1
|
Cacciola R, Leonardis F, Gitto L, Favi E, Gruttadauria S, Clancy M, Veroux M, Angelico R, Pagano D, Mazzeo C, Cacciola I, Santoro D, Toti L, Tisone G, Cucinotta E. Health economics aspects of kidney transplantation in Sicily: a benchmark analysis on activity and estimated savings. Front Public Health 2023; 11:1222069. [PMID: 38162608 PMCID: PMC10757609 DOI: 10.3389/fpubh.2023.1222069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND International and national registries consistently report substantial differences in kidney transplant (KT) activity despite demonstrable clinical and financial benefits. The study aims to estimate the financial resources gained by KT and produce a benchmark analysis that would inform adequate strategies for the growth of the service. METHODS We analyzed the KT activity in our region between 2017 and 2019. The benchmark analysis was conducted with programs identified from national and international registries. The estimate of financial resources was obtained by applying the kidney transplant coefficient of value; subsequently, we compared the different activity levels and savings generated by the three KT programs. FINDINGS The KT activity in the region progressively declined in the study years, producing a parallel reduction of the estimated savings. Such savings were substantially inferior when compared to those generated by benchmark programs (range €18-22 million less). INTERPRETATION The factors influencing the reduced KT activity in the study period with the related "foregone savings" are multiple, as well as interdependent. Organ donation, access to the transplant waiting list, and KT from living donors appear to be the most prominent determinants of the observed different levels of activities. International experience suggests that a comprehensive strategy in the form of a "task force" may successfully address the critical areas of the service reversing the observed trend. The financial impact of a progressively reduced KT activity may be as critical as its clinical implications, jeopardizing the actual sustainability of services for patients with end-stage kidney disease.
Collapse
Affiliation(s)
- Roberto Cacciola
- Department of Surgical Sciences, Tor Vergata University, Rome, Italy
| | - Francesca Leonardis
- Department of Surgical Sciences, Tor Vergata University, Rome, Italy
- Intensive Care Unit, Organ and Tissue Procurement Policlinico Tor Vergata, Rome, Italy
| | - Lara Gitto
- Dipartimento di Economia, Università Degli Studi di Messina, Messina, Italy
| | - Evaldo Favi
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Salvatore Gruttadauria
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, University of Istituto di Ricovero e Cura a Carattere Scientifico – Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, University of Pittsburgh Medical Center Italy, Palermo, Italy
- Department of Surgery and Surgical and Medical Specialties, University of Catania, Catania, Italy
| | - Marc Clancy
- Institute of Cardiovascular and Molecular Sciences, Glasgow University, Glasgow, United Kingdom
| | - Massimiliano Veroux
- General Surgery Unit, Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Roberta Angelico
- Department of Surgical Sciences, Tor Vergata University, Rome, Italy
| | - Duilio Pagano
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, University of Istituto di Ricovero e Cura a Carattere Scientifico – Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, University of Pittsburgh Medical Center Italy, Palermo, Italy
| | - Carmelo Mazzeo
- Department of Human Pathology, Emergency Surgery Unit, Università Degli Studi di Messina, Messina, Italy
| | - Irene Cacciola
- Department of Clinical and Experimental Medicine, Medicine and Hepatology Unit, Università Degli Studi di Messina, Messina, Italy
| | - Domenico Santoro
- Department of Clinical and Experimental Medicine, Nephrology and Dialysis Unit, Università Degli Studi di Messina, Messina, Italy
| | - Luca Toti
- Department of Surgical Sciences, Tor Vergata University, Rome, Italy
| | - Giuseppe Tisone
- Department of Surgical Sciences, Tor Vergata University, Rome, Italy
| | - Eugenio Cucinotta
- General Surgery Unit, Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| |
Collapse
|
2
|
Cacciola R, Delbue S. Managing the "Sword of Damocles" of Immunosuppression: Prevention, Early Diagnosis, and Treatment of Infectious Diseases in Kidney Transplantation. Pathogens 2023; 12:pathogens12050649. [PMID: 37242318 DOI: 10.3390/pathogens12050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The careful tailoring of the most appropriate immunosuppressive strategy for recipients of a kidney transplant (KT) regularly faces a risk of complications that may harm the actual graft and affect patient survival [...].
