1
|
Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022; 60:12. [PMID: 34981814 PMCID: PMC8759346 DOI: 10.3892/ijo.2022.5302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibody technology plays a vital role in biomedical and immunotherapy, which greatly promotes the study of the structure and function of genes and proteins. To date, monoclonal antibodies have gone through four stages: murine monoclonal antibody, chimeric monoclonal antibody, humanised monoclonal antibody and fully human monoclonal antibody; thousands of monoclonal antibodies have been used in the fields of biology and medicine, playing a special role in the pathogenesis, diagnosis and treatment of disease. In this review, we compare the advantages and disadvantages of hybridoma technology, phage display technology, ribosome display technology, transgenic mouse technology, single B cell monoclonal antibody generation technologies, and forecast the promising applications of these technologies in clinical medicine, disease diagnosis and tumour treatment.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianing Ding
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
3
|
Pham PN, Huličiak M, Biedermannová L, Černý J, Charnavets T, Fuertes G, Herynek Š, Kolářová L, Kolenko P, Pavlíček J, Zahradník J, Mikulecky P, Schneider B. Protein Binder (ProBi) as a New Class of Structurally Robust Non-Antibody Protein Scaffold for Directed Evolution. Viruses 2021; 13:v13020190. [PMID: 33514045 PMCID: PMC7911045 DOI: 10.3390/v13020190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Engineered small non-antibody protein scaffolds are a promising alternative to antibodies and are especially attractive for use in protein therapeutics and diagnostics. The advantages include smaller size and a more robust, single-domain structural framework with a defined binding surface amenable to mutation. This calls for a more systematic approach in designing new scaffolds suitable for use in one or more methods of directed evolution. We hereby describe a process based on an analysis of protein structures from the Protein Data Bank and their experimental examination. The candidate protein scaffolds were subjected to a thorough screening including computational evaluation of the mutability, and experimental determination of their expression yield in E. coli, solubility, and thermostability. In the next step, we examined several variants of the candidate scaffolds including their wild types and alanine mutants. We proved the applicability of this systematic procedure by selecting a monomeric single-domain human protein with a fold different from previously known scaffolds. The newly developed scaffold, called ProBi (Protein Binder), contains two independently mutable surface patches. We demonstrated its functionality by training it as a binder against human interleukin-10, a medically important cytokine. The procedure yielded scaffold-related variants with nanomolar affinity.
Collapse
|
4
|
Ribosome Display Technology: Applications in Disease Diagnosis and Control. Antibodies (Basel) 2020; 9:antib9030028. [PMID: 32605027 PMCID: PMC7551589 DOI: 10.3390/antib9030028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Antibody ribosome display remains one of the most successful in vitro selection technologies for antibodies fifteen years after it was developed. The unique possibility of direct generation of whole proteins, particularly single-chain antibody fragments (scFvs), has facilitated the establishment of this technology as one of the foremost antibody production methods. Ribosome display has become a vital tool for efficient and low-cost production of antibodies for diagnostics due to its advantageous ability to screen large libraries and generate binders of high affinity. The remarkable flexibility of this method enables its applicability to various platforms. This review focuses on the applications of ribosome display technology in biomedical and agricultural fields in the generation of recombinant scFvs for disease diagnostics and control.
