1
|
Holmbäck J, Rinwa V, Johansson J, Håkansson J, Rinwa P, Carlsson A, Herslöf B. Preclinical development of sodium fusidate antibiotic cutaneous spray based on water-free lipid formulation system. Eur J Pharm Sci 2022; 176:106250. [PMID: 35779822 DOI: 10.1016/j.ejps.2022.106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Topical antibiotics are a key component in the management of mild to moderate skin and soft tissue infections. There are, however, concerns about the emerging bacterial resistance against topical antibacterial agents such as fusidic acid, due to the prolonged treatment period of its marketed dosage forms. Improving the efficacy of topical formulations could potentially shorten the treatment period and avoid the resistance growth. To provide a more effective drug delivery, a water-free lipid-based formulation system (AKVANO®) which can be applied by spraying, has been developed. In the current paper, different formulations containing sodium fusidate were evaluated for their in vitro skin permeability using artificial skin mimicking membranes and antibacterial properties using ex vivo and in vivo skin wound infection models. The novel formulations containing sodium fusidate showed a much higher skin permeation (up to 60% of nominal amount) than the commercially available Fucidin® cream (3%). These formulations also gave a significantly stronger antibacterial effect than Fucidin cream showing a clear dose-response relationship for the sodium fusidate content. A spray product based on the described formulation technology would therefore require a shorter treatment time and thereby lower the risk for the development of bacterial resistance. Spray administration of these formulations provides an even layer on the skin surface from which the solvent quickly evaporates and thereby facilitates a non-touch application where no rubbing is required.
Collapse
Affiliation(s)
- Jan Holmbäck
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm SE-106 91, Sweden; Lipidor AB, Svärdvägen 13, Danderyd SE-182 33, Sweden.
| | - Vibhu Rinwa
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm SE-106 91, Sweden; Lipidor AB, Svärdvägen 13, Danderyd SE-182 33, Sweden
| | - Jenny Johansson
- RISE Research Institutes of Sweden AB, Brinellgatan 4, Borås SE-504 62, Sweden
| | - Joakim Håkansson
- RISE Research Institutes of Sweden AB, Brinellgatan 4, Borås SE-504 62, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Gothenburg University, Gothenburg SE- 405 30, Sweden
| | - Puneet Rinwa
- Lipidor AB, Svärdvägen 13, Danderyd SE-182 33, Sweden
| | - Anders Carlsson
- MediGelium AB, Hornsbergs strand 49, Stockholm SE-112 16, Sweden
| | - Bengt Herslöf
- Lipidea AB, Brunbärsvägen 2, Stockholm SE-114 21, Sweden
| |
Collapse
|
2
|
Rasool MH, Yousaf R, Siddique AB, Saqalein M, Khurshid M. Isolation, Characterization, and Antibacterial Activity of Bacteriophages Against Methicillin-Resistant Staphylococcus aureus in Pakistan. Jundishapur J Microbiol 2016; 9:e36135. [PMID: 27942361 PMCID: PMC5136446 DOI: 10.5812/jjm.36135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/04/2016] [Accepted: 08/06/2016] [Indexed: 01/21/2023] Open
Abstract
Background In recent years, antibiotic resistance has been indicated as a paramount threat to public health. The use of bacteriophages appears to be a safer alternative for the control of bacterial infections. Objectives The present study aims to explore sewage water for the presence of indigenous bacteriophages, and to investigate their antibacterial potential against Methicillin-resistant Staphylococcus aureus (MRSA). Methods Bacterial isolates were first collected and identified from pus samples taken from the surgical and burn units using standard microbiological procedures. A cefoxitin disk screen test was then used and interpreted according to the clinical laboratory standards institute (CLSI) guidelines for the detection of MRSA. The sewage samples were processed and the phages enriched using S. aureus as a host organism. Turbid and clear plaques of different sizes were isolated using an overlay method, purified, and then enumerated by means of a dilution method. Results The phages exhibited good lytic activity against MRSA when tested in-vitro, and the highest activity was attained within three to six hours of phage infection. The isolated phage pq/48 was also found efficient in decreasing the bacterial count during an in-vivo trial in rabbits. A protein analysis using SDS-PAGE revealed 10 proteins of between 20 kDa and 155 kDa in size. Conclusions The overall results indicated that bacteriophages isolated from sewage exhibited excellent lytic activity against MRSA strains. In conclusion, bacteriophages can be further characterized and appear to be a promising candidate for phage therapy against MRSA in the future.
