1
|
Furuta A, Kuroda Y, Yamamoto T, Egawa S, Dezawa M, Yoshimura N. Effects of human Muse cells on bladder inflammation, overactivity, and nociception in a chemically induced Hunner-type interstitial cystitis-like rat model. Int Urogynecol J 2022; 33:1293-1301. [PMID: 35333929 DOI: 10.1007/s00192-022-05166-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION AND HYPOTHESIS We investigated the effects of locally administered human multilineage-differentiating stress enduring (Muse) cells, nontumorigenic pluripotent-like endogenous stem cells, on bladder tissues, function, and nociceptive behavior in a chemically induced Hunner-type interstitial cystitis (HIC)-like rat model without immunosuppressant. METHODS Chemical cystitis was induced by intravesical instillation of 0.2 N hydrochloride (HCl) for 15 min in female F344 rats. SSEA-3+ Muse cells, SSEA-3- non-Muse cells or Hanks' balanced salt solution (HBSS; vehicle) were injected into the anterior and posterior bladder wall at each 1×104 cells/10 μl 6 h after HCl application. The sham group received HBSS without HCl instillation. Urinary frequency was assessed using metabolic cages, cystometrograms, nociceptive behavior, and histological analysis of the bladder and L6 spinal cord. RESULTS Increases in urinary frequency and decreases in bladder capacity compared with the sham group were observed in the vehicle and non-Muse groups, but not in the Muse group, at 1 week. Significant increases in nociceptive behavior compared with the sham group and the expression of TNFα in the bladder and c-Fos in the bilateral dorsal horns of L6 spinal cord were also observed in the vehicle and non-Muse groups, whereas these changes were not seen in the Muse group at 1 week. Histological analysis exhibited a higher proportion of injected Muse cells remaining in the urothelial basal layer and lamina propria of the bladder than non-Muse cells until 4 weeks. CONCLUSIONS Muse cell therapy could be a promising modality for treating HIC.
Collapse
Affiliation(s)
- Akira Furuta
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tokunori Yamamoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Cheng J, Zhao ZW, Wen JR, Wang L, Huang LW, Yang YL, Zhao FN, Xiao JY, Fang F, Wu J, Miao YL. Status, challenges, and future prospects of stem cell therapy in pelvic floor disorders. World J Clin Cases 2020; 8:1400-1413. [PMID: 32368533 PMCID: PMC7190946 DOI: 10.12998/wjcc.v8.i8.1400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 02/05/2023] Open
Abstract
Pelvic floor disorders (PFDs) represent a group of common and frequently-occurring diseases that seriously affect the life quality of women, generally including stress urinary incontinence and pelvic organ prolapse. Surgery has been used as a treatment for PFD, but almost 30% of patients require subsequent surgery due to a high incidence of postoperative complications and high recurrence rates. Therefore, investigations of new therapeutic strategies are urgently needed. Stem cells possess strong multi-differentiation, self-renewal, immunomodulation, and angiogenesis abilities and they are able to differentiate into various cell types of pelvic floor tissues and thus provide a potential therapeutic approach for PFD. Recently, various studies using different autologous stem cells have achieved promising results by improving the pelvic ligament and muscle regeneration and conferring the tissue elasticity and strength to the damaged tissue in PFD, as well as reduced inflammatory reactions, collagen deposition, and foreign body reaction. However, with relatively high rates of complications such as bladder stone formation and wound infections, further studies are necessary to investigate the role of stem cells as maintainers of tissue homeostasis and modulators in early interventions including therapies using new stem cell sources, exosomes, and tissue-engineering combined with stem cell-based implants, among others. This review describes the types of stem cells and the possible interaction mechanisms in PFD treatment, with the hope of providing more promising stem cell treatment strategies for PFD in the future.
