1
|
Lakić B, Škrbić R, Uletilović S, Mandić-Kovačević N, Grabež M, Šarić MP, Stojiljković MP, Soldatović I, Janjetović Z, Stokanović A, Stojaković N, Mikov M. Beneficial Effects of Ursodeoxycholic Acid on Metabolic Parameters and Oxidative Stress in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind, Placebo-Controlled Clinical Study. J Diabetes Res 2024; 2024:4187796. [PMID: 38455850 PMCID: PMC10919985 DOI: 10.1155/2024/4187796] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Background Oxidative stress and inflammation are closely related pathophysiological processes, both occurring in type 2 diabetes mellitus (T2DM). In addition to the standard treatment of T2DM, a potential strategy has been focused on the use of bile acids (BAs) as an additional treatment. Ursodeoxycholic acid (UDCA), as the first BA used in humans, improves glucose and lipid metabolism and attenuates oxidative stress. The aim of this study was to evaluate the potential metabolic, anti-inflammatory, and antioxidative effects of UDCA in patients with T2DM. Methods This prospective, double-blind, placebo-controlled clinical study included 60 patients with T2DM, randomly allocated to receive UDCA or placebo. Subjects were treated with 500 mg tablets of UDCA or placebo administered three times per day (total dose of 1500 mg/day) for eight weeks. Two study visits, at the beginning (F0) and at the end (F1) of the study, included the interview, anthropometric and clinical measurements, and biochemical analyses. Results UDCA treatment showed a significant reduction in body mass index (p = 0.024) and in diastolic blood pressure (p = 0.033), compared to placebo. In addition, there was a statistically significant difference in waist circumference in the UDCA group before and after treatment (p < 0.05). Although no statistical significance was observed at the two-month follow-up assessment, an average decrease in glucose levels in the UDCA group was observed. After two months of the intervention period, a significant decrease in the activity of liver enzymes was noticed. Furthermore, a significant reduction in prooxidative parameters (TBARS, NO2-, H2O2) and significant elevation in antioxidative parameters such as SOD and GSH were found (p < 0.001). Conclusions The eight-week UDCA administration showed beneficial effects on metabolic and oxidative stress parameters in patients with T2DM. Thus, UDCA could attenuate the progression and complications of diabetes and should be considered as an adjuvant to other diabetes treatment modalities. This trial is registered with NCT05416580.
Collapse
Affiliation(s)
- Biljana Lakić
- Department of Family Medicine, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Primary Health Care Centre, Banja Luka, Bosnia and Herzegovina
| | - Ranko Škrbić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Snežana Uletilović
- Department of Medical Biochemistry and Chemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Nebojša Mandić-Kovačević
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Milkica Grabež
- Department of Hygiene, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Miloš P. Stojiljković
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ivan Soldatović
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zorica Janjetović
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Nataša Stojaković
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Momir Mikov
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
2
|
Yang Y, Liu S, Gao H, Wang P, Zhang Y, Zhang A, Jia Z, Huang S. Ursodeoxycholic acid protects against cisplatin-induced acute kidney injury and mitochondrial dysfunction through acting on ALDH1L2. Free Radic Biol Med 2020; 152:821-837. [PMID: 32004633 DOI: 10.1016/j.freeradbiomed.2020.01.182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction plays an important role in acute kidney injury (AKI). Thus, the agents improving the mitochondrial function could be beneficial for treating AKI. Ursodeoxycholic acid (UDCA) has been demonstrated to prevent mitochondrial dysfunction under pathology, however, its role in AKI and the underlying mechanism remain unknown. This study aimed to evaluate the effect of UDCA on cisplatin-induced AKI. In vivo, C57BL/6 J mice were treated with cisplatin (25 mg/kg) for 72 h to induce AKI through a single intraperitoneal (i.p.) injection with or without UDCA (60 mg/kg/day) administration by gavage. Renal function, mitochondrial function and oxidative stress were analyzed to evaluate kidney injury. In vitro, mouse proximal tubular cells (mPTCs) and human proximal tubule epithelial cells (HK2) were treated with cisplatin with or without UDCA treatment for 24 h. Transcriptomic RNA-seq was preformed to analyze possible targets of UDCA. Our results showed that cisplatin-induced increments of serum creatinine (Scr), blood urea nitrogen (BUN), and cystatin C were significantly reduced by UDCA along with ameliorated renal tubular injury evidenced by improved renal histology and blocked upregulation of neutrophil gelatinase associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1). Meanwhile, the apoptosis induced by cisplatin was also markedly attenuated by UDCA administration. In vitro, UDCA treatment protected against tubular cell apoptosis possibly through antagonizing mitochondrial dysfunction and oxidative stress by targeting ALDH1L2 which was screened out by an RNA-seq analysis. Knockout of ALDH1L2 by CRISPR/Cas9 greatly blunted the protective effects of UDCA in renal tubular cells. Moreover, UDCA did not diminish cisplatin's antineoplastic effect in human cancer cells. In all, our results demonstrated that UDCA protects against cisplatin-induced AKI through improving mitochondrial function through acting on the expression of ALDH1L2, suggesting a clinical potential of UDCA for the treatment of AKI.