Collapse
|
5
|
Li R, Kang G, Hu M, Huang H. Ribosome Display: A Potent Display Technology used for Selecting and Evolving Specific Binders with Desired Properties. Mol Biotechnol 2018; 61:60-71. [DOI: 10.1007/s12033-018-0133-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Tiller KE, Chowdhury R, Li T, Ludwig SD, Sen S, Maranas CD, Tessier PM. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis. Front Immunol 2017; 8:986. [PMID: 28928732 PMCID: PMC5591402 DOI: 10.3389/fimmu.2017.00986] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
The identification of mutations that enhance antibody affinity while maintaining high antibody specificity and stability is a time-consuming and laborious process. Here, we report an efficient methodology for systematically and rapidly enhancing the affinity of antibody variable domains while maximizing specificity and stability using novel synthetic antibody libraries. Our approach first uses computational and experimental alanine scanning mutagenesis to identify sites in the complementarity-determining regions (CDRs) that are permissive to mutagenesis while maintaining antigen binding. Next, we mutagenize the most permissive CDR positions using degenerate codons to encode wild-type residues and a small number of the most frequently occurring residues at each CDR position based on natural antibody diversity. This mutagenesis approach results in antibody libraries with variants that have a wide range of numbers of CDR mutations, including antibody domains with single mutations and others with tens of mutations. Finally, we sort the modest size libraries (~10 million variants) displayed on the surface of yeast to identify CDR mutations with the greatest increases in affinity. Importantly, we find that single-domain (VHH) antibodies specific for the α-synuclein protein (whose aggregation is associated with Parkinson’s disease) with the greatest gains in affinity (>5-fold) have several (four to six) CDR mutations. This finding highlights the importance of sampling combinations of CDR mutations during the first step of affinity maturation to maximize the efficiency of the process. Interestingly, we find that some natural diversity mutations simultaneously enhance all three key antibody properties (affinity, specificity, and stability) while other mutations enhance some of these properties (e.g., increased specificity) and display trade-offs in others (e.g., reduced affinity and/or stability). Computational modeling reveals that improvements in affinity are generally not due to direct interactions involving CDR mutations but rather due to indirect effects that enhance existing interactions and/or promote new interactions between the antigen and wild-type CDR residues. We expect that natural diversity mutagenesis will be useful for efficient affinity maturation of a wide range of antibody fragments and full-length antibodies.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Tong Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Seth D Ludwig
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sabyasachi Sen
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Peter M Tessier
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
7
|
Zhao XL, Tian LF, Zhang SJ, Li JM, Feng H, Wang LM, Wang S, Wang J, Wang T, Chen WQ. Novel Human Three-Domain Antibody Fragments Against sTNFα as Well as tmTNFα with High Affinity Generated by the Combination of Ribosome Display and E. coli Expression System. Scand J Immunol 2016; 83:267-78. [PMID: 26860639 DOI: 10.1111/sji.12417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/30/2016] [Indexed: 12/31/2022]
Abstract
Human tumour necrosis factor α (hTNFα) has been proved to be a validated therapeutic target in a number of immune-mediated inflammatory diseases (IMIDs). Fully human monoclonal antibodies (mAbs) that can neutralize soluble hTNFα (sTNFα) as well as transmembrane hTNFα (tmTNFα) are more desirable hTNFα antagonists. Here, we report that novel anti-hTNFα human low-molecular-weight MAbs have been selected and identified using both sTNFα and tmTNFα as target antigens by the combination of ribosome display and E. coli expression system for the first time. As a newly born engineering small molecular antibody, three-domain antibody fragment (VH /κ) provides an alternative promising molecular principle to generate biological agents for TNFα-dependent IMIDs. In this study, a panel of novel human VH /κs (F09, F21, F49 and F409) with high affinity (10(-10) -10(-9) mol/l) to neutralize sTNFα as well as tmTNFα was generated by the combination of ribosome display and E. coli expression system. Among the four clones, F21 and F409 could reduce cytotoxicity on L929 cells induced by sTNFα as well as tmTNFα effectively, and both of them had great potential to inhibit hTNFα-mediated NF-κB activation. Soluble F21 and F409 were also able to inhibit the binding of hTNFα to TNFR1 and TNFR2. The new human antibodies described here have desirable capability to neutralize sTNFα as well as tmTNFα effectively with high affinity and reasonable stability; this may provide an alternative approach for patients who are not responding adequately to currently available anti-TNFα agents.
Collapse
Affiliation(s)
- X-L Zhao
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China.,New York University School of Medicine, New York, NY, USA
| | - L-F Tian
- 1st hospital of ShanXi Medical University, Taiyuan, China
| | | | - J-M Li
- 254th Hospital, Tianjin, China
| | - H Feng
- Tianjin College of Physical Education, Tianjin, China
| | - L-M Wang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - S Wang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - J Wang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - T Wang
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - W-Q Chen
- Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| |
Collapse
|
8
|
Abstract
Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.