Collapse
Affiliation(s)
- Roberto Cacciola
- Department of Surgery, King Salman Armed Forces Hospital, Tabuk 47512, Saudi Arabia
- Department of Surgical Sciences, University of Tor Vergata, 00133 Rome, Italy
| | - Serena Delbue
- Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milano, Italy
| |
Collapse
|
3
|
Pushparaj K, Balasubramanian B, Pappuswamy M, Anand Arumugam V, Durairaj K, Liu WC, Meyyazhagan A, Park S. Out of Box Thinking to Tangible Science: A Benchmark History of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life (Basel) 2023; 13:954. [PMID: 37109483 PMCID: PMC10145662 DOI: 10.3390/life13040954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Advancements and developments in the 3D bioprinting have been promising and have met the needs of organ transplantation. Current improvements in tissue engineering constructs have enhanced their applications in regenerative medicines and other medical fields. The synergistic effects of 3D bioprinting have brought technologies such as tissue engineering, microfluidics, integrated tissue organ printing, in vivo bioprinted tissue implants, artificial intelligence and machine learning approaches together. These have greatly impacted interventions in medical fields, such as medical implants, multi-organ-on-chip models, prosthetics, drug testing tissue constructs and much more. This technological leap has offered promising personalized solutions for patients with chronic diseases, and neurodegenerative disorders, and who have been in severe accidents. This review discussed the various standing printing methods, such as inkjet, extrusion, laser-assisted, digital light processing, and stereolithographic 3D bioprinter models, adopted for tissue constructs. Additionally, the properties of natural, synthetic, cell-laden, dECM-based, short peptides, nanocomposite and bioactive bioinks are briefly discussed. Sequels of several tissue-laden constructs such as skin, bone and cartilage, liver, kidney, smooth muscles, cardiac and neural tissues are briefly analyzed. Challenges, future perspectives and the impact of microfluidics in resolving the limitations in the field, along with 3D bioprinting, are discussed. Certainly, a technology gap still exists in the scaling up, industrialization and commercialization of this technology for the benefit of stakeholders.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India;
| | | | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kaliannan Durairaj
- Department of Infection Biology, School of Medicine, Wonkwang University, lksan 54538, Republic of Korea
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560 076, Karnataka, India
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea;
| |
Collapse
|
4
|
Mallis P, Oikonomidis C, Dimou Z, Stavropoulos-Giokas C, Michalopoulos E, Katsimpoulas M. Optimizing Decellularization Strategies for the Efficient Production of Whole Rat Kidney Scaffolds. Tissue Eng Regen Med 2021; 18:623-640. [PMID: 34014553 PMCID: PMC8325734 DOI: 10.1007/s13770-021-00339-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Renal dysfunction remains a global issue, with chronic kidney disease being the 18th most leading cause of death, worldwide. The increased demands in kidney transplants, led the scientific society to seek alternative strategies, utilizing mostly the tissue engineering approaches. Unlike to perfusion decellularization of kidneys, we proposed alternative decellularization strategies to obtain acellular kidney scaffolds. The aim of this study was the evaluation of two different decellularization approaches for producing kidney bioscaffolds. METHODS Rat kidneys from Wistar rats, were submitted to decellularization, followed two different strategies. The decellularization solutions used in both approaches were the same and involved the use of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate and sodium dodecyl sulfate buffers for 12 h each, followed by incubation in a serum medium. Both approaches involved 3 decellularization cycles. Histological analysis, biochemical and DNA quantification were performed. Cytotoxicity assay and repopulation of acellular kidneys were also applied. RESULTS Histological, biochemical and DNA quantification confirmed that the 2nd approach had the best outcome regarding the kidney composition and cell elimination. Acellular kidneys from both approaches were successfully recellularized. CONCLUSION Based on the above data, the production of kidney scaffolds with the proposed cost- effective decellularization approaches, was efficient.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece.
| | - Charalampos Oikonomidis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Zetta Dimou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| | - Michalis Katsimpoulas
- Center of Experimental Surgery, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27, Athens, Greece
| |
Collapse
|
5
|
Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques. Essays Biochem 2021; 65:587-602. [PMID: 34096573 PMCID: PMC8365327 DOI: 10.1042/ebc20200158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
The number of patients with end-stage renal disease is continuously increasing worldwide. The only therapies for these patients are dialysis and organ transplantation, but the latter is limited due to the insufficient number of donor kidneys available. Research in kidney disease and alternative therapies are therefore of outmost importance. In vitro models that mimic human kidney functions are essential to provide better insights in disease and ultimately novel therapies. Bioprinting techniques have been increasingly used to create models with some degree of function, but their true potential is yet to be achieved. Bioprinted renal tissues and kidney-like constructs presents challenges, for example, choosing suitable renal cells and biomaterials for the formulation of bioinks. In addition, the fabrication of complex renal biological structures is still a major bottleneck. Advances in pluripotent stem cell-derived renal progenitors has contributed to in vivo-like rudiment structures with multiple renal cells, and these started to make a great impact on the achieved models. Natural- or synthetic-based biomaterial inks, such as kidney-derived extracellular matrix and gelatin-fibrin hydrogels, which show the potential to partially replicate in vivo-like microenvironments, have been largely investigated for bioprinting. As the field progresses, technological, biological and biomaterial developments will be required to yield fully functional in vitro tissues that can contribute to a better understanding of renal disease, to improve predictability in vitro of novel therapeutics, and to facilitate the development of alternative regenerative or replacement treatments. In this review, we resume the main advances on kidney in vitro models reported so far.