Collapse
Affiliation(s)
- Yunwen Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Suwen Liu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Huiping Gao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Peipei Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Li T, Xu L, Zheng R, Wang X, Li L, Ji H, Hu Q. Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153153. [PMID: 32018210 DOI: 10.1016/j.phymed.2019.153153] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUD Cholestasis, accompanied by the accumulation of bile acids in body, may ultimately cause liver failure and cirrhosis. There have been limited therapies for cholesteric disorders. Therefore, development of appropriate therapeutic drugs for cholestasis is required. Picroside II is a bioactive component isolated from Picrorhiza scrophulariiflora Pennell, its mechanistic contributions to the anti-cholestasis effect have not been fully elucidated, especially the role of picroside II on bile acid homeostasis via nuclear receptors remains unclear. PURPOSE This study was designed to investigate the hepatoprotective effect of picroside II against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury and elucidate the mechanisms in vivo and in vitro. METHODS The ANIT-induced cholestatic mouse model was used with or without picroside II treatment. Serum and bile biochemical indicators, as well as liver histopathological changes were examined. siRNA, Dual-luciferase reporter, quantitative real-time PCR and Western blot assay were used to demonstrate the farnesoid X receptor (FXR) pathway in the anti-cholestasis effects of picroside II in vivo and in vitro. RESULTS Picroside II exerted hepatoprotective effect against ANIT-induced cholestasis by impaired hepatic function and tissue damage. Picroside II increased bile acid efflux transporter bile salt export pump (Bsep), uptake transporter sodium taurocholate cotransporting polypeptide (Ntcp), and bile acid metabolizing enzymes sulfate transferase 2a1 (Sult2a1) and UDP-glucuronosyltransferase 1a1 (Ugt1a1), whereas decreased the bile acid synthesis enzymes cholesterol 7α-hydroxylase (Cyp7a1) and oxysterol 12α-hydroxylase (Cyp8b1). In addition, expression of FXR and the target gene Bsep was increased, whereas aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARα) and their corresponding target genes were not significantly influenced by picroside II under cholestatic conditions. Furthermore, regulation of transporters and enzymes involved in bile acid homeostasis by picroside II were abrogated by FXR silencing in mouse primary cultured hepatocytes. Dual-luciferase reporter assay performed in HepG2 cells demonstrated FXR activation by picroside II. CONCLUSION Our findings demonstrate that picroside II exerts protective effect on ANIT-induced cholestasis possibly through FXR activation that regulates the transporters and enzymes involved in bile acid homeostasis. Picroside II might be an effective approach for the prevention and treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lijie Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Rongyao Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjie Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liwen Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Zhang Z, Miao Y, Xu M, Cheng W, Yang C, She X, Geng Q, Zhang Q. TianJiu therapy for α-naphthyl isothiocyanate-induced intrahepatic cholestasis in rats treated with fresh Ranunculus sceleratus L. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112310. [PMID: 31629027 DOI: 10.1016/j.jep.2019.112310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TianJiu (TJ) therapy, one type of cold moxibustion, applies to specific acupuncture points with herbal patches of hot nature, providing a constant irritant to the skin until the presence of hyperemia and blistering. Traditional and clinical reports suggest that TJ is an effective therapy for the treatment of jaundice with fresh Ranunculus sceleratus L. (RS), in which protoanemonin is one of the main irritant constituents. However, the therapeutic effect of TJ treatment with fresh RS against intrahepatic cholestasis has not been studied in animal experiments. AIM OF THE STUDY Present study was undertaken to investigate the effect of TJ treatment with fresh RS against intrahepatic cholestasis in rats and provide an experimental basis for the underlying mechanism of TJ therapy. MATERIALS AND METHODS Male intrahepatic