Collapse
Affiliation(s)
- Muhammad Hidayat Rasool
- Department of Microbiology, Government College University, Faisalabad, Pakistan
- Corresponding author: Muhammad Hidayat Rasool, Department of Microbiology, Government College University, Faisalabad, Pakistan. Tel: +92-419201205; +92-3017102378, E-mail:
| | - Rukhsana Yousaf
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Saqalein
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
3
|
Mishra AK, Rawat M, Viswas KN, Abhishek, Kumar S, Reddy M. Expression and lytic efficacy assessment of the Staphylococcus aureus phage SA4 lysin gene. J Vet Sci 2013; 14:37-43. [PMID: 23388442 PMCID: PMC3615230 DOI: 10.4142/jvs.2013.14.1.37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/08/2012] [Indexed: 11/20/2022] Open
Abstract
Treatment of bovine mastitis caused by Staphylococcus (S.) aureus is becoming very difficult due to the emergence of multidrug-resistant strains. Hence, the search for novel therapeutic alternatives has become of great importance. Consequently, bacteriophages and their endolysins have been identified as potential therapeutic alternatives to antibiotic therapy against S. aureus. In the present study, the gene encoding lysin (LysSA4) in S. aureus phage SA4 was cloned and the nucleotide sequence was determined. Sequence analysis of the recombinant clone revealed a single 802-bp open reading frame encoding a partial protein with a calculated mass of 30 kDa. Results of this analysis also indicated that the LysSA4 sequence shared a high homology with endolysin of the GH15 phage and other reported phages. The LysSA4 gene of the SA4 phage was subsequently expressed in Escherichia coli. Recombinant LysSA4 induced the lysis of host bacteria in a spot inoculation test, indicating that the protein was expressed and functionally active. Furthermore, recombinant lysin was found to have lytic activity, albeit a low level, against mastitogenic Staphylococcus isolates of bovine origin. Data from the current study can be used to develop therapeutic tools for treating diseases caused by drug-resistant S. aureus strains.
Collapse
Affiliation(s)
- Anil Kumar Mishra
- Animal Health Division, Central Institute for Research Institute on Goats, Farah 281122, India.
| | | | | | | | | | | |
Collapse
|
4
|
Freire-Moran L, Aronsson B, Manz C, Gyssens IC, So AD, Monnet DL, Cars O. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now. Drug Resist Updat 2011; 14:118-24. [PMID: 21435939 DOI: 10.1016/j.drup.2011.02.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 11/30/2022]
Abstract
Two commercial databases (Pharmaprojects and Adis Insight R&D) were queried for antibacterial agents in clinical development. Particular attention was given to antibacterial agents for systemic administration. For each agent, reviewers were requested to indicate whether its spectrum of activity covered a set of selected multidrug-resistant bacteria, and whether it had a new mechanism of action or a new target. In addition, PubMed was searched for antibacterial agents in development that appeared in review articles. Out of 90 agents that were considered to fulfil the inclusion criteria for the analysis, 66 were new active substances. Fifteen of these could be systemically administered and were assessed as acting via a new or possibly new mechanism of action or on a new or possibly new target. Out of these, 12 agents were assessed as having documented in vitro activity against antibiotic-resistant Gram-positive bacteria and only four had documented in vitro activity against antibiotic-resistant Gram-negative bacteria. Of these four, two acted on new or possibly new targets and, crucially, none acted via new mechanisms of action. There is an urgent need to address the lack of effective treatments to meet the increasing public health burden caused by multidrug-resistant bacteria, in particular against Gram-negative bacteria.