Collapse
Affiliation(s)
- Juan Cheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhi-Wei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji-Rui Wen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan-Lin Yang
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Feng-Nian Zhao
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing-Yue Xiao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Fei Fang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ya-Li Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
3
|
Gopinath C, Ponsaerts P, Wyndaele JJ. Cell-Based Therapies in Lower Urinary Tract Disorders. Cell Transplant 2014; 24:1679-86. [PMID: 25291710 DOI: 10.3727/096368914x685050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell-based therapy for the bladder has its beginnings in the 1990s with the successful isolation and culture of bladder smooth muscle cells. Since then, several attempts have been made to artificially implant native cell types and stem cell-derived cells into damaged bladders in the form of single-cell injectables or as grafts seeded onto artificial extracellular matrix. We critically examined in the literature the types of cells and their probable role as an alternative to non-drug-based, non-bowel-based graft replacement therapy in disorders of the urinary bladder. The limitations and plausible improvements to these novel therapies have also been discussed, keeping in mind an ideal therapy that could suit most bladder abnormalities arising out of varied number of disorders. In conclusion, muscle-derived cell types have consistently proven to be a promising therapy to emerge in the coming decade. However, tissue-engineered constructs have yet to prove their success in preclinical and long-term clinical setting.
Collapse
|
4
|
Salcedo L, Penn M, Damaser M, Balog B, Zutshi M. Functional outcome after anal sphincter injury and treatment with mesenchymal stem cells. Stem Cells Transl Med 2014; 3:760-7. [PMID: 24797828 DOI: 10.5966/sctm.2013-0157] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This research demonstrates the regenerative effects of mesenchymal stem cells (MSCs) on the injured anal sphincter by comparing anal sphincter pressures following intramuscular and serial intravascular MSC infusion in a rat model of anal sphincter injury. Fifty rats were divided into injury (n = 35) and no injury (NI; n = 15) groups. Each group was further divided into i.m., serial i.v., or no-treatment (n = 5) groups and followed for 5 weeks. The injury consisted of an excision of 25% of the anal sphincter complex. Twenty-four hours after injury, 5 × 10(5) green fluorescent protein-labeled MSCs in 0.2 ml of phosphate-buffered saline (PBS) or PBS alone (sham) were injected into the anal sphincter for i.m. treatment; i.v. and sham i.v. treatments were delivered daily for 6 consecutive days via the tail vein. Anal pressures were recorded before injury and 10 days and 5 weeks after treatment. Ten days after i.m. MSC treatment, resting and peak pressures were significantly increased compared with those in sham i.m. treatment (p < .001). When compared with the NI group, the injury groups had anal pressures that were not significantly different 5 weeks after i.m./i.v. treatment. Both resting and peak pressures were also significantly increased after i.m./i.v. MSC treatment compared with treatment with PBS (p < .001), suggesting recovery. Statistical analysis was done using paired t test with Bonferroni correction. Marked decrease in fibrosis and scar tissue was seen in both MSC-treated groups. Both i.m. and i.v. MSC treatment after injury caused an increase in anal pressures sustained at 5 weeks, although fewer cells were injected i.m. The MSC-treated groups showed less scarring than the PBS-treated groups, with the i.v. infusion group showing the least scarring.
Collapse
Affiliation(s)
- Levilester Salcedo
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Marc Penn
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Margot Damaser
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Brian Balog
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Massarat Zutshi
- Department of Colorectal Surgery and Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Summa Cardiovascular Institute and Northeast Ohio Medical University, Akron, Ohio, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Salcedo L, Mayorga M, Damaser M, Balog B, Butler R, Penn M, Zutshi M. Mesenchymal stem cells can improve anal pressures after anal sphincter injury. Stem Cell Res 2012; 10:95-102. [PMID: 23147650 DOI: 10.1016/j.scr.2012.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 09/13/2012] [Accepted: 10/09/2012] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Fecal incontinence reduces the quality of life of many women but has no long-term cure. Research on mesenchymal stem cell (MSC)-based therapies has shown promising results. The primary aim of this study was to evaluate functional recovery after treatment with MSCs in two animal models of anal sphincter injury. METHODS Seventy virgin female rats received a sphincterotomy (SP) to model episiotomy, a pudendal nerve crush (PNC) to model the nerve injuries of childbirth, a sham SP, or a sham PNC. Anal sphincter pressures and electromyography (EMG) were recorded after injury but before treatment and 10 days after injury. Twenty-four hours after injury, each animal received either 0.2 ml saline or 2 million MSCs labelled with green fluorescing protein (GFP) suspended in 0.2 ml saline, either intravenously (IV) into the tail vein or intramuscularly (IM) into the anal sphincter. RESULTS MSCs delivered IV after SP resulted in a significant increase in resting anal sphincter pressure and peak pressure, as well as anal sphincter EMG amplitude and frequency 10 days after injury. MSCs delivered IM after SP resulted in a significant increase in resting anal sphincter pressure and anal sphincter EMG frequency but not amplitude. There was no improvement in anal sphincter pressure or EMG with in animals receiving MSCs after PNC. GFP-labelled cells were not found near the external anal sphincter in MSC-treated animals after SP. CONCLUSION MSC treatment resulted in significant improvement in anal pressures after SP but not after PNC, suggesting that MSCs could be utilized to facilitate recovery after anal sphincter injury.