cholestatic Sprague-Dawley rats induced by 2% α-naphthylisothiocyanate (ANIT, 80 mg/kg B.W.) were treated by TJ therapy with fresh RS. The levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), direct bilirubin (DBIL), total bilirubin (TBIL), total bile acid (TBA), hepatic malondialdehyde (MDA) and nitric monoxide (NO), as well as hepatic body ratio, bile flow and hepatic histopathological assay were measured and evaluated to investigate the therapeutic effect of TJ treatment with fresh RS. Phytochemical analysis of fresh and dried RS was performed by gas chromatography-mass spectrometer (GC-MS). RESULTS After TJ treatment with fresh RS, the abnormally elevated levels of serum AST, ALT, ALP, DBIL, TBIL and TBA, as well as hepatic MDA and NO at 108 h were reduced significantly (versus model group, P < 0.01). The hepatic body ratio, bile flow and hepatic pathological change of cholestatic rats at 108 h in TJ group were restored when compared with those of model group. Thirty-one compounds including lactones, flavonoids and phenolic acids were identified and determined by GC-MS analysis. The content of protoanemonin in fresh RS (9.49%) was about 25-fold higher than that in dried RS (0.38%). CONCLUSIONS TJ treatment with fresh RS exhibited good therapeutic effect on ANIT-induced intrahepatic cholestasis in rats, which may be due to the attenuated oxidative stress in the liver tissue. It is rational for the ancients to choose fresh RS as TJ herbal patches because of its abundant protoanemonin with the character of irritant. The qualitative and quantitative results of GC-MS analysis provided the chemical basis of TJ therapy with fresh RS, which can be regarded as a simple and efficient method for the treatment of cholestasis hepatitis.
Collapse
Affiliation(s)
- Zhiyong Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yiru Miao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Min Xu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wenming Cheng
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Chuanyan Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiangjian She
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qianqian Geng
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qunlin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Chen YS, Liu HM, Lee TY. Ursodeoxycholic Acid Regulates Hepatic Energy Homeostasis and White Adipose Tissue Macrophages Polarization in Leptin-Deficiency Obese Mice. Cells 2019; 8:cells8030253. [PMID: 30884843 PMCID: PMC6468643 DOI: 10.3390/cells8030253] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Obesity has been shown to play a role in the pathogenesis of several forms of metabolic syndrome, including non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. Ursodeoxycholic acid (UDCA) has been shown to possess antioxidant and anti-inflammatory properties and prevents mitochondrial dysfunction in the progression of obesity-associated diseases. The aim of the study was to evaluate the mechanisms of UDCA during obesity-linked hepatic mitochondrial dysfunction and obesity-associated adipose tissue macrophage-induced inflammation in obese mice. UDCA significantly decreased lipid droplets, reduced free fatty acids (FFA) and triglycerides (TG), improved mitochondrial function, and enhanced white adipose tissue browning in ob/ob mice. This is associated with increased hepatic energy expenditure, mitochondria biogenesis, and incorporation of bile acid metabolism (Abca1, Abcg1 mRNA and BSEP, FGFR4, and TGR5 protein). In addition, UDCA downregulated NF-κB and STAT3 phosphorylation by negative regulation of the expression of SOCS1 and SOCS3 signaling. These changes were accompanied by decreased angiogenesis, as shown by the downregulation of VEGF, VCAM, and TGF-βRII expression. Importantly, UDCA is equally effective in reducing whole body adiposity. This is associated with decreased adipose tissue expression of macrophage infiltration (CD11b, CD163, and CD206) and lipogenic capacity markers (lipofuscin, SREBP-1, and CD36). Furthermore, UDCA significantly upregulated adipose browning in association with upregulation of SIRT-1-PGC1-α signaling in epididymis adipose tissue (EWAT). These results suggest that multi-targeted therapies modulate glucose and lipid biosynthesis fluxes, inflammatory response, angiogenesis, and macrophage differentiation. Therefore, it may be suggested that UDCA treatment may be a novel therapeutic agent for obesity.