Collapse
|
5
|
Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog 2010; 6:e1000944. [PMID: 20548948 PMCID: PMC2883592 DOI: 10.1371/journal.ppat.1000944] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/07/2010] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus frequently invades the human bloodstream, leading to life threatening bacteremia and often secondary foci of infection. Failure of antibiotic therapy to eradicate infection is frequently described; in some cases associated with altered S. aureus antimicrobial resistance or the small colony variant (SCV) phenotype. Newer antimicrobials, such as linezolid, remain the last available therapy for some patients with multi-resistant S. aureus infections. Using comparative and functional genomics we investigated the molecular determinants of resistance and SCV formation in sequential S. aureus isolates from a patient who had a persistent and recurrent S. aureus infection, after failed therapy with multiple antimicrobials, including linezolid. Two point mutations in key staphylococcal genes dramatically affected clinical behaviour of the bacterium, altering virulence and antimicrobial resistance. Most strikingly, a single nucleotide substitution in relA (SACOL1689) reduced RelA hydrolase activity and caused accumulation of the intracellular signalling molecule guanosine 3′, 5′-bis(diphosphate) (ppGpp) and permanent activation of the stringent response, which has not previously been reported in S. aureus. Using the clinical isolate and a defined mutant with an identical relA mutation, we demonstrate for the first time the impact of an active stringent response in S. aureus, which was associated with reduced growth, and attenuated virulence in the Galleria mellonella model. In addition, a mutation in rlmN (SACOL1230), encoding a ribosomal methyltransferase that methylates 23S rRNA at position A2503, caused a reduction in linezolid susceptibility. These results reinforce the exquisite adaptability of S. aureus and show how subtle molecular changes cause major alterations in bacterial behaviour, as well as highlighting potential weaknesses of current antibiotic treatment regimens. The treatment of serious infections caused by Staphylococcus aureus is complicated by the development of antibiotic resistance, and in some cases the appearance of more persistent bacteria that have a reduced growth rate resulting in small colony variants (SCV). Here we have shown using whole genome sequencing and gene replacement experiments on sequential S. aureus isolates obtained from a patient with a serious bloodstream infection, how S. aureus evolved into a multi-antibiotic resistant, persistent and almost untreatable SCV. Specifically we show that a minor DNA change in a S. aureus gene encoding an enzyme called RelA causes an accumulation of a small signalling molecule called (p)ppGpp, which in turn leads to persistent activation of the important bacterial stress response known as the stringent response. This is the first report of the involvement of the stringent response in S. aureus SCV formation and its association with persistent infection. Additionally, we have uncovered a novel mechanism of resistance to the new antimicrobial linezolid, caused by a mutation in a gene encoding a 23S rRNA methyltransferase. This study highlights the exquisite adaptability of this important pathogen in the face of antimicrobial treatment.
Collapse
|
6
|
Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 2010; 23:99-139. [PMID: 20065327 DOI: 10.1128/cmr.00042-09] [Citation(s) in RCA: 680] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The emergence of vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) over the past decade has provided a challenge to diagnostic microbiologists to detect these strains, clinicians treating patients with infections due to these strains, and researchers attempting to understand the resistance mechanisms. Recent data show that these strains have been detected globally and in many cases are associated with glycopeptide treatment failure; however, more rigorous clinical studies are required to clearly define the contribution of hVISA to glycopeptide treatment outcomes. It is now becoming clear that sequential point mutations in key global regulatory genes contribute to the hVISA and VISA phenotypes, which are associated predominately with cell wall thickening and restricted vancomycin access to its site of activity in the division septum; however, the phenotypic features of these strains can vary because the mutations leading to resistance can vary. Interestingly, changes in the staphylococcal surface and expression of agr are likely to impact host-pathogen interactions in hVISA and VISA infections. Given the subtleties of vancomycin susceptibility testing against S. aureus, it is imperative that diagnostic laboratories use well-standardized methods and have a framework for detecting reduced vancomycin susceptibility in S. aureus.
