructed to express the Ub-HBcAg-cytoplasmic transduction peptide (CTP). The fusion protein was successfully expressed and subsequently pulsed into bone-marrow-derived dendritic cells (DCs). It was confirmed that with assistance from the cell‑penetrating properties of CTP, the fusion protein was able to directly penetrate into the cytoplasm of DCs. The results revealed that the Ub-HBcAg-CTP fusion protein not only increased the expression of surface molecules in DCs and cytokine secretion from proliferating T cells, but also induced T cells to differentiate into specific CTLs and enhanced their antiviral ability. In conclusion, the Ub-HBcAg-CTP fusion protein promoted DC maturation, enhanced the presentation of targeting antigens and efficiently induced HBcAg‑specific CTL immune responses in vitro.
Collapse
Affiliation(s)
- Linlin Song
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yuyan Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|