Collapse
Affiliation(s)
- Yu-Sheng Chen
- Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan.
- Division of Chinese Acupuncture, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, No. 123, Dinghu Road, Guishan District, Taoyuan 333, Taiwan.
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
| |
Collapse
|
6
|
Kalani A, Tabibian JH, Lindor KD. Emerging therapeutic targets for primary sclerosing cholangitis. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1490643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Amir Kalani
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA Gastroenterology Fellowship Training Program, Los Angeles, CA, USA
| | - James H. Tabibian
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
| | - Keith D. Lindor
- Professor of Medicine and Senior Advisor to the Provost, College of Health Solutions, Arizona State University, USA
| |
Collapse
|
7
|
Yu D, Cai SY, Mennone A, Vig P, Boyer JL. Cenicriviroc, a cytokine receptor antagonist, potentiates all-trans retinoic acid in reducing liver injury in cholestatic rodents. Liver Int 2018; 38:1128-1138. [PMID: 29356312 PMCID: PMC6032984 DOI: 10.1111/liv.13698] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Cholestatic liver injury is mediated by bile acid-induced inflammatory responses. We hypothesized that superior therapeutic effects might be achieved by combining treatments that reduce the bile acid pool size with one that blocks inflammation. METHODS Bile duct-ligated (BDL) rats and Mdr2(Abcb4)-/- mice were treated with all-trans retinoic acid (atRA), a potent inhibitor of bile acid synthesis, 5 mg/kg/d by gavage, or Cenicriviroc (CVC), a known antagonist of CCR2 and CCR5, 50 mg/kg/d alone or in combination for 14 days and 1 month respectively. RESULTS All-trans retinoic acid alone reduced bile acid pool size and liver necrosis in BDL rats. However, the combination with CVC further reduced liver to body weight ratio, bile acid pool size, plasma liver enzyme, bilirubin, liver necrosis and fibrosis when compared to the atRA treatment. The assessment of hepatic hydroxyproline content further confirmed the reduced liver injury concurrent with reduction of pro-inflammatory cytokines emphasizing the synergistic effects of these two agents. Profiling of hepatic inflammatory cells revealed that combination therapy reduced neutrophils and T cells but not macrophages. The superior therapeutic effects of combination treatment were also confirmed in Mdr2-/- mice where a significant reduction in plasma liver enzymes, bilirubin, liver fibrosis, bile duct proliferation and hepatic infiltration of neutrophils and T cells and expression of cytokines were found. CONCLUSIONS Multitargeted therapy is an important paradigm for treating cholestatic liver injury. The combination of CVC with atRA or other FXR activators may warrant a clinical trial in patients with cholestatic liver disease.