Collapse
|
6
|
Asthana A, Tamburrini R, Chaimov D, Gazia C, Walker SJ, Van Dyke M, Tomei A, Lablanche S, Robertson J, Opara EC, Soker S, Orlando G. Comprehensive characterization of the human pancreatic proteome for bioengineering applications. Biomaterials 2020; 270:120613. [PMID: 33561625 DOI: 10.1016/j.biomaterials.2020.120613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Interactions between the pancreatic extracellular matrix (ECM) and islet cells are known to regulate multiple aspects of islet physiology, including survival, proliferation, and glucose-stimulated insulin secretion. Recognizing the essential role of ECM in islet survival and function, various engineering approaches have been developed that aim to utilize ECM-based materials to recreate a native-like microenvironment. However, a major impediment to the success of these approaches has been the lack of a robust and comprehensive characterization of the human pancreatic proteome. Herein, by combining mass spectrometry (MS) and multiplex ELISA, we have provided an improved workflow for the in-depth profiling of the proteome, including minor constituents that are generally underrepresented. Moreover, we have further validated the effectiveness of our detergent-free decellularization protocol in the removal of cellular proteins and retention of the matrisome. It has also been established that the decellularized ECM and its derivatives can provide more tissue-specific cues than traditionally used biological scaffolds and are therefore more physiologically relevant for the development of hydrogels, bioinks and medium additives, in order to create a pancreatic niche. The data generated in this study would contribute significantly to the efforts of comprehensively defining the ECM atlas and also serve as a standard for the human pancreatic proteome to provide further guidance for design and engineering strategies for improved tissue engineering scaffolds.
Collapse
Affiliation(s)
- Amish Asthana
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Riccardo Tamburrini
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Deborah Chaimov
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Carlo Gazia
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alice Tomei
- Diabetes Research Institute, University of Miami, Miami, USA
| | - Sandrine Lablanche
- Grenoble Alps University, Laboratory of Fundamental and Applied Bioenergetics (LBFA), And Environmental and System Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France
| | - John Robertson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Giuseppe Orlando
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA.
| |
Collapse
|
7
|
Li S, Xia M. Review of high-content screening applications in toxicology. Arch Toxicol 2019; 93:3387-3396. [PMID: 31664499 PMCID: PMC7011178 DOI: 10.1007/s00204-019-02593-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
High-content screening (HCS) technology combining automated microscopy and quantitative image analysis can address biological questions in academia and the pharmaceutical industry. Various HCS experimental applications have been utilized in the research field of in vitro toxicology. In this review, we describe several HCS application approaches used for studying the mechanism of compound toxicity, highlight some challenges faced in the toxicological community, and discuss the future directions of HCS in regards to new models, new reagents, data management, and informatics. Many specialized areas of toxicology including developmental toxicity, genotoxicity, developmental neurotoxicity/neurotoxicity, hepatotoxicity, cardiotoxicity, and nephrotoxicity will be examined. In addition, several newly developed cellular assay models including induced pluripotent stem cells (iPSCs), three-dimensional (3D) cell models, and tissues-on-a-chip will be discussed. New genome-editing technologies (e.g., CRISPR/Cas9), data analyzing tools for imaging, and coupling with high-content assays will be reviewed. Finally, the applications of machine learning to image processing will be explored. These new HCS approaches offer a huge step forward in dissecting biological processes, developing drugs, and making toxicology studies easier.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA.
| |
Collapse
|
8
|
Soucy JR, Bindas AJ, Koppes AN, Koppes RA. Instrumented Microphysiological Systems for Real-Time Measurement and Manipulation of Cellular Electrochemical Processes. iScience 2019; 21:521-548. [PMID: 31715497 PMCID: PMC6849363 DOI: 10.1016/j.isci.2019.10.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Recent advancements in electronic materials and subsequent surface modifications have facilitated real-time measurements of cellular processes far beyond traditional passive recordings of neurons and muscle cells. Specifically, the functionalization of conductive materials with ligand-binding aptamers has permitted the utilization of traditional electronic materials for bioelectronic sensing. Further, microfabrication techniques have better allowed microfluidic devices to recapitulate the physiological and pathological conditions of complex tissues and organs in vitro or microphysiological systems (MPS). The convergence of these models with advances in biological/biomedical microelectromechanical systems (BioMEMS) instrumentation has rapidly bolstered a wide array of bioelectronic platforms for real-time cellular analytics. In this review, we provide an overview of the sensing techniques that are relevant to MPS development and highlight the different organ systems to integrate instrumentation for measurement and manipulation of cellular function. Special attention is given to how instrumented MPS can disrupt the drug development and fundamental mechanistic discovery processes.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Adam J Bindas