Collapse
|
9
|
Puri V, Streaker E, Prabakaran P, Zhu Z, Dimitrov DS. Highly efficient selection of epitope specific antibody through competitive yeast display library sorting. MAbs 2013; 5:533-9. [PMID: 23765162 DOI: 10.4161/mabs.25211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Combinatory antibody library display technologies have been invented and successfully implemented for the selection and engineering of therapeutic antibodies. Precise targeting of important epitopes on the protein of interest is essential for such isolated antibodies to serve as effective modulators of molecular interactions. We developed a strategy to efficiently isolate antibodies against a specific epitope on a target protein from a yeast display antibody library using dengue virus envelope protein domain III as a model target. A domain III mutant protein with a key mutation inside a cross-reactive neutralizing epitope was designed, expressed, and used in the competitive panning of a yeast display naïve antibody library. All the yeast display antibodies that bound to the wild type domain III but not to the mutant were selectively sorted and characterized. Two unique clones were identified and showed cross-reactive binding to envelope protein domain IIIs from different serotypes. Epitope mapping of one of the antibodies confirmed that its epitope overlapped with the intended neutralizing epitope. This novel approach has implications for many areas of research where the isolation of epitope-specific antibodies is desired, such as selecting antibodies against conserved epitope(s) of viral envelope proteins from a library containing high titer, high affinity non-neutralizing antibodies, and targeting unique epitopes on cancer-related proteins.
Collapse
Affiliation(s)
- Vinita Puri
- Protein Interactions Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
A large antibody fragment library (>10(12)) has been generated in ribosome display format. The library was constructed in a two-step process. First, variable (V) genes were isolated from human B cells from a panel of 14 donors and cloned into designated ribosome display vectors to create a gene bank. Second, RD-VH and RD-VL genes from individual immunoglobulin families were combined in vitro resulting in 112 scFv ribosome display sub-libraries. These were subsequently pooled to form a master library.This library was used to isolate a panel of antibodies to the IL4 receptor by three rounds of selections on a soluble target.
Collapse
|
11
|
Groves MA, Nickson AA. Affinity maturation of phage display antibody populations using ribosome display. Methods Mol Biol 2012; 805:163-90. [PMID: 22094806 DOI: 10.1007/978-1-61779-379-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribsosome display is a PCR-based in vitro display technology that it well suited for the selection and evolution of high-affinity antibodies. In particular, ribosome display lends itself to the evolution of functional characteristics, such as potency, and thereby facilitates the production of therapeutic antibodies from lead candidates. In this chapter, we describe how to mature large phage display antibody populations (>10(7)) by performing increasingly stringent selections with decreasing antigen concentration. This process takes advantage of ribosome display's intrinsic ability to evolve sequence during selection. Ribosome display can also be used as a complementary tool to phage display for isolating high-affinity antibodies from naïve libraries. Ultimately, maturation of large antibody populations by ribosome display will help to speed up the process of generating antibody therapeutics.
Collapse
Affiliation(s)
- Maria A Groves
- Department of Antibody Discovery and Protein Engineering, MedImmune Limited, Cambridge, UK.
| | | |
Collapse
|
12
|
Perchiacca JM, Bhattacharya M, Tessier PM. Mutational analysis of domain antibodies reveals aggregation hotspots within and near the complementarity determining regions. Proteins 2011; 79:2637-47. [PMID: 21732420 DOI: 10.1002/prot.23085] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/15/2011] [Accepted: 05/04/2011] [Indexed: 12/16/2022]
Abstract
High-affinity antibodies are critical for numerous diagnostic and therapeutic applications, yet their utility is limited by their variable propensity to aggregate either at low concentrations for antibody fragments or high concentrations for full-length antibodies. Therefore, determining the sequence and structural features that differentiate aggregation-resistant antibodies from aggregation-prone ones is critical to improving their activity. We have investigated the molecular origins of antibody aggregation for human V(H) domain antibodies that differ only in the sequence of the loops containing their complementarity determining regions (CDRs), yet such antibodies possess dramatically different aggregation propensities in a manner not correlated with their conformational stabilities. We find the propensity of these antibodies to aggregate after being transiently unfolded is not a distributed property of the CDR loops, but can be localized to aggregation hotspots within and near the first CDR (CDR1). Moreover, we have identified a triad of charged mutations within CDR1 and a single charged mutation adjacent to CDR1 that endow the poorly soluble variant with the desirable biophysical properties of the aggregation-resistant antibody. Importantly, we find that several other charged mutations in CDR1, non-CDR loops and the antibody scaffold are incapable of preventing aggregation. We expect that our identification of aggregation hotspots that govern antibody aggregation within and proximal to CDR loops will guide the design and selection of antibodies that not only possess high affinity and conformational stability, but also extreme resistance to aggregation.