Collapse
Affiliation(s)
- Dongke Yu
- Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Shi-Ying Cai
- Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Albert Mennone
- Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Pamela Vig
- Allergan plc, South San Francisco, CA 94080
| | - James L. Boyer
- Liver Center, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
8
|
Erice O, Munoz-Garrido P, Vaquero J, Perugorria MJ, Fernandez-Barrena MG, Saez E, Santos-Laso A, Arbelaiz A, Jimenez-Agüero R, Fernandez-Irigoyen J, Santamaria E, Torrano V, Carracedo A, Ananthanarayanan M, Marzioni M, Prieto J, Beuers U, Oude Elferink RP, LaRusso NF, Bujanda L, Marin JJG, Banales JM. MicroRNA-506 promotes primary biliary cholangitis-like features in cholangiocytes and immune activation. Hepatology 2018; 67:1420-1440. [PMID: 28922472 PMCID: PMC5857422 DOI: 10.1002/hep.29533] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/07/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022]
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease associated with autoimmune phenomena targeting intrahepatic bile duct cells (cholangiocytes). Although its etiopathogenesis remains obscure, development of antimitochondrial autoantibodies against pyruvate dehydrogenase complex E2 is a common feature. MicroRNA (miR) dysregulation occurs in liver and immune cells of PBC patients, but its functional relevance is largely unknown. We previously reported that miR-506 is overexpressed in PBC cholangiocytes and directly targets both Cl- / HCO3- anion exchanger 2 and type III inositol 1,4,5-trisphosphate receptor, leading to cholestasis. Here, the regulation of miR-506 gene expression and its role in cholangiocyte pathophysiology and immune activation was studied. Several proinflammatory cytokines overexpressed in PBC livers (such as interleukin-8 [IL8], IL12, IL17, IL18, and tumor necrosis factor alpha) stimulated miR-506 promoter activity in human cholangiocytes, as revealed by luciferase reporter assays. Experimental overexpression of miR-506 in cholangiocytes dysregulated the cell proteomic profile (by mass spectrometry), affecting proteins involved in different biological processes including mitochondrial metabolism. In cholangiocytes, miR-506 (1) induced dedifferentiation with down-regulation of biliary and epithelial markers together with up-regulation of mesenchymal, proinflammatory, and profibrotic markers; (2) impaired cell proliferation and adhesion; (3) increased oxidative and endoplasmic reticulum stress; (4) caused DNA damage; and (5) sensitized to caspase-3-dependent apoptosis induced by cytotoxic bile acids. These events were also associated with impaired energy metabolism in mitochondria (proton leak and less adenosine triphosphate production) and pyruvate dehydrogenase complex E2 overexpression. Coculture of miR-506 overexpressing cholangiocytes with PBC immunocytes induced activation and proliferation of PBC immunocytes. CONCLUSION Different proinflammatory cytokines enhance the expression of miR-506 in biliary epithelial cells; miR-506 induces PBC-like features in cholangiocytes and promotes immune activation, representing a potential therapeutic target for PBC patients. (Hepatology 2018;67:1420-1440).
Collapse
Affiliation(s)
- Oihane Erice
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Patricia Munoz-Garrido
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Javier Vaquero
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Saint-Antoine Research Center, Paris, and Fondation ARC, Villejuif, France
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Maite G Fernandez-Barrena
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Division of Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Elena Saez
- Division of Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Joaquin Fernandez-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Navarra Health Department, Public University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Enrique Santamaria
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Navarra Health Department, Public University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Verónica Torrano
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- CIBERONC
| | - Arkaitz Carracedo
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- CIBERONC
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Jesus Prieto
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Division of Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P Oude Elferink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Mancinelli R, Olivero F, Carpino G, Overi D, Rosa L, Lepanto MS, Cutone A, Franchitto A, Alpini G, Onori P, Valenti P, Gaudio E. Role of lactoferrin and its receptors on biliary epithelium. Biometals 2018; 31:369-379. [PMID: 29550924 DOI: 10.1007/s10534-018-0094-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Human lactoferrin is an iron-binding glycoprotein present at high concentrations in breast milk and colostrum. It is produced by many exocrine glands and widely distributed in a variety of body fluids. This protein has antimicrobial, immunomodulatory, antioxidant, and anticancer properties. Two important hLf receptors have been identified: LDL receptor related protein (LRP1), a low specificity receptor, and intelectin-1 (ITLN1), a high specificity receptor. No data are present on the role of hLf on the biliary epithelium. Our aims have been to evaluate the expression of Lf and its receptors in human and murine cholangiocytes and its effect on proliferation. Immunohistochemistry and immunofluorescence (IF) were conducted on human healthy and primary biliary cholangitis (PBC) liver samples as well as on liver samples obtained from normal and bile duct ligated (BDL) mice to evaluate the expression of Lf, LRP1 and ITLN1. Cell proliferation in vitro studies were performed on human cholangiocyte cell lines via 3-(4,5-dimetiltiazol-2-il)-2,5-diphenyltetrazolium assay as well as IF to evaluate proliferating cell nuclear antigen (PCNA) expression. Our results show that mouse and human cholangiocytes express Lf, LRP1 and ITLN1, at higher extent in cholangiocytes from BDL and PBC samples. Furthermore, the in vitro addition of bovine Lf (bLf) has a proliferative effect on human cholangiocyte cell line. The results support a proliferative role of hLf on the biliary epithelium; this pro-proliferative effect of hLf and bLf on cholangiocytes could be particularly relevant in human cholangiopathies such as PBC, characterized by cholangiocyte death and ductopenia.