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Jansen K, Castilho M, Aarts S, Kaminski MM, Lienkamp SS, Pichler R, Malda J, Vermonden T, Jansen J, Masereeuw R. Fabrication of Kidney Proximal Tubule Grafts Using Biofunctionalized Electrospun Polymer Scaffolds. Macromol Biosci 2019; 19:e1800412. [PMID: 30548802 PMCID: PMC7116029 DOI: 10.1002/mabi.201800412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 12/19/2022]
Abstract
The increasing prevalence of end-stage renal disease and persistent shortage of donor organs call for alternative therapies for kidney patients. Dialysis remains an inferior treatment as clearance of large and protein-bound waste products depends on active tubular secretion. Biofabricated tissues could make a valuable contribution, but kidneys are highly intricate and multifunctional organs. Depending on the therapeutic objective, suitable cell sources and scaffolds must be selected. This study provides a proof-of-concept for stand-alone kidney tubule grafts with suitable mechanical properties for future implantation purposes. Porous tubular nanofiber scaffolds are fabricated by electrospinning 12%, 16%, and 20% poly-ε-caprolactone (PCL) v/w (chloroform and dimethylformamide, 1:3) around 0.7 mm needle templates. The resulting scaffolds consist of 92%, 69%, and 54% nanofibers compared to microfibers, respectively. After biofunctionalization with L-3,4-dihydroxyphenylalanine and collagen IV, 10 × 106 proximal tubule cells per mL are injected and cultured until experimental readout. A human-derived cell model can bridge all fiber-to-fiber distances to form a monolayer, whereas small-sized murine cells form monolayers on dense nanofiber meshes only. Fabricated constructs remain viable for at least 3 weeks and maintain functionality as shown by inhibitor-sensitive transport activity, which suggests clearance capacity for both negatively and positively charged solutes.
Collapse
Affiliation(s)
- Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| | - Sanne Aarts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
| | - Michael M Kaminski
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Soeren S Lienkamp
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Roman Pichler
- University Medical Center Freiburg, Zentrale Klinische Forschung, Breisacher Straße 66,, 79106, Freiburg im Breisgau, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, P.O. Box 85500,, 3508, GA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
- Department of Equine Sciences, Room G05228, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100,, 3584, CX Utrecht, The Netherlands
| | - Tina Vermonden
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| | - Jitske Jansen
- Department of Pathology and Pediatric Nephrology, RIMLS, RIHS, Radboud University Medical Center, P.O. Box 9101, 6500, HB Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99,, 3584, CG Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8,, 3584, CT Utrecht, The Netherlands
| |
Collapse
|
10
|
Legallais C, Kim D, Mihaila SM, Mihajlovic M, Figliuzzi M, Bonandrini B, Salerno S, Yousef Yengej FA, Rookmaaker MB, Sanchez Romero N, Sainz-Arnal P, Pereira U, Pasqua M, Gerritsen KGF, Verhaar MC, Remuzzi A, Baptista PM, De Bartolo L, Masereeuw R, Stamatialis D. Bioengineering Organs for Blood Detoxification. Adv Healthc Mater 2018; 7:e1800430. [PMID: 30230709 DOI: 10.1002/adhm.201800430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/23/2018] [Indexed: 12/11/2022]
Abstract
For patients with severe kidney or liver failure the best solution is currently organ transplantation. However, not all patients are eligible for transplantation and due to limited organ availability, most patients are currently treated with therapies using artificial kidney and artificial liver devices. These therapies, despite their relative success in preserving the patients' life, have important limitations since they can only replace part of the natural kidney or liver functions. As blood detoxification (and other functions) in these highly perfused organs is achieved by specialized cells, it seems relevant to review the approaches leading to bioengineered organs fulfilling most of the native organ functions. There, the culture of cells of specific phenotypes on adapted scaffolds that can be perfused takes place. In this review paper, first the functions of kidney and liver organs are briefly described. Then artificial kidney/liver devices, bioartificial kidney devices, and bioartificial liver devices are focused on, as well as biohybrid constructs obtained by decellularization and recellularization of animal organs. For all organs, a thorough overview of the literature is given and the perspectives for their application in the clinic are discussed.