Collapse
|
7
|
Falagas ME, Kapaskelis AM, Kouranos VD, Kakisi OK, Athanassa Z, Karageorgopoulos DE. Outcome of Antimicrobial Therapy in Documented Biofilm-Associated Infections. Drugs 2009; 69:1351-61. [DOI: 10.2165/00003495-200969100-00005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Antibacterial and anti-PAF activity of lipid extracts from sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata). Food Chem 2008; 111:433-8. [DOI: 10.1016/j.foodchem.2008.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 02/04/2008] [Accepted: 04/04/2008] [Indexed: 11/22/2022]
|
9
|
Hafez MM, Aboulwafa MM, Yassien MA, Hassouna NA. Role of different classes of mammalian cell surface molecules in adherence of coagulase positive and coagulase negative staphylococci. J Basic Microbiol 2008; 48:353-62. [DOI: 10.1002/jobm.200700402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Mann NH. The potential of phages to prevent MRSA infections. Res Microbiol 2008; 159:400-5. [PMID: 18541414 DOI: 10.1016/j.resmic.2008.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 11/19/2022]
Abstract
This short review attempts to examine whether there is a potential for the use of phages capable of infecting Staphylococcus aureus to eradicate or reduce nasal colonisation, thereby reducing the overall infection burden in patient populations identified as being at risk from MRSA infections. There is clear evidence that nasal decolonisation may be of benefit to certain patient groups and also that phages can effectively combat experimentally induced S. aureus infections in animals. However, this is not in itself enough to validate the use of phages for decolonisation and, given the appearance of strains resistant to currently used topical antibiotics, there is a need for clinical trials of this prophylactic use of phages.
Collapse
Affiliation(s)
- Nicholas H Mann
- Novolytics Ltd., Unit 26, Barclays Venture Centre, Sir William Lyons Road, Coventry CV4 7EZ, UK.
| |
Collapse
|
11
|
Ramsland PA, Willoughby N, Trist HM, Farrugia W, Hogarth PM, Fraser JD, Wines BD. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proc Natl Acad Sci U S A 2007; 104:15051-6. [PMID: 17848512 PMCID: PMC1986611 DOI: 10.1073/pnas.0706028104] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Indexed: 11/18/2022] Open
Abstract
Infection by Staphylococcus aureus can result in severe conditions such as septicemia, toxic shock, pneumonia, and endocarditis with antibiotic resistance and persistent nasal carriage in normal individuals being key drivers of the medical impact of this virulent pathogen. In both virulent infection and nasal colonization, S. aureus encounters the host immune system and produces a wide array of factors that frustrate host immunity. One in particular, the prototypical staphylococcal superantigen-like protein SSL7, potently binds IgA and C5, thereby inhibiting immune responses dependent on these major immune mediators. We report here the three-dimensional structure of the complex of SSL7 with Fc of human IgA1 at 3.2 A resolution. Two SSL7 molecules interact with the Fc (one per heavy chain) primarily at the junction between the Calpha2 and Calpha3 domains. The binding site on each IgA chain is extensive, with SSL7 shielding most of the lateral surface of the Calpha3 domain. However, the SSL7 molecules are positioned such that they should allow binding to secretory IgA. The key IgA residues interacting with SSL7 are also bound by the leukocyte IgA receptor, FcalphaRI (CD89), thereby explaining how SSL7 potently inhibits IgA-dependent cellular effector functions mediated by FcalphaRI, such as phagocytosis, degranulation, and respiratory burst. Thus, the ability of S. aureus to subvert IgA-mediated immunity is likely to facilitate survival in mucosal environments such as the nasal passage and may contribute to systemic infections.
Collapse
MESH Headings
- Antigens, CD/chemistry
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Binding Sites, Antibody
- Cells, Cultured
- Crystallography, X-Ray
- Genes, Bacterial/immunology
- Humans
- Immunoglobulin A/chemistry
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Models, Molecular
- Mutagenesis
- Protein Conformation
- Receptors, Fc/chemistry
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Staphylococcus aureus/immunology
- Superantigens/chemistry
- Superantigens/immunology
Collapse
Affiliation(s)
- Paul A. Ramsland
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - Natasha Willoughby
- The Maurice Wilkins Centre and School of Medical Sciences, University of Auckland, Auckland 1020, New Zealand
| | - Halina M. Trist
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
| | - William Farrugia
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
| | - P. Mark Hogarth
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - John D. Fraser
- The Maurice Wilkins Centre and School of Medical Sciences, University of Auckland, Auckland 1020, New Zealand
| | - Bruce D. Wines
- *The Inflammatory Disease and Structural Immunology Laboratories, The Burnet Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
- Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia; and
- Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|