1
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Tripathi RK, Goyal L, Singh S. Potential Therapeutic Approach using Aromatic l-amino Acid Decarboxylase and Glial-derived Neurotrophic Factor Therapy Targeting Putamen in Parkinson's Disease. Curr Gene Ther 2024; 24:278-291. [PMID: 38310455 DOI: 10.2174/0115665232283842240102073002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative illness characterized by specific loss of dopaminergic neurons, resulting in impaired motor movement. Its prevalence is twice as compared to the previous 25 years and affects more than 10 million individuals. Lack of treatment still uses levodopa and other options as disease management measures. Treatment shifts to gene therapy (GT), which utilizes direct delivery of specific genes at the targeted area. Therefore, the use of aromatic L-amino acid decarboxylase (AADC) and glial-derived neurotrophic factor (GDNF) therapy achieves an effective control to treat PD. Patients diagnosed with PD may experience improved therapeutic outcomes by reducing the frequency of drug administration while utilizing provasin and AADC as dopaminergic protective therapy. Enhancing the enzymatic activity of tyrosine hydroxylase (TH), glucocorticoid hormone (GCH), and AADC in the striatum would be useful for external L-DOPA to restore the dopamine (DA) level. Increased expression of glutamic acid decarboxylase (GAD) in the subthalamic nucleus (STN) may also be beneficial in PD. Targeting GDNF therapy specifically to the putaminal region is clinically sound and beneficial in protecting the dopaminergic neurons. Furthermore, preclinical and clinical studies supported the role of GDNF in exhibiting its neuroprotective effect in neurological disorders. Another Ret receptor, which belongs to the tyrosine kinase family, is expressed in dopaminergic neurons and sounds to play a vital role in inhibiting the advancement of PD. GDNF binding on those receptors results in the formation of a receptor-ligand complex. On the other hand, venous delivery of recombinant GDNF by liposome-based and encapsulated cellular approaches enables the secure and effective distribution of neurotrophic factors into the putamen and parenchyma. The current review emphasized the rate of GT target GDNF and AADC therapy, along with the corresponding empirical evidence.
Collapse
Affiliation(s)
- Raman Kumar Tripathi
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
3
|
Li H, Feng Y, Chen Z, Jiang X, Zhou Z, Yuan J, Li F, Zhang Y, Huang X, Fan S, Wu X, Huang C. Pepper component 7-ethoxy-4-methylcoumarin, a novel dopamine D2 receptor agonist, ameliorates experimental Parkinson's disease in mice and Caenorhabditis elegans. Pharmacol Res 2021; 163:105220. [PMID: 33007422 DOI: 10.1016/j.phrs.2020.105220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/22/2020] [Accepted: 09/22/2020] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease resulting from the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) and subsequent deficit of dopamine in the striatum. PD is inversely associated with consumption of peppers; however, the constituent and the underlying mechanism remain unclear. This study aimed to investigate the effects of 7-ethoxy-4-methylcoumarin (EMC), a pepper constituent, on PD-like disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice and 6-hydroxydopamine (6-OHDA)-exposed C. elegans. In this study, EMC was identified as an agonist of dopamine D2 receptor (DRD2) and increased the expression of P-CREB and BDNF in SH-SY5Y cells. In MPTP-treated PD mice, EMC was shown to apparently ameliorate the motor and gait disorders, and restore the depressed TH expression in SNpc and striatum. Meanwhile, it recovered the locomotor deficit caused by 6-OHDA in wild type N2 and CAT-2-transgenic UA57 of C. elegans, and relieved the degeneration of DAergic neurons resulting from 6-OHDA or with ageing. Moreover, EMC inhibited α-synuclein accumulation in C. elegans strain NL5901 overexpressing human α-synuclein gene. Taken together, EMC was identified as a novel DRD2 agonist and improved experimental PD in mice and C. elegans. These findings suggest that EMC may be beneficial to PD patients, further supporting that the consumption of peppers may have favorable effect on PD progression.