Collapse
Affiliation(s)
- Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Dooli Kim
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Sylvia M. Mihaila
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marina Figliuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
| | - Barbara Bonandrini
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Simona Salerno
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Fjodor A. Yousef Yengej
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | | | - Pilar Sainz-Arnal
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Instituto Aragonés de Ciencias de la Salud (IACS); 50009 Zaragoza Spain
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering; Université de technologie de Compiègne; Sorbonne Universités; 60203 Compiègne France
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension; University Medical Center Utrecht and Regenerative Medicine Utrecht; Utrecht University; Heidelberglaan 100 3584 CX Utrecht The Netherlands
| | - Andrea Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; via Stezzano 87 24126 Bergamo Italy
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon); 50009 Zaragoza Spain
- Department of Management; Information and Production Engineering; University of Bergamo; viale Marconi 5 24044 Dalmine Italy
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd); 28029 Barcelona Spain
- Fundación ARAID; 50009 Zaragoza Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz; 28040 Madrid Spain. Department of Biomedical and Aerospace Engineering; Universidad Carlos III de Madrid; 28911 Madrid Spain
| | - Loredana De Bartolo
- Institute on Membrane Technology; National Research Council of Italy; ITM-CNR; Via Pietro BUCCI, Cubo 17C - 87036 Rende Italy
| | - Rosalinde Masereeuw
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Dimitrios Stamatialis
- (Bio)artificial organs; Department of Biomaterials Science and Technology; Faculty of Science and Technology; TechMed Institute; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
11
|
Rothbauer M, Rosser JM, Zirath H, Ertl P. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol 2018; 55:81-86. [PMID: 30189349 DOI: 10.1016/j.copbio.2018.08.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Organ-on-a-chip technology offers the potential to recapitulate human physiology by keeping human cells in a precisely controlled and artificial tissue-like microenvironment. The current and potential advantages of organs-on-chips over conventional cell cultures systems and animal models have captured the attention of scientists, clinicians and policymakers as well as advocacy groups in the past few years. Recent advances in tissue engineering and stem cell research are also aiding the development of clinically relevant chip-based organ and diseases models with organ level physiology for drug screening, biomedical research and personalized medicine. Here, the latest advances in organ-on-a-chip technology are reviewed and future clinical applications discussed.
Collapse
Affiliation(s)
- Mario Rothbauer
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Julie M Rosser
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Helene Zirath
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Peter Ertl
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
| |
Collapse
|
12
|
Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018; 132:296-332. [PMID: 29990578 DOI: 10.1016/j.addr.2018.07.004] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/27/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
3D bioprinting is a pioneering technology that enables fabrication of biomimetic, multiscale, multi-cellular tissues with highly complex tissue microenvironment, intricate cytoarchitecture, structure-function hierarchy, and tissue-specific compositional and mechanical heterogeneity. Given the huge demand for organ transplantation, coupled with limited organ donors, bioprinting is a potential technology that could solve this crisis of organ shortage by fabrication of fully-functional whole organs. Though organ bioprinting is a far-fetched goal, there has been a considerable and commendable progress in the field of bioprinting that could be used as transplantable tissues in regenerative medicine. This paper presents a first-time review of 3D bioprinting in regenerative medicine, where the current status and contemporary issues of 3D bioprinting pertaining to the eleven organ systems of the human body including skeletal, muscular, nervous, lymphatic, endocrine, reproductive, integumentary, respiratory, digestive, urinary, and circulatory systems were critically reviewed. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro drug testing models, and personalized medicine. While there is a substantial progress in the field of bioprinting in the recent past, there is still a long way to go to fully realize the translational potential of this technology. Computational studies for study of tissue growth or tissue fusion post-printing, improving the scalability of this technology to fabricate human-scale tissues, development of hybrid systems with integration of different bioprinting modalities, formulation of new bioinks with tuneable mechanical and rheological properties, mechanobiological studies on cell-bioink interaction, 4D bioprinting with smart (stimuli-responsive) hydrogels, and addressing the ethical, social, and regulatory issues concerning bioprinting are potential futuristic focus areas that would aid in successful clinical translation of this technology.
Collapse
|
13
|
Plegue TJ, Kovach KM, Thompson AJ, Potkay JA. Stability of Polyethylene Glycol and Zwitterionic Surface Modifications in PDMS Microfluidic Flow Chambers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:492-502. [PMID: 29231737 DOI: 10.1021/acs.langmuir.7b03095] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blood-material interactions are crucial to the lifetime, safety, and overall success of blood contacting devices. Hydrophilic polymer coatings have been employed to improve device lifetime by shielding blood contacting materials from the natural foreign body response, primarily the intrinsic pathway of the coagulation cascade. These coatings have the ability to repel proteins, cells, bacteria, and other micro-organisms. Coatings are desired to have long-term stability, so that the nonthrombogenic and nonfouling effects gained are long lasting. Unfortunately, there exist limited studies which investigate their stability under dynamic flow conditions as encountered in a physiological setting. In addition, direct comparisons between multiple coatings are lacking in the literature. In this study, we investigate the stability of polyethylene glycol (PEG), zwitterionic sulfobetaine silane (SBSi), and zwitterionic polyethylene glycol sulfobetaine silane (PEG-SBSi) grafted by a room temperature, sequential flow chemistry process on polydimethylsiloxane (PDMS) over time under ambient, static fluid (no flow), and physiologically relevant flow conditions and compare the results to uncoated PDMS controls. PEG, SBSi, and PEG-SBSi coatings maintained contact angles below 20° for up to 35 days under ambient conditions. SBSi and PEG-SBSi showed increased stability and hydrophilicity after 7 days under static conditions. They also retained contact angles ≤40° for all shear rates after 7 days under flow, demonstrating their potential for long-term stability. The effectiveness of the coatings to resist platelet adhesion was also studied under physiological flow conditions. PEG showed a 69% reduction in adhered platelets, PEG-SBSi a significant 80% reduction, and SBSi a significant 96% reduction compared to uncoated control samples, demonstrating their potential applicability for blood contacting applications. In addition, the presented coatings and their stability under shear may be of interest in other applications including marine coatings, lab on a chip devices, and contact lenses, where it is desirable to reduce surface fouling due to proteins, cells, and other organisms.
