1
|
Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36:199-213. [PMID: 28730545 PMCID: PMC5709140 DOI: 10.1007/s10555-017-9682-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Ernest Hawk
- Office of the Vice President Cancer Prevention & Population Science, M. D. Anderson Cancer Center, Unit 1370, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology & Reproductive Medicine, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Department of Cancer Biology, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Center for RNA Interference and Non-Coding RNA The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
2
|
Wang J, Lippman SM, Lee JJ, Yang H, Khuri FR, Kim E, Lin J, Chang DW, Lotan R, Hong WK, Wu X. Genetic variations in regulator of G-protein signaling genes as susceptibility loci for second primary tumor/recurrence in head and neck squamous cell carcinoma. Carcinogenesis 2010; 31:1755-61. [PMID: 20627871 DOI: 10.1093/carcin/bgq138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Curatively treated patients with early-stage head and neck squamous cell carcinoma (HNSCC) are at high risks for second primary tumor (SPT) and recurrence. The regulator of G-protein signaling (RGS) is important in essential signaling transduction and cellular activities. We hypothesize that genetic variations of RGS may modulate the risk of SPT/recurrence in patients with early-stage HNSCC. In a nested case-control study, we evaluated 98 single-nucleotide polymorphisms (SNPs) in 17 RGS genes for the risk of SPT/recurrence among 450 HNSCC patients. Eight SNPs showed significant associations with the risk of SPT/recurrence, with the most significant one of rs2179653, which is located in the 5'-flanking region of RGS2 gene. Under a recessive genetic model, the homozygous variant genotype of this SNP was associated with 2.95-fold [95% confidence interval (CI): 1.52-5.74] increased risk of SPT/recurrence. This association remained significant after the adjustment for multiple comparisons. Cumulative effects analysis revealed that the risk increased significantly with the increasing numbers of unfavorable genotypes. Compared with subjects carrying 0-2 unfavorable genotypes, the hazard ratios (95% CIs) for those carrying 3 or 4+ were 1.73 (1.10-2.70) and 3.05 (1.92-4.83), respectively. Furthermore, survival tree analysis revealed potential higher order gene-gene interactions and indicated different outcomes based on distinct genotype profiles. Genetic variations of RGS genes may modulate the susceptibility to SPT/recurrence in early-stage HNSCC patients individually and cumulatively. Our results stressed the importance of taking a polygenic approach to evaluate the cumulative and interaction effects of genetic variations in the prediction of cancer risk and prognosis.
Collapse
Affiliation(s)
- Jianming Wang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lukevics E, Jansone D, Leite L, Popelis J, Andreeva G, Shestakova I, Domracheva I, Bridane V, Kanepe I. Synthesis and cytotoxicity of phenyl-vinyl derivatives of 4,6,6-trimethyl-2-oxo-1,2,5,6-tetrahydropyridine-3-carbonitrile. Chem Heterocycl Compd (N Y) 2010. [DOI: 10.1007/s10593-010-0411-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|