Collapse
Affiliation(s)
- Hongli Li
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaru Feng
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyu Chen
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Jiang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenyu Zhou
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yu Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Shengjie Fan
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Cheng Huang
- Drug Discovery Laboratory, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21031170. [PMID: 32050617 PMCID: PMC7037114 DOI: 10.3390/ijms21031170] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. In animal models of Parkinson’s disease (PD), BDNF enhances the survival of dopaminergic neurons, improves dopaminergic neurotransmission and motor performance. Pharmacological therapies of PD are symptom-targeting, and their effectiveness decreases with the progression of the disease; therefore, new therapeutical approaches are needed. Since, in both PD patients and animal PD models, decreased level of BDNF was found in the nigrostriatal pathway, it has been hypothesized that BDNF may serve as a therapeutic agent. Direct delivery of exogenous BDNF into the patient’s brain did not relieve the symptoms of disease, nor did attempts to enhance BDNF expression with gene therapy. Physical training was neuroprotective in animal models of PD. This effect is mediated, at least partly, by BDNF. Animal studies revealed that physical activity increases BDNF and tropomyosin receptor kinase B (TrkB) expression, leading to inhibition of neurodegeneration through induction of transcription factors and expression of genes related to neuronal proliferation, survival, and inflammatory response. This review focuses on the evidence that increasing BDNF level due to gene modulation or physical exercise has a neuroprotective effect and could be considered as adjunctive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Chalimoniuk
- Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Warszawa, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-225892409
| |
Collapse
|
5
|
Liu YJ, Chen J, Li X, Zhou X, Hu YM, Chu SF, Peng Y, Chen NH. Research progress on adenosine in central nervous system diseases. CNS Neurosci Ther 2019; 25:899-910. [PMID: 31334608 PMCID: PMC6698970 DOI: 10.1111/cns.13190] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 01/04/2023] Open
Abstract
As an endogenous neuroprotectant agent, adenosine is extensively distributed and is particularly abundant in the central nervous system (CNS). Under physiological conditions, the concentration of adenosine is low intra- and extracellularly, but increases significantly in response to stress. The majority of adenosine functions are receptor-mediated, and primarily include the A1, A2A, A2B, and A3 receptors (A1R, A2AR, A2BR, and A3R). Adenosine is currently widely used in the treatment of diseases of the CNS and the cardiovascular systems, and the mechanisms are related to the disease types, disease locations, and the adenosine receptors distribution in the CNS. For example, the main infarction sites of cerebral ischemia are cortex and striatum, which have high levels of A1 and A2A receptors. Cerebral ischemia is manifested with A1R decrease and A2AR increase, as well as reduction in the A1R-mediated inhibitory processes and enhancement of the A2AR-mediated excitatory process. Adenosine receptor dysfunction is also involved in the pathology of Alzheimer's disease (AD), depression, and epilepsy. Thus, the adenosine receptor balance theory is important for brain disease treatment. The concentration of adenosine can be increased by endogenous or exogenous pathways due to its short half-life and high inactivation properties. Therefore, we will discuss the function of adenosine and its receptors, adenosine formation, and metabolism, and its role for the treatment of CNS diseases (such as cerebral ischemia, AD, depression, Parkinson's disease, epilepsy, and sleep disorders). This article will provide a scientific basis for the development of novel adenosine derivatives through adenosine structure modification, which will lead to experimental applications.
Collapse
Affiliation(s)
- Ying-Jiao Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Jiao Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Xin Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yao-Mei Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Peng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| | - Nai-Hong Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Material Medical & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, China
| |
Collapse
|
6
|
Török N, Majláth Z, Szalárdy L, Vécsei L. Investigational α-synuclein aggregation inhibitors: hope for Parkinson’s disease. Expert Opin Investig Drugs 2016; 25:1281-1294. [DOI: 10.1080/13543784.2016.1237501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nóra Török
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsófia Majláth
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|