Collapse
Affiliation(s)
- Thomas J Plegue
- VA Ann Arbor Healthcare System , Ann Arbor, Michigan 48105, United States
| | - Kyle M Kovach
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Alex J Thompson
- VA Ann Arbor Healthcare System , Ann Arbor, Michigan 48105, United States
- Department of Surgery, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joseph A Potkay
- VA Ann Arbor Healthcare System , Ann Arbor, Michigan 48105, United States
- Department of Surgery, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Xue A, Niu G, Chen Y, Li K, Xiao Z, Luan Y, Sun C, Xie X, Zhang D, Du X, Kong F, Guo Y, Zhang H, Cheng G, Xin Q, Guan Y, Zhao S. Recellularization of well-preserved decellularized kidney scaffold using adipose tissue-derived stem cells. J Biomed Mater Res A 2017; 106:805-814. [PMID: 29067774 DOI: 10.1002/jbm.a.36279] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Aibing Xue
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Guangzhu Niu
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Yuan Chen
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Kailin Li
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Zhiying Xiao
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Yun Luan
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Chao Sun
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Xiaoshuai Xie
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Denglu Zhang
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Xiaohang Du
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Feng Kong
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Yanxia Guo
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Haiyang Zhang
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University; Jinan Shandong China
| | - Guanghui Cheng
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Qian Xin
- Department of Central Research Lab; The Second Hospital, Shandong University; Jinan Shandong China
| | - Yong Guan
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
| | - Shengtian Zhao
- Department of Urology; The Second Hospital, Shandong University; Jinan Shandong China
- Department of Urology; The Affiliated Hospital of Shandong University of Traditional Chinese Medicine; Jinan Shandong China
| |
Collapse
|
15
|
Sánchez-Romero N, Schophuizen CM, Giménez I, Masereeuw R. In vitro systems to study nephropharmacology: 2D versus 3D models. Eur J Pharmacol 2016; 790:36-45. [DOI: 10.1016/j.ejphar.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
|
16
|
An introduction to the pharmacology of kidney regeneration. Eur J Pharmacol 2016; 790:1-2. [DOI: 10.1016/j.ejphar.2016.06.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
|
17
|
Chiang IN, Huang WC, Huang CY, Pu YS, Young TH. Development of a chitosan-based tissue-engineered renal proximal tubule conduit. J Biomed Mater Res B Appl Biomater 2016; 106:9-20. [PMID: 27801972 DOI: 10.1002/jbm.b.33808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/21/2016] [Accepted: 10/12/2016] [Indexed: 11/10/2022]
Abstract
Renal proximal tubule cells (RPTCs) are responsible for glomerular filtration and maintenance of water/electrolyte balance. To regenerate a proximal tubule, sufficient cell numbers and normal cell function are requisite. Collagen has been routinely used as a substrate for culturing human RPTCs (HRPTCs); however, the role of biomaterials has not been thoroughly explored. In this study, RPTCs retrieved from human nephrectomy/nephroureterectomy specimens were cultivated on chitosan as a substrate in serum-free condition for up to 150 days. HRPTCs could maintain a typical epithelial morphology and the specific differentiation feature of transporting epithelia after such long-term culture. As compared with HRPTCs cultivated on collagen, those cultivated on chitosan showed more dome formation, higher Na+ -K+ ATPase expression, lower vimentin expression, and lower transepithelial electrical resistance, indicating that HRPTCs cultivated on chitosan presented better differentiation status and would be more functional with better active transportation. Thus, the current study indicates greater scope for the use of chitosan as a biomaterial for preparing a HRPTC-coated chitosan conduit, which might be useful for the scaffold design of tissue-engineered proximal tubules. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 9-20, 2018.