Collapse
Affiliation(s)
- Joseph M Perchiacca
- Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
13
|
Lipovsek D. Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel 2011; 24:3-9. [PMID: 21068165 PMCID: PMC3003446 DOI: 10.1093/protein/gzq097] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 10/06/2010] [Accepted: 10/12/2010] [Indexed: 11/22/2022] Open
Abstract
Adnectins™ are a new family of therapeutic proteins based on the 10th fibronectin type III domain, and designed to bind with high affinity and specificity to therapeutically relevant targets. Adnectins share with antibody variable domains a beta-sheet sandwich fold with diversified loops, but differ from antibodies in primary sequence and have a simpler, single-domain structure without disulfide bonds. As a consequence, Adnectins bind targets with affinity and specificity as high as those of antibodies, but are easier to manipulate genetically and compatible with bacterial expression systems. Adnectins that bind macromolecular targets with nanomolar and picomolar affinity have been selected using in vitro evolution methods, including mRNA display, phage display and yeast display. CT-322, a PEGylated, anti-angiogenic Adnectin that binds vascular endothelial growth factor (VEGF) receptor 2 and blocks its interaction with VEGF A, C and D, is being evaluated in Phase II clinical trials for efficacy in several oncology indications.
Collapse
Affiliation(s)
- D Lipovsek
- Department of Protein Design, Adnexus, Bristol-Myers Squibb R&D Company, Waltham, MA 02453, USA.
| |
Collapse
|
14
|
Mabry R, Lewis KE, Moore M, McKernan PA, Bukowski TR, Bontadelli K, Brender T, Okada S, Lum K, West J, Kuijper JL, Ardourel D, Franke S, Lockwood L, Vu T, Frank A, Appleby MW, Wolf A, Reardon B, Hamacher NB, Stevens B, Lewis P, Lewis KB, Gilbertson DG, Lantry M, Julien SH, Ostrander C, Chan C, Byrnes-Blake K, Brody J, Presnell S, Meengs B, Levin SD, Snavely M. Engineering of stable bispecific antibodies targeting IL-17A and IL-23. Protein Eng Des Sel 2009; 23:115-27. [DOI: 10.1093/protein/gzp073] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Abstract
Display technologies are fundamental to the isolation of specific high-affinity binding proteins for diagnostic and therapeutic applications in cancer, neurodegenerative, and infectious diseases as well as autoimmune and inflammatory disorders. Applications extend into the broad field of antibody (Ab) engineering, synthetic enzymes, proteomics, and cell-free protein synthesis. Recently, in vitro display technologies have come to prominence due to the isolation of high-affinity human antibodies by phage display, the development of novel scaffolds for ribosome display, and the discovery of novel protein-protein interactions. In vitro display represents an emerging and innovative technology for the rapid isolation and evolution of high-affinity peptides and proteins. So far, only one clinical drug candidate produced by in vitro display technology has been approved by the FDA for use in humans, but several are in clinical or preclinical testing. This review highlights recent advances in various engineered biopharmaceutical products isolated by in vitro display with a focus on the commercial developments.
Collapse
Affiliation(s)
- Achim Rothe
- CSIRO Molecular and Health Technologies, Parkville, Victoria, Australia
| | | | | |
Collapse
|
16
|
Dufner P, Jermutus L, Minter RR. Harnessing phage and ribosome display for antibody optimisation. Trends Biotechnol 2006; 24:523-9. [PMID: 17000017 DOI: 10.1016/j.tibtech.2006.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 08/24/2006] [Accepted: 09/14/2006] [Indexed: 12/16/2022]
Abstract
Therapeutic antibodies have become a major driving force for the biopharmaceutical industry; therefore, the discovery and development of safe and efficacious antibody leads have become competitive processes. Phage and ribosome display are ideal tools for the generation of such molecules and have already delivered an approved drug as well as a multitude of clinical candidates. Because they are capable of searching billions of antibody variants in tailored combinatorial libraries, they are particularly applicable to potency optimisation. In conjunction with targeted, random or semi-rational mutagenesis strategies, they deliver large panels of potent antibody leads. This review introduces the two technologies, compares them with respect to their use in antibody optimisation and highlights how they can be exploited for the successful and efficient generation of putative drug candidates.