Collapse
Affiliation(s)
- Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.
| | - Francesca Olivero
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Baylor Scott & White Digestive Disease Research Center, Baylor Scott & White, Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX, 76504, USA
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Zakharia K, Tabibian A, Lindor KD, Tabibian JH. Complications, symptoms, quality of life and pregnancy in cholestatic liver disease. Liver Int 2018; 38:399-411. [PMID: 28921801 DOI: 10.1111/liv.13591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022]
Abstract
Cholestatic liver diseases (CLDs) encompass a variety of disorders of bile formation and/or flow which generally result in progressive hepatobiliary injury and ultimately end-stage liver disease. Many patients with CLD are diagnosed between the ages of 20-50 years, a particularly productive period of life professionally, biologically and in other respects; it is not surprising, thus, that CLD is often associated with impaired health-related quality of life (HRQOL) and uncertainty regarding implications for and outcomes of pregnancy. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are the most prominent CLDs, both having considerable morbidity and mortality and representing major indications for liver transplantation. These disorders, as a consequence of their complications (eg ascites, hepatic osteodystrophy), associated conditions (eg inflammatory bowel disease) and symptoms (eg pruritus and fatigue), can significantly impair an array of domains of HRQOL. Here we review these impactful clinical aspects of PSC and PBC as well as the topics of fertility and pregnancy.
Collapse
Affiliation(s)
- Kais Zakharia
- Internal Medicine Residency Program, Beaumont Health - Dearborn, Dearborn, MI, USA
| | - Anilga Tabibian
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Keith D Lindor
- Arizona State University, Phoenix, AZ, USA.,Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA
| | - James H Tabibian
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
| |
Collapse
|
11
|
Wu JS, Li YF, Li YY, Dai Y, Li WK, Zheng M, Shi ZC, Shi R, Wang TM, Ma BL, Liu P, Ma YM. Huangqi Decoction Alleviates Alpha-Naphthylisothiocyanate Induced Intrahepatic Cholestasis by Reversing Disordered Bile Acid and Glutathione Homeostasis in Mice. Front Pharmacol 2017; 8:938. [PMID: 29311939 PMCID: PMC5742571 DOI: 10.3389/fphar.2017.00938] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Intrahepatic cholestasis is a serious symptom of liver disorders with limited therapies. In this study, we investigated the efficacy of Huangqi decoction (HQD), a two-herb classic traditional Chinese medicine (TCM), in the treatment of alpha-naphthylisothiocyanate (ANIT)-induced intrahepatic cholestasis in mice. HQD treatment ameliorated impaired hepatic function and tissue damage. A metabolomics study revealed that the endogenous metabolites significantly affected by HQD were related to bile acid (BA) biosynthesis and glutathione metabolism pathways. HQD treatment decreased the intrahepatic accumulation of cytotoxic BAs, normalized serum BA levels, and increased biliary and urinary BA excretion. Additionally, HQD restored the hepatic glutathione content and suppressed reactive oxygen species (ROS) in cholestatic mice. Protein and gene analysis revealed that HQD increased the expression of the hepatic metabolizing enzymes cytochrome P450 (CYP) 2B10 and UDP glucuronosyltransferase family 1 member A1 (UGT1A1), as well as multidrug resistance-associated protein 2 (Mrp2), Mrp3, and Mrp4, which play crucial roles in BA homeostasis. Further, HQD increased the protein expression of glutamate-cysteine ligase, which is involved in the synthesis of glutathione. Importantly, HQD increased the nuclear expression of nuclear factor-E2-related factor-2 (Nrf2). In conclusion, HQD protects against intrahepatic cholestasis by reversing the disordered homeostasis of BAs and glutathione.