Collapse
Affiliation(s)
- I-Ni Chiang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Chen Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Extracellular matrix scaffolds as a platform for kidney regeneration. Eur J Pharmacol 2016; 790:21-27. [DOI: 10.1016/j.ejphar.2016.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/25/2022]
|
19
|
Timsit MO, Branchereau J, Thuret R, Kleinclauss F. [Renal transplantation in 2046: Future and perspectives]. Prog Urol 2016; 26:1132-1142. [PMID: 27665406 DOI: 10.1016/j.purol.2016.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To report major findings that may build the future of kidney transplantation. MATERIAL AND METHODS Relevant publications were identified through Medline (http://www.ncbi.nlm.nih.gov) and Embase (http://www.embase.com) database from 1960 to 2016 using the following keywords, in association, "bio-engineering; heterotransplantation; immunomodulation; kidney; regenerative medicine; xenotransplantation". Articles were selected according to methods, language of publication and relevance. A total of 5621 articles were identified including 2264 for xenotransplantation, 1058 for regenerative medicine and 2299 for immunomodulation; after careful selection, 86 publications were eligible for our review. RESULTS Despite genetic constructs, xenotransplantation faces the inevitable obstacle of species barrier. Uncertainty regarding xenograft acceptance by recipients as well as ethical considerations due to the debatable utilization of animal lives, are major limits for its future. Regenerative medicine and tridimensional bioprinting allow successful implantation of organs. Bioengineering, using decellularized tissue matrices or synthetic scaffold, seeded with pluripotent cells and assembled using bioreactors, provide exciting results but remain far for reconstituting renal complexity and vascular patency. Immune tolerance may be achieved through a tough initial T-cell depletion or a combined haplo-identical bone marrow transplant leading to lymphohematopoietic chimerism. CONCLUSION Current researches aim to increase the pool of organs available for transplantation (xenotransplants and bio-artificial kidneys) and to increase allograft survival through the induction of immune tolerance. Reported results suggest the onset of a thrilling new era for renal transplantation providing end-stage renal disease-patients with an improved survival and quality of life.
Collapse
Affiliation(s)
- M-O Timsit
- Service d'urologie, hôpital européen Georges-Pompidou, AP-HP, 20, rue Leblanc, 75015 Paris, France; Université Paris-Descartes, 75006 Paris, France.
| | - J Branchereau
- Service d'urologie et transplantation, CHU de Nantes, 44000 Nantes, France
| | - R Thuret
- Service d'urologie et transplantation rénale, CHU de Montpellier, 34090 Montpellier, France; Université de Montpellier, 34090 Montpellier, France
| | - F Kleinclauss
- Service d'urologie et transplantation rénale, CHRU de Besançon, 25000 Besançon, France; Université de Franche-Comté, 25000 Besançon, France; Inserm UMR 1098, 25000 Besançon, France
| |
Collapse
|
20
|
Abstract
Worldwide, increasing numbers of patients are developing end-stage renal disease, and at present, the only treatment options are dialysis or kidney transplantation. Dialysis is associated with increased morbidity and mortality, poor life quality and high economic costs. Transplantation is by far the better option, but there are insufficient numbers of donor kidneys available. Therefore, there is an urgent need to explore alternative approaches. In this review, we discuss how this problem could potentially be addressed by using autologous cells and appropriate scaffolds to develop 'bioengineered' kidneys for transplantation. In particular, we will highlight recent breakthroughs in pluripotent stem cell biology that have led to the development of autologous renal progenitor cells capable of differentiating to all renal cell types and will discuss how these cells could be combined with appropriate scaffolds to develop a bioengineered kidney.
Collapse
Affiliation(s)
- Bettina Wilm
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| | - Riccardo Tamburrini
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Giuseppe Orlando
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Patricia Murray
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| |
Collapse
|
21
|
Lin YQ, Wang LR, Pan LL, Wang H, Zhu GQ, Liu WY, Wang JT, Braddock M, Zheng MH. Kidney bioengineering in regenerative medicine: An emerging therapy for kidney disease. Cytotherapy 2016; 18:186-197. [PMID: 26596504 DOI: 10.1016/j.jcyt.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
The prevalence of end-stage renal disease is emerging as a serious worldwide public health problem because of the shortage of donor organs and the need to take lifelong immunosuppressive medication in patients who receive a transplanted kidney. Recently, tissue bioengineering of decellularization and recellularization scaffolds has emerged as a novel strategy for organ regeneration, and we review the critical technologies supporting these methods. We present a summary of factors associated with experimental protocols that may shed light on the future development of kidney bioengineering and we discuss the cell sources and bioreactor techniques applied to the recellularization process. Finally, we review some artificial renal engineering technologies and their future prospects, such as kidney on a chip and the application of three-dimensional and four-dimensional printing in kidney tissue engineering.
Collapse
Affiliation(s)
- Yi-Qian Lin
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Renji School of Wenzhou Medical University, Wenzhou, China
| | - Li-Ren Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liang-Liang Pan
- School of Laboratory and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Hui Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Qi Zhu
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiang-Tao Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Martin Braddock
- Global Medicines Development, AstraZeneca R&D, Alderley Park, United Kingdom
| | - Ming-Hua Zheng
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
22
|
Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-a-Chip Technology for Drug-Induced Nephrotoxicity Screening. Trends Biotechnol 2015; 34:156-170. [PMID: 26708346 DOI: 10.1016/j.tibtech.2015.11.001] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
Improved model systems to predict drug efficacy, interactions, and drug-induced kidney injury (DIKI) are crucially needed in drug development. Organ-on-a-chip technology is a suitable in vitro system because it reproduces the 3D microenvironment. A kidney-on-a-chip can mimic the structural, mechanical, transport, absorptive, and physiological properties of the human kidney. In this review we address the application of state-of-the-art microfluidic culturing techniques, with a focus on culturing kidney proximal tubules, that are promising for the detection of biomarkers that predict drug interactions and DIKI. We also discuss high-throughput screening and the challenges for in vitro to in vivo extrapolation (IVIVE) that will need to be overcome for successful implementation.