Collapse
|
6
|
Kwon JS, Kim GH, Kim DY, Lee BN, Lee B, Kim JH, Min BH, Kim MS. Neural differentiation of rat muscle-derived stem cells in the presence of valproic acid: A preliminary study. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0010-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Wu G, Song Y, Zheng X, Jiang Z. Adipose-derived stromal cell transplantation for treatment of stress urinary incontinence. Tissue Cell 2011; 43:246-53. [PMID: 21704350 DOI: 10.1016/j.tice.2011.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 01/23/2023]
Abstract
We aimed to investigate the application of adipose-derived stromal cells in the treatment of stress urinary incontinence (SUI). Animal models of stress urinary incontinence were established with Sprague-Dawley female rats by complete cutting of the pudendal nerve. Rat adipose-derived stromal cells were isolated, cultured and successfully transplanted into animal models. Effects of stem cell transplantation were evaluated through urodynamic testing and morphologic changes of the urethra and surrounding tissues before and after transplantation. Main urodynamic outcome measures were measured. Intra-bladder pressure and leak point pressure were measured during filling phase. Morphologic examinations were performed. Transplantation of adipose-derived stem cells significantly strengthened local urethral muscle layers and significantly improved the morphology and function of sphincters. Urodynamic testing showed significant improvements in maximum bladder capacity, abdominal leak point pressure, maximum urethral closure pressure, and functional urethral length. Morphologic changes and significant improvement in urination control were consistent over time. It was concluded that periurethral injection of adipose-derived stromal cells improves function of the striated urethral sphincter, resulting in therapeutic effects on SUI. Reconstruction of the pelvic floor through transplantation of adipose-derived cells is a minimally invasive and effective treatment for SUI.
Collapse
Affiliation(s)
- GuiZhu Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | | | | | | |
Collapse
|
8
|
Xu Y, Song YF, Lin ZX. Transplantation of muscle-derived stem cells plus biodegradable fibrin glue restores the urethral sphincter in a pudendal nerve-transected rat model. Braz J Med Biol Res 2010; 43:1076-83. [PMID: 21088804 DOI: 10.1590/s0100-879x2010007500112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/27/2010] [Indexed: 12/16/2022] Open
Abstract
We investigated whether fibrin glue (FG) could promote urethral sphincter restoration in muscle-derived stem cell (MDSC)-based injection therapies in a pudendal nerve-transected (PNT) rat, which was used as a stress urinary incontinence (SUI) model. MDSCs were purified from the gastrocnemius muscles of 4-week-old inbred female SPF Wistar rats and labeled with green fluorescent protein. Animals were divided into five groups (N = 15): sham (S), PNT (D), PNT+FG injection (F), PNT+MDSC injection (M), and PNT+MDSC+FG injection (FM). Each group was subdivided into 1- and 4-week groups. One and 4 weeks after injection into the proximal urethra, leak point pressure (LPP) was measured to assess urethral resistance function. Histology and immunohistochemistry were performed 4 weeks after injection. LPP was increased significantly in FM and M animals after implantation compared to group D (P < 0.01), but was not different from group S. LPP was slightly higher in the FM group than in the M group but there was no significant difference between them at different times. Histological and immunohistochemical examination demonstrated increased numbers of surviving MDSCs (109 ± 19 vs 82 ± 11/hpf, P = 0.026), increased muscle/collagen ratio (0.40 ± 0.02 vs 0.34 ± 0.02, P = 0.044), as well as increased microvessel density (16.9 ± 0.6 vs 14.1 ± 0.4/hpf, P = 0.001) at the injection sites in FM compared to M animals. Fibrin glue may potentially improve the action of transplanted MDSCs to restore the histology and function of the urethral sphincter in a SUI rat model. Injection of MDSCs with fibrin glue may provide a novel cellular therapy method for SUI.