Collapse
Affiliation(s)
- Jia-Sheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Fei Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Yuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Dai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Kai Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Zheng
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng-Chun Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Ming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Ming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Chascsa D, Carey EJ, Lindor KD. Old and new treatments for primary biliary cholangitis. Liver Int 2017; 37:490-499. [PMID: 28371104 DOI: 10.1111/liv.13294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/27/2016] [Indexed: 02/13/2023]
Abstract
Primary biliary cholangitis (formerly primary biliary cirrhosis) is a rare progressive cholestatic liver disease, whose hallmark features include a persistently elevated alkaline phosphatase level, presence of anti-mitochondrial antibodies and characteristic histology. Since 1998, ursodeoxycholic acid (UDCA), a bile acid, has been the only available therapeutic agent. Primary biliary cholangitis is associated with the development of end-stage liver disease, increased morbidity and mortality. UDCA has been shown to improve serum biochemistries, histology and delay the need for liver transplantation. The clinical issue is that approximately 25%-40% of patients do not respond to this standard therapy. In recent years, many trials have investigated alternative and adjunctive treatments, leading to the recent approval of obeticholic acid, an analogue of chenodeoxycholic acid, which has shown significant and sustained reductions in alkaline phosphatase levels in combination with UDCA. Obeticholic acid has rapidly been embraced as a new agent to improve the biochemical profile in refractory patients, in addition to being approved for use as monotherapy in patients who cannot tolerate UDCA. There are several other studies and targets which are being investigated. This review is intended to highlight the benefits of UDCA, educate the reader on the newly available obeticholic acid, and to summarize the many ongoing trials and therapeutic targets being investigated in attempts to control and cure primary biliary cholangitis.
Collapse
Affiliation(s)
- David Chascsa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ, USA
| | - Elizabeth J Carey
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ, USA
| | - Keith D Lindor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ, USA.,College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
13
|
Mousa HS, Carbone M, Malinverno F, Ronca V, Gershwin ME, Invernizzi P. Novel therapeutics for primary biliary cholangitis: Toward a disease-stage-based approach. Autoimmun Rev 2016; 15:870-876. [DOI: 10.1016/j.autrev.2016.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022]
|
14
|
Abstract
A variety of diseases are included under the umbrella term ‘cholangitis’, including hepatobiliary diseases with an autoimmune pathogenesis (such as primary sclerosing cholangitis, primary biliary cholangitis, and IgG4-associated sclerosing cholangitis) and disease processes associated with intraductal stones and infectious etiologies (such as ascending bacterial cholangitis, recurrent pyogenic cholangitis, and liver fluke-associated cholangitis). Recent advances in the pathophysiologic bases of these disorders, particularly with respect to the autoimmune variety, are allowing improved diagnosis and prognostication as well as providing the opportunity to refine and re-imagine treatment modalities. The aim of this review is to highlight selected advances in cholangitis research that point to novel insights into the pathophysiology, diagnosis, and treatment of this diverse array of disorders.
Collapse
Affiliation(s)
- Sum P Lee
- Department of Medicine, Division of Gastroenterology , University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph R Roberts
- Department of Medicine, Division of Gastroenterology , University of Washington School of Medicine, Seattle, WA, USA
| | - Rahul Kuver
- Department of Medicine, Division of Gastroenterology , University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|