Collapse
Affiliation(s)
- Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboudumc, PO Box 9101, Nijmegen, HB 6500 The Netherlands.
| | - Chee Ping Ng
- MIMETAS BV, JH Oortweg 19, Leiden, CH, 2333 The Netherlands
| | | | - Paul Vulto
- MIMETAS BV, JH Oortweg 19, Leiden, CH, 2333 The Netherlands
| | - Laura Suter-Dick
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, CG 3584 The Netherlands
| |
Collapse
|
23
|
Rocco MV. Chronic Hemodialysis Therapy in the West. KIDNEY DISEASES (BASEL, SWITZERLAND) 2015; 1:178-86. [PMID: 27536678 PMCID: PMC4934827 DOI: 10.1159/000441809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/18/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND Chronic hemodialysis (HD) in the 1960s encompassed a wide variety of prescriptions from twice weekly to five times per week HD. Over time, HD prescriptions in the West became standardized at three times per week, 2.5-4 h per session, with occasional additional treatments for volume overload. SUMMARY When clinical trials of dialysis dose failed to show significant benefit of extending time compared with the traditional dialysis prescription, interest in more frequent HD was renewed. Consequently, there has been growth in home HD therapies as well as alternative dialysis prescriptions. Data from recent randomized clinical trials have demonstrated the benefits and risks of these more frequent therapies, with surprising differences in outcomes between short daily HD and long nocturnal HD. More frequent therapies improve control of both hypertension and hyperphosphatemia, but at the expense of increased vascular access complications and, at least for nocturnal HD, a faster loss of residual renal function. KEY MESSAGES In the West, the standard HD prescription is three treatments per week with a minimal time of 3.0 h and dialysis is performed in an outpatient dialysis center. A minority of patients will have a fourth treatment per week for volume issues. Alternative HD prescriptions, although rare, are more available compared to the recent past. FACTS FROM EAST AND WEST (1) While developed Western and Asian countries provide end-stage renal disease patients full access to HD, healthcare systems from South and South-East Asia can offer access to HD only to a limited fraction of the patients in need. Even though the annual costs of HD are much lower in less developed countries (for instance 30 times lower in India compared to the US), patients often cannot afford costs not covered by health insurance. (2) The recommended dialysis pattern in the West is at least three sessions weekly with high-flux dialyzers. Studies from Shanghai and Taiwan might however indicate a benefit of twice versus thrice weekly sessions. In less developed Asian countries, a twice weekly pattern is common, sometimes with dialyzer reuse and inadequate water treatment. A majority of patients decrease session frequency or discontinue the program due to financial constraint. (3) As convective therapies are gaining popularity in Europe, penetration in Asia is low and limited by costs. (4) In Asian countries, in particular in the South and South-East, hepatitis and tuberculosis infections in HD patients are higher than in the West and substantially increase mortality. (5) Progress has recently been made in countries like Thailand and Brunei to provide universal HD access to all patients in need. Nevertheless, well-trained personnel, reliable registries and better patient follow-up would improve outcomes in low-income Asian countries.
Collapse
Affiliation(s)
- Michael V. Rocco
- Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, N.C., USA
| |
Collapse
|
24
|
Katari R, Edgar L, Wong T, Boey A, Mancone S, Igel D, Callese T, Voigt M, Tamburrini R, Zambon JP, Perin L, Orlando G. Tissue-Engineering Approaches to Restore Kidney Function. Curr Diab Rep 2015; 15:69. [PMID: 26275443 DOI: 10.1007/s11892-015-0643-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kidney transplantation for the treatment of chronic kidney disease has established outcome and quality of life. However, its implementation is severely limited by a chronic shortage of donor organs; consequently, most candidates remain on dialysis and on the waiting list while accruing further morbidity and mortality. Furthermore, those patients that do receive kidney transplants are committed to a life-long regimen of immunosuppressive drugs that also carry significant adverse risk profiles. The disciplines of tissue engineering and regenerative medicine have the potential to produce alternative therapies which circumvent the obstacles posed by organ shortage and immunorejection. This review paper describes some of the most promising tissue-engineering solutions currently under investigation for the treatment of acute and chronic kidney diseases. The various stem cell therapies, whole embryo transplantation, and bioengineering with ECM scaffolds are outlined and summarized.
Collapse
Affiliation(s)
- Ravi Katari
- Section of Transplantation, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ohler L. Courage and character, leaders and legends: an interview with Giuseppe Orlando, MD, PhD. Prog Transplant 2015; 25:104-5. [PMID: 26107268 DOI: 10.7182/pit2015867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Through our unwavering commitment to patients and through the love of family and friends, nature and people, we relentlessly continue to push the boundaries of medicine with the aim of bettering people's lives. 1
Collapse
|