Collapse
Affiliation(s)
- Patrick Dufner
- Cambridge Antibody Technology, Milstein Building, Granta Park, Cambridge CB1 6GH, UK
| | | | | |
Collapse
|
17
|
Kiyani S, Quigley E, Schlachter A, Treadway A. 10th Annual Drug Discovery Technology ®Europe And Infotechpharma ®Conference. Expert Opin Drug Discov 2006; 1:91-4. [DOI: 10.1517/17460441.1.1.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Groves M, Lane S, Douthwaite J, Lowne D, Rees DG, Edwards B, Jackson RH. Affinity maturation of phage display antibody populations using ribosome display. J Immunol Methods 2006; 313:129-39. [PMID: 16730741 DOI: 10.1016/j.jim.2006.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/29/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
A comparison has been performed, using phage display or ribosome display, of stringent selections on antibody populations derived from three rounds of phage display selection. Stringent selections were performed by reducing concentrations of the antigen, bovine insulin, down to 1 nM. Higher affinity antibodies were isolated using ribosome display in a process that introduces random mutations across the clone population. Whereas the highest affinity antibody produced by phage display, D3, has a K(d) of 5.8 nM as a scFv fragment, ribosome display generated higher affinity variants of this antibody with K(d) values of 189 pM and 152 pM, without or with the use of error prone mutagenesis, respectively. The affinities were further increased for each antibody on conversion of the scFv fragments to whole IgG format, to a K(d) of less than 21 pM for the highest affinity variant of D3. Mutation of VH D101 of antibody D3 to glycine or valine, removing the salt bridge between K94 and D101 at the base of VHCDR3, was responsible for the enhanced affinity observed. In addition to the variants of D3, other unrelated antibodies of comparable or higher affinity for insulin, were isolated by ribosome display, but not phage display, indicating that ribosome display can enrich for different populations of antibodies. Affinity maturation of phage antibody populations using ribosome display is a valuable method of rapidly generating diverse, high affinity antibodies to antigen and should be readily applicable to the isolation of antibodies for the detection and assay of biomarkers.
Collapse
Affiliation(s)
- Maria Groves
- Cambridge Antibody Technology, Milstein Building, Granta Park, Cambridge CB1 6GH, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Ribosome display presents an innovative in vitro technology for the rapid isolation and evolution of high-affinity peptides or proteins. Displayed proteins are bound to and recovered from target molecules in multiple rounds of selection in order to enrich for specific binding proteins. No transformation step is necessary, which could lead to a loss of library diversity. A cycle of display and selection can be performed in one day, enabling the existing gene repertoire to be rapidly scanned. Proteins isolated from the panning rounds can be further modified through random or directed molecular evolution for affinity maturation, as well as selected for characteristics such as protein stability, folding and functional activity. Recently, the field of display technologies has become more prominent due to the generation of new scaffolds for ribosome display, isolation of high-affinity human antibodies by phage display, and their implementation in the discovery of novel protein-protein interactions. Applications for this technology extend into the broad field of antibody engineering, proteomics, and synthetic enzymes for diagnostics and therapeutics in cancer, autoimmune and infectious diseases, neurodegenerative diseases and inflammatory disorders. This review highlights the role of ribosome display in drug discovery, discusses advantages and disadvantages of the system, and attempts to predict the future impact of ribosome display technology on the development of novel engineered biopharmaceutical products for biological therapies.
Collapse
Affiliation(s)
- Achim Rothe
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
20
|
Abstract
Anticalins are a novel class of engineered ligand-binding proteins that are prepared from lipocalins--conventional plasma proteins in humans--via targeted random mutagenesis and selection against prescribed haptens or antigens. The first anticalins were selected to bind to small ligands, such as the cardioactive drug digoxin. Recently, libraries that also permit the generation of anticalins with high affinities and specificities for protein targets, especially disease-related cell-surface receptors, have been constructed. Anticalins are much smaller than antibodies or their antigen-binding fragments, lack glycosylation as well as immunological effector functions, and consist of a single, stably folded polypeptide chain. Thus, they offer benefits as biopharmaceuticals in several areas of medical therapy, for example as receptor antagonists or as effective antidotes against toxic compounds.
Collapse
|