Collapse
Affiliation(s)
- Y Xu
- Fuzong Clinical College, Fujian Medical University, Fuzhou, Fujian, China
| | | | | |
Collapse
|
9
|
Piccin D, Morshead CM. Potential and pitfalls of stem cell therapy in old age. Dis Model Mech 2010; 3:421-5. [DOI: 10.1242/dmm.003137] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our increasing understanding of resident stem cell populations in various tissues of the adult body provides promise for the development of cell-based therapies to treat trauma and disease. With the sharp rise in the aging population, the need for effective regenerative medicine strategies for the aged is more important then ever. Yet, the vast majority of research fuelling our understanding of the mechanisms that control stem cell behaviour, and their role in tissue regeneration, is conducted in young animals. Evidence collected in the last several years indicates that, although stem cells remain active into old age, changes in the stem cells and their microenvironments inhibit their regenerative potential. An understanding of both the cell-intrinsic stem cell changes, as well as concomitant changes to the stem cell niche and the systemic environment, are crucial for the development of regenerative medicine strategies that might be successful in aged patients.
Collapse
Affiliation(s)
- David Piccin
- Department of Surgery, Institute of Medical Science, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cindi M. Morshead
- Department of Surgery, Institute of Medical Science, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
10
|
Endoscopic injection of skeletal muscle-derived cells augments gut smooth muscle sphincter function: implications for a novel therapeutic approach. Gastrointest Endosc 2009; 70:1231-7. [PMID: 19647239 DOI: 10.1016/j.gie.2009.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 05/01/2009] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Sphincter function is a common problem in gastroenterology and leads to disorders such as GERD and fecal incontinence. OBJECTIVE We hypothesized that transplantation of skeletal muscle-derived cells (MDCs) into GI sphincters may improve their function, leading to a more physiological approach to treating these disorders. DESIGN We performed experiments to test the potential of MDCs to survive and differentiate within the GI smooth muscle in order to gain further knowledge on the biology of skeletal muscle transplantation in GI smooth muscle sphincters as well as to test the safety and feasibility of endoscopic injection of MDCs in a large animal model. SETTING Animal laboratory. INTERVENTIONS Adult male Sprague-Dawley rats and adult male beagle dogs were used. Rat-derived and dog-derived MDCs were prepared in vitro and labeled with DiI. DiI-labeled, rat-derived MDCs (200,000/4 muL phosphate buffered saline solution) were injected bilaterally in the pyloric wall of rats, and survival, differentiation, and in vitro contractility were assessed 1 month after transplantation. Dog-derived MDCs (4.0 x 10(6) cells) were also injected into the lower esophageal sphincter of 3 beagle dogs by using a standard variceal sclerotherapy needle after baseline esophageal manometry and pH monitoring. The dogs were treated with daily cyclosporine, and 2 weeks later esophageal manometry was repeated and the esophagus was examined histologically. Differentiation of grafted cells was assessed by immunofluorescence, using specific antibodies to markers of the smooth muscle phenotype (smooth muscle actin) and of the skeletal muscle phenotype (skeletal muscle myosin). RESULTS In rats, grafted MDCs were visualized based on DiI fluorescence and were found to be localized within the muscle wall and in the muscularis mucosa. In vitro organ bath studies showed a significant increase in the contractile response of the pyloric sphincter to exogenous acetylcholine. In dogs, MDC injection resulted in a significant increase in baseline lower esophageal sphincter pressure. Further, in 1 dog with significant baseline acid reflux, MDC injection resulted in a reduction of acid reflux, with the fraction of time with pH <4 decreasing from 26.5% to 1.5%. Transplanted MDCs were seen adding bulk to the lower esophageal area and were well-integrated into the surrounding tissue. Immunofluorescence analysis revealed weak expression of skeletal muscle myosin in grafted MDCs and no expression of smooth muscle actin in either rats or dogs. LIMITATIONS Animal study. CONCLUSION MDCs can survive and integrate into GI smooth muscle and augment their contractile response. Thus, they may have potential for the treatment of a variety of conditions.
Collapse
|
11
|
Kahrilas PJ. Thinking outside the box: autotransplantation into GI sphincters. Gastrointest Endosc 2009; 70:1238-40. [PMID: 19962505 PMCID: PMC2883448 DOI: 10.1016/j.gie.2009.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/05/2009] [Indexed: 02/08/2023]
|
12
|
Lu SH, Yang AH, Chen KK, Chiang HS, Chang LS. Purification of human muscle-derived cells using an immunoselective method for potential use in urological regeneration. BJU Int 2009; 105:1598-603. [DOI: 10.1111/j.1464-410x.2009.09032.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
Nehlin JO, Barington T. Strategies for future histocompatible stem cell therapy. Biogerontology 2009; 10:339-76. [PMID: 19219637 DOI: 10.1007/s10522-009-9213-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 01/19/2009] [Indexed: 02/07/2023]
Abstract
Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within a developmental lineage, would facilitate the transplantation of organ/tissue-specific adult stem cells or terminally differentiated somatic cells to improve the function of diseased organs or tissues in an individual. Here, we present an overview of various experimental cell therapy technologies based on the use of patient-histocompatible stem cells, the pending issues needed to be dealt with before clinical trials can be initiated, evidence for the loss and/or aging of the stem cell pool and some of the possible uses of human pluripotent stem cell-derivatives aimed at curing disease and improving health.
Collapse
Affiliation(s)
- Jan O Nehlin
- Center for Stem Cell Treatment, Department of Clinical Immunology, University of Southern Denmark, Denmark.
| | | |
Collapse
|
15
|
Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. ACTA ACUST UNITED AC 2008; 4:27-49. [PMID: 18288619 DOI: 10.1007/s12015-008-9008-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent progress in the field of the stem cell research has given new hopes to treat and even cure diverse degenerative disorders and incurable diseases in human. Particularly, the identification of a rare population of adult stem cells in the most tissues/organs in human has emerged as an attractive source of multipotent stem/progenitor cells for cell replacement-based therapies and tissue engineering in regenerative medicine. The tissue-resident adult stem/progenitor cells offer the possibility to stimulate their in vivo differentiation or to use their ex vivo expanded progenies for cell replacement-based therapies with multiple applications in human. Among the human diseases that could be treated by the stem cell-based therapies, there are hematopoietic and immune disorders, multiple degenerative disorders, such as Parkinson's and Alzheimer's diseases, type 1 or 2 diabetes mellitus as well as eye, liver, lung, skin and cardiovascular disorders and aggressive and metastatic cancers. In addition, the genetically-modified adult stem/progenitor cells could also be used as delivery system for expressing the therapeutic molecules in specific damaged areas of different tissues. Recent advances in cancer stem/progenitor cell research also offer the possibility to targeting these undifferentiated and malignant cells that provide critical functions in cancer initiation and progression and disease relapse for treating the patients diagnosed with the advanced and metastatic cancers which remain incurable in the clinics with the current therapies.
Collapse
|
16
|
Furuta A, Jankowski RJ, Pruchnic R, Egawa S, Yoshimura N, Chancellor MB. Physiological effects of human muscle-derived stem cell implantation on urethral smooth muscle function. Int Urogynecol J 2008; 19:1229-34. [PMID: 18421407 DOI: 10.1007/s00192-008-0608-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/07/2008] [Indexed: 11/26/2022]
Abstract
The physiological effects of human muscle-derived stem cell (MDSC) implantation on urethral smooth muscle function were investigated in pudendal nerve-transected nude rats with human MDSC (TM) or saline (TS) injection into the proximal urethra compared with sham-operated, saline-injected nude rats (SS). Leak point pressure (LPP) before and after hexamethonium application, which can block autonomic efferent nerves, and proximal urethral contractile responses to carbachol and phenylephrine in muscle strip study were examined 6 weeks after the implantation. There was no significant difference between the LPPs in SS and TM. Following hexamethonium application, the LPP in TM was, however, significantly decreased compared with SS. The contractile responses to phenylephrine, but not to carbachol, in TM were significantly increased compared with SS and TS. These results suggest that the restorative effects of MDSCs are mediated by autonomic nerves and that increased sensitivity of alpha(1)-adrenoceptors may be related to restore the deficient urethral function.
Collapse
Affiliation(s)
- Akira